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En este articulo calculamos algunas series cibicas y cudrticas

notables que involucran la cola de In2. También evaluamos

varias series lineales y cuadraticas con la cola de In 2.

Keywords and Phrases: Abel’s summation formula, cubic series, quartic series, tail of In 2.

2020 AMS Mathematics Subject Classification: 40A05, 40C10.

@) evne |

Accepted: 13 January, 2023 (©2023 O. Furdui et al. This open access article is licensed under a Creative Commons
Received: 09 May, 2022 Attribution-NonCommercial 4.0 International License.


http://cubo.ufro.cl/
http://dx.doi.org/10.56754/0719-0646.2501.089
https://orcid.org/0000-0002-3259-7740
https://orcid.org/0000-0003-3105-1778
mailto: Ovidiu.Furdui@math.utcluj.ro
mailto: Alina.Sintamarian@math.utcluj.ro

90 O. Furdui & A. Sintamarian

1 Introduction and the main results

In this paper we calculate several remarkable cubic and quartic series involving the term % — n+-1 +

—L_ ... The goal of this paper is to extend, to the case of cubic and quartic series, the results
n+2

recorded in [3], in problems 3.15, 3.29 and 3.45, concerning the calculation of some quadratic
series involving the tail of In 2. Our results are new in the literature and they are obtained based
on a combination of techniques involving Abel’s summation formula and shifting the index of
summation, which allow us to reduce the calculation of a cubic or a quartic series to a linear or a

quadratic series, respectively. We also solve an open problem posed in [5, Open problem, p. 107].

The main results of this paper are Theorems 1.1 and 1.2 below.

Theorem 1.1 (Remarkable cubic series with the tail of In2). The following identities hold:

> /1 1 1 5 5
(a)zl<ﬁ_n—|—1+n+2_“.) :EC(?));

> (1 1 1 @) 3
%) 2.1 (ﬁ‘n+1+n+2"“) =T

> /1 1 1 S ¢@) 3,.,. 3 5
S — ) == 2?24 224 —((3).
(c)nzln(n ntl  n+eo ) P24 524 5500)

We mention that the alternating version of the series in part (c¢) of Theorem 1.1

Sapn (Lo L) o2 skt (@)
—~ no n+l n+2 4 4 16

was calculated in [4]. The results in parts (a) and (b) of Theorem 1.1 are due to C. I. Vilean, who

communicated them to the first author, without proof, in an equivalent form in 2015.

Theorem 1.2 (Quartic series with the tail of In2). The following identities hold:

> /1 1 1 4 5 9
(a) 321 (E_n+1+n+2_.”) =2In 2—1—2{(2)1112—1((3),
< /1 1 1 S 13
(b) ngln(ﬁ—n+1+n+2—---) =In 2—§1n 2+((2)1n2—EC(3).

We collect, in the next lemma, some results we need in proving Theorems 1.1 and 1.2.
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Lemma 1.3 (A mosaic of linear and quadratic series with the tail of In 2). The following identities
hold:

Linear series

— n n n+l n4+2 2 2’
21 /1 1 1 n?2  ¢(2)
b —(=- - = >
() ;n<n n+1 n+2 ) 2 + 2’
1/1 1 1 )
== - ... ) =1In%2
() ;n<2n m+1 2n+2 ) e

3 (%_ I —) = 22) - cm);

1 /1 1 1 > 3 In®2
W Y (Gt ) — - c@me-

Since

1n2_[1+%+@+...+%] ot (e ),

we have that all the series in this paper involve the tail of In 2.

Before we prove the lemma, we observe that

1 1 1 ! bant
———+——---:/ (x”’l—:zr"+a:"+1—~--)dx:/ i dz. (1.1)
n n+l n+2 0 o 14+

This implies

1 1 1 1
nzﬂgon(n PR ) > 1-2)
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and it follows that
1 1 1 1

n n—|—1+n—|—2 on’

This shows that the series in Theorems 1.1, 1.2 and Lemma 1.3 are all convergent.

We also need in our analysis Abel’s summation formula, which states that: if (a,)n>1 and (by,)n>1

n
are sequences of real numbers and A, = E ay, then
k=1

> arby = Apbnia + > Ak(br — bryr),

k=1 k=1
or, the infinite version
Z apb = nll_}Ir;O Anbn—H + Z Ay (bk — bk+1). (1.3)
k=1 k=1

Now we are ready to prove Lemma 1.3.

