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ABSTRACT

In this paper, we prove that a clopen version S1(CO, CO)

of the Rothberger property and Borel strong measure ze-
roness are independent. For a zero-dimensional metric space
(X, d), X satisfies S1(CO, CO) if, and only if, X has Borel
strong measure zero with respect to each metric which has
the same topology as d has. In a zero-dimensional space, the
game G1(O,O) is equivalent to the game G1(CO, CO) and the
point-open game is equivalent to the point-clopen game. Us-
ing reflections, we obtain that the game G1(CO, CO) and the
point-clopen game are strategically and Markov dual. An
example is given for a space on which the game G1(CO, CO)

is undetermined.

RESUMEN

En este artículo, probamos que una versión clopen
S1(CO, CO) de la propiedad de Rothberger y la nulidad de
la medida fuerte de Borel son independientes. Para un espa-
cio métrico (X, d) cero-dimensional, X satisface S1(CO, CO)

si, y sólo si, X tiene una medida Borel fuerte cero con res-
pecto a cada métrica que tenga la misma topología que d

tiene. En un espacio cero-dimensional, el juego G1(O,O)

es equivalente al juego G1(CO, CO) y el juego punto-abierto
es equivalente al juego punto-cerrado. Usando reflexiones,
obtenemos que el juego G1(CO, CO) y el juego punto-clopen
son estratégicamente y Markov duales. Se entrega un ejem-
plo de un espacio para el cual el juego G1(CO, CO) es inde-
terminado
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1 Introduction

In 1938, Rothberger [12] (see also [9]) introduced covering property in topological spaces. A space

X is said to have Rothberger property if for each sequence ⟨Un : n ∈ ω⟩ of open covers of X there

is a sequence ⟨Vn : n ∈ ω⟩ such that for each n, Vn is an element of Un and each x ∈ X belongs to

Vn for some n. This property is stronger than Lindelöf and preserved under continuous images.

Usually, each selection principle S1(A,B) can be associated with some topological game G1(A,B).
So the Rothberger property S1(O,O) is associated with the Rothberger game G1(O,O).

Let X be a topological space. The Rothberger game G1(O,O) played on X is a game with two

players Alice and Bob.

1st round: Alice chooses an open cover U1 of X. Bob chooses a set U1 ∈ U1.

2nd round: Alice chooses an open cover U2 of X. Bob chooses a set U2 ∈ U2.

etc.

If the family {Un : n ∈ ω} is a cover of the space X then Bob wins the game G1(O,O). Otherwise,

Alice wins.

A topological space is Rothberger if, and only if, Alice has no winning strategy in the game

G1(O,O) [11].

In [8] Galvin proved that for a first-countable space X Bob has a winning strategy in G1(O,O) if,

and only if, X is countable.

In this paper, we continue to study the mildly Rothberger-type properties, started in papers [2, 3, 4],

and, we define a new game - the mildly Rothberger game G1(CO, CO). In a zero-dimensional space,

the Rothberger game is equivalent to the mildly Rothberger game. Using reflections, we obtained

that G1(CO, CO) and the point-clopen game are strategically and Markov dual.

2 Preliminaries

Let (X, τ) or X be a topological space. If a set is open and closed in a topological space, then it

is called clopen. Let ω be the first infinite cardinal and ω1 the first uncountable cardinal. For the

terms and symbols that we do not define, follow [7].

Let A and B be collections of open covers of a topological space X.

The symbol S1(A,B) denotes the selection hypothesis that for each sequence ⟨Un : n ∈ ω⟩ of

elements of A there exists a sequence ⟨Un : n ∈ ω⟩ such that for each n, Un ∈ Un and {Un : n ∈
ω} ∈ B, [13].
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In this paper A and B will be collections of the following open covers of a space X:

O: the collection of all open covers of X.

CO: the collection of all clopen covers of X.

Clearly, X has the Rothberger property if, and only if, X satisfies S1(O,O).

A space X is said to have the mildly Rothberger property if it satisfies the selection principles

S1(CO, CO).

It can be noted that S1(O,O) ⇒ S1(CO, CO) and also every connected space must satisfy S1(CO, CO).
Then the set of real numbers with usual topology satisfies S1(CO, CO) but it does not satisfy

S1(O,O).

Let (X, τ) be a topological space and TX = τ \ {∅} be a topology without empty set.

• Let TX,x = {U ∈ TX : x ∈ U} be the local point-base at x ∈ X.

• Let PX = {TX,x : x ∈ X} be the collection of local point-bases of X.

• Let CTX,x
= {U ∈ TX : U is a clopen set in X, x ∈ U}.

• Let CX = {CTX,x
: x ∈ X}.

3 Results on S1(CO, CO)

3.1 S1(CO, CO) and Borel strong measure zeroness are independent

Recall that a set of reals X is null (or has measure zero) if for each positive ϵ there exists a cover

{In}n∈ω of X such that Σn diam(In) < ϵ.

To restrict the notion of measure zero or null set, in 1919, Borel [1] defined a notion stronger than

measure zeroness. Now this notion is known as strong measure zeroness or strongly null set.

Borel strong measure zero: Y is Borel strong measure zero if there is for each sequence ⟨ϵn : n ∈ ω⟩
of positive real numbers a sequence ⟨Jn : n ∈ ω⟩ of subsets of Y such that each Jn is of diameter

< ϵn, and Y is covered by {Jn : n ∈ ω}.

But Borel was unable to construct a nontrivial (that is, an uncountable) example of a Borel strong

measure zero set. He therefore conjectured that there exists no such examples.

In 1928, Sierpinski observed that every Luzin set is Borel strong measure zero, thus the Continuum

Hypothesis implies that Borel’s Conjecture is false.
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Sierpinski asked whether the property of being Borel strong measure zero is preserved under taking

homeomorphic (or even continuous) images.

In 1941, the answer given by Rothberger is negative under the Continuum Hypothesis. This lead

Rothberger to introduce the following topological version of Borel strong measure zero (which is

preserved under taking continuous images).

In 1988, Miller and Fremlin [10] proved that a space Y has the Rothberger property (S1(O,O))

if, and only if, it has Borel strong measure zero with respect to each metric on Y which generates

the topology of Y .

Recall that a space X is zero-dimensional if it has a base consisting clopen sets. Now we show that

S1(CO, CO) and Borel strong measure zeroness are independent to each other. Since the set of real

numbers does not have measure zero, it does not have Borel strong measure zero but it satisfies

S1(CO, CO). Since every metric space with Borel strong measure zero must be zero-dimensional

and separable, S1(CO, CO) is equivalent to S1(O,O) (see below Theorem 3.1). So by Theorem 6(c)

in [10], there is a subset of reals with Borel strong measure zero but it does not satisfy S1(CO, CO).

The proof of the following result easily follows from replacing the open sets with sets of a clopen

base of the topological space.

Theorem 3.1. For a zero-dimensional space X, S1(CO, CO) is equivalent to S1(O,O).

From Theorem 1 in [10], we obtain the following corollary.

Corollary 3.2. For a zero-dimensional metric space (X, d) the following statements are equivalent:

(1) X satisfies S1(O,O);

(2) X satisfies S1(CO, CO);

(3) X has Borel strong measure zero with respect to every metric which generates the original

topology;

(4) every continuous image of X in Baire space ωω with usual metric has Borel strong measure

zero.

3.2 Dual selection games

The selection game G1(A,B) is an ω-length game for two players, Alice and Bob