2 Proof of Lemma 1.3

S () S [ [ (R

n=1 n=1 n=1
1 1
:_/ ln(l—l—x)d / 1n(1+x)d _/ ln(l—i—:v)dx
o z(l+x) 0o 14z 0 x
In? 2 (1
_In _/ n( —i—:v)dx
2 0 X
_In®2 (2
2 2
1
We used that/ Mdgc:@.
0 X 2

(b) We have, based on (1.1), that

1 /1 1 1 N A L | >~ "
2 (Z_ )= il do = - - i
;n<n n+1+n+2 ) ;”/0 1tz 0 /Ox(l—i-x) ;n> o
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1 2 2
In(1 — In“2
dz = —¢(2) and /0 n§ - :f) do = == — = (see [5, p. 203)).

1 —
We used that / M

0 X
(¢) This nice result, which may be of independent interest, is obtained by adding the series in

parts (a) and (b) of the lemma.

(d) We have, based on (1.1), that

— 1 (1 1 1 1 [lan!
i ... el d
;n?(n n—|—1+n+2 ) ZnQA Ttz "

n=1

_ 1 1 oo i e 1 LIQ(ZZ?) . .
_/O 71(1”);”2(1 _/0 Tl ()

17 17
:/ Lia(z) dx—/ Lia(x) e

We calculate the first integral in (2.1) and we have that

1. 1 00 9]
Lig(x) / 1 " 1
/O e ; * da RZZI = =) (2:2)
We calculate the second integral in (2.1). We integrate by parts, with f(z) = Lis(z), f'(z) =
In(l-2z) , = B
9 (z) = T2 and g(x) = In(1 + z), and we have that

! "In(1 —2)In(1+2z) 5
0 +/0 do=((2)n2 - 2¢(3), (23)

T

! ng(l‘) - .
/0 Ttz dz = In(1 + x)Lis(z)

1 —
In(1 —z)In(1 4 2) e

since = —%C(?)). For a proof of this result see [5, p. 328]. Com-
x

0
bining (2.1), (2.2) and (2.3), the desired result holds and part (d) of the lemma is proved.

(e) We have, based on (1.1), that

= (1) (1 1 1 R N Y
n;l n2 (ﬁ_n+1+n—|—2_.”>_n¥l n2 Al—i—xdx
I N S < N GO
_/0 x(”@; e (2.4)
- 1Lig(—f£)
-

We calculate the first integral in (2.4) and we have that

"Lig(=a) [P~ N (D3
| e | =Y =2, (2.5)

x
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We calculate the second integral in (2.4). We integrate by parts, with f(zx) = Lis(—x),

f(x) = —M, g (z) = H%, g(x) =1n(1 4+ z), and we have that
TLig(=a) Lo wde) o 2o (B)
| =+ a) 12(_x)0+/07x_—7<(>+T, (2.6)

"In®(1
since/ de = ? (see [1, pp. 291-292]).
0

x
Combining (2.4), (2.5) and (2.6), the desired result holds and part (e) of the lemma is proved.

(f) We calculate the series by shifting the index of summation. We have

n=1

_1r122+§:;(—1)"‘1 (%—nil+ni2—~--)2

e S (b )

:1132—721(—1)”‘1 {%— (%—%HWL%H—---)}Q

=1n22+§:1(;2m +2§Z¥ (%—%HJF%H—)
0o 2

_WZZI(_Umfl <%_m—+1+m;+2_m)

n=1 n=1 n
@, 2, <2 (2 W*2\ (@2
—1“2‘T+2<T‘T)—T-

We mention that this series was calculated by a different method in [3, problem 3.45].

(g) This result is proved, using an integration technique, in [3, problem 3.29]. Here we give

another proof. We apply Abel’s summation formula with a, = 1 and b, = 22, where
1 1 1 1
Ty = — —

n n+1+n+2

— +--. Observe that x,, + T,41 = —.
n
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‘We have

n=1 n=1
=Y n(zn = 2ni1) (@n + Tni1)
n=1
= Z (T — Zpt1) =21 =In2
n=1

We used that lim nz?,; = 0, which follows based on (1.2).
n—oo

o0

H, . 1
(h) We need the following power series formula Z — 1™ = Lig(x) + B (1 —z), z € [-1,1).
n
n=1
For a proof of this result see [5, p. 403].
1
We calculate the series by Abel’s summation formula with a, = — and b, = :v?l, where
n
1 1 1 1
Ty = e + s — --+. Observe that xz, + xp11 = o
We have

00 2 00
1/1 1 1 . 2
E ﬁ(ﬁ_n—i—l—i_n—i—Z—”.) = lim Hpz;, |+ E Hy, (2 — Tnt1) (Tn + Tngr)
H

n—o0
n=1 n=1
> H, 1 S H, (11 L -~ Hn
—;7(%—;)—227(?”“%”—”)—gﬁ
(1.1 = H, ['a! /1 1 — H,
=9\ de —2¢(3)=2 | ——— | de—2
nz::l A ¢(3) A iwr nz::l ot | de —2((3)
_2/1# Li (x)+11n2(1—x) da —2¢(3) (2.7)
~ o aira) TS |
L1 1 1.5
1. 1 2 _ 17 1 2 _
:2/ ng(gc)dx+/ In“(1 I)d:c—Q/ ng—(x)dx_/ de_2g(3),
o T 0 T o 1+w o 1+w

We calculate

1 2 1 2 1 o0
(1 — 1
/711( x)d:v=/ nydy=/1n2y > y" | dy
0 x o L—y 0 ne0

o 1 - (2.8)
2
SR = 3 =)

We also have, see [5, p. 110], that

Yn?(1 - 2) T In®2
/0 2T e = 10 - @2+ T (2.9)
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It follows, based on (2.5), (2.6), (2.7), (2.8) and (2.9), that

<1 /1 1 1 2 3 In® 2
ey ) =2 —¢(2)ln2 - —=,
;n<n n+1+n+2 > 2<(3) ¢(2)In 3

We mention that the series in part (g) of Lemma 1.3 was calculated by a different method

by Boyadzhiev in [2].

(¢) This formula was proved by Boyadzhiev in [2, entry (19)]. O

Now we are ready to prove Theorem 1.1.

3 Proof of Theorem 1.1

Proof. (a) We calculate the series by shifting the index of summation. We have

(1t 3°°11+1 °
U 23 n n+l n+2

1= > /1 1 1 3
"2 039 _ ..
" +;<z’+1 it2 i3 >

i1 1 _
i i+l it2
+3 1 1 L1 2 1 1 1 3
i\i i+1 i+2 i i+l i+2
=1 /1 1 1
=®2+¢3) -3 = (- — —
n2+¢(3) ;z2<2 ir1 Tire )
() 2
1/1 1 1
33 2 (2 - —...) =S

It follows, based on parts (d) and (h) of Lemma 1.3, that

=1 /1 1 1 > 1/1 1 1 2
29 =1*2+¢(3)-3) = (-— — ) +3¥y 2 (=— .
w2003 () X e )

3
=®2+¢(3) -3 (%g(?,) —¢(2)In 2) +3 (—4(3) —¢(2)In2— ln—2) _ 5w

and part (a) of Theorem 1.1 is proved.
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(b) We calculate the series using Abel’s summation formula. We apply formula (1.3) with a, =1
1 1 1
and b, = (—1)"22, where z,, = — — + —---. We have
n n+l n+4+2

lim (—1)"*"'nad | + Z n(—1)" (23 + 23 1)

n—00

[]e
T
—_
N~—
3
7N
S|
|
—
—
|
~_
w
Il

n+l n+2

n=1 n=1
= Z(—l)"n (Tn + Tpt1) (5531 — TpTpy1 + I121+1)
n=1
Tntzi=3 o n (.2 2
i Z(—l) (:zrn—a:n:rnH —|—xn+1)
n=1
Cnttng1=1 wfo2 3 1
o N e
=3 —1)"z? -3 ( n
Lemmal3 (). (0) 5 ( C(2)) 5 (W72 (2 <)
4 2 2 2
2 3
)3y,

We used in the preceding calculations that lim naz? ; = 0, which follows from (1.2).
n—oo

1 1 1
(c¢) Let x,, = —— + —---. We calculate the series by shifting the index of summation.
n n+l n+2
We have

= /1 1 1 S/ 11 P&
S = - S T (e T 3
nz_:l”<n ntl nie2 ) (1 273 ) +2_ nan
[e%S) 3
n—1=i, 3 . 1 1 1
PP 1 - .
" +;(l+ )<¢+1 iv2 013 )

00 3
1 /1 1 1
=n%2 1) |- — [ == — ..
w24 (it )L' (z vl it2 ﬂ
3

=1

1.3 : 2.2 .3
=In 2—}—5 (Z+1)<i3_i2$1+ixi ZCl)

=1

oo

1 1 3 3 3 .

=In®2+ E (i—2+i—3—;xi—i—zxi+3xf—|—2x?—mf—xf)
i=1

=1n32+C(2)+C(3)—3%%—3%%4—3%3@?4—3%?—S—ix?.
1=1 =1 =1 =1 =1
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It follows, based on part (a) of Theorem 1.1 and parts (b), (d), (¢) and (h) of Lemma 1.3,

that
2
28 =n*24¢(2) +¢(3) -3 <1n72 + @) -3 (gg(:&) —¢(2)In 2)
3 In®2 5
_¢(@2) 3.9 5
and Theorem 1.1 is proved. ([

Now we give the proof of Theorem 1.2.

4 Proof of Theorem 1.2

1
Proof. (a) We apply Abel’s summation formula with a, = 1 and b, = 2%, where z,, = — —
n
1 1
+ — ---. We have
n+l n+42
0o 4
1 1 4
z:: ﬁ_n—i-l n+2_”.) _hm m?n+1+nz:1 _an)
> TntTnp1=2 >
= Z = Tn+1) (Tn + Tng1) (517721 + 517721+1) = Z (Tn — Tn1) (5531 + x%wrl)
n=1 n=1
_ - 3 o 3) _ .3 o Tn
_Z( - n+1+__ﬁxn+2xn>_xl+zln Z +2Z(E
* 13 3 In” 2 5
) In®2 + §C(3) —¢(2)ln2-3 <§C(3) ¢(2)In2 — _n3 ) + §<(3)

=2In*2 4 2¢(2)In2 — %g(?,).

We have applied at step () parts (d) and (h) of Lemma 1.3 and part (a) of Theorem 1.1.

We also used that lim nap,, = 0, which follows from (1.2).
n—00

(b) We calculate the series by applying Abel’s summation formula with a,, = n and b, = 7,

1
where z,, = - — —— + —— —
n n+l n+2
‘We have
Z + LI 4zlhmn(n+1 +li (n+1) (23 — = )
— 7’L TL+2 2n—>oo n+1 2 — n n+1

+
1n+$n+17% 1 > 2 2
= 52 TL+1 ( _xn-i—l) ($n+xn+l)

N)I)—l

Z n+ 1) (‘T + Tn n+1 .I'n+1l' n-l—l)
n=1
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_1
Tn+Tnt1=5

> 3
{n:c3 (n+ )23 + 2nad + 323, 3xi——xi+—+—}
n
=1

N~
83

> .2

549 Z nad +3Z:v —SZx —3Z%+§:n i n

(+) In® 2 C() 3, 3 3

2
3/3 n*2\ In*2  ¢(2) 13 ¢(2)In2
-3 (3 -coma- B2+ 24 B By (22

1 13
139 Lq2 1
=In"2 2ln 2+ ¢(2)In2 16((3).

We used at step (x) parts (¢) and (a) of Theorem 1.1 and parts (g), (h), (b) and (d) of Lemma
1.3. We also used that lim n(n+ 1)z}, = 0, which follows from (1.2). O

n—oo

The next corollary answers an open problem posed in [5, Open problem p. 107].

Corollary 4.1. The following identities hold:

(0) ( n _> =41n*2 4+ 6¢(2)In2 — =((3);

; n n+l n+2 4

) Z 12 +L_... 3—41n32+2§(2)—121n22—3§(2)1n2+§C(3)
n n+l n+2 a ! |

1 + 1 d ob tht1 2 + 2
—_— —-..- and observe that - ———+——+—- - =2, — 1z,
n+1l n+2 ° n n+l n+2 +

1
and x, + 41 = —. It follows that
n

1
Proof. (a) Letx,, = ——
n

o0
= Z [:ci - :ciﬂ + 3xnTnt1 (Tny1 — xn)]

n=1
= 1 1
= Z {xi — Ty + 3T, (5 —xn> (5 - 2xn>}
n=1
> Tz, 9
=2 [wi—wiﬂw G 3}
n=1
S ET) DL ) SE-T) S
n=1 n=1 n=1

and the result follows based on part (a) of Theorem 1.1 and parts (d) and (g) of Lemma 1.3.
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(b) We have, exactly as in the proof of part (a), that

> 1 2 2 3
D=4+ = ...
Z( ) <n n+1+n+2 )

n=1
= Z(_l)n (Tn — Tng1)” = Z(_l)n [In - IiJrl + 3Tn Ty (Tnyr — xn)}
n=1 n=1
oo o0 o0 oo 2 oo
= YD = (1) el 3D (1) =9 Y (1) 46 ) (1)
n=1 n=1 n=1 n=1 n=1
0o 00 T 00 .1'2
=8 (~D)"z) +af +3) (-1 5~ 9 (-1 E,
n=1 n=1 n=1

and the result follows based on part (b) of Theorem 1.1 and parts (e) and (i) of Lemma 1.3.

d

o0
1 1 1
Remark 4.2. The calculation of the quintic series Z x5, where x, = —

— n n+l1 n+2
which we believe it can be expressed in terms of well known constants, can be approached by reducing

© 2 > 3 4
x x x
the series to the calculation of quadratic, cubic and quartic sums E —g, E —g and E —2. These
n n n

n=1 n=1 n=1
series and other higher power sums involving the tail of In2 are the topics of a research project

that will be investigated by the authors.

We mention that other challenging quadratic and cubic series involving the tail of various special

functions, as well as open problems can be found in [5].
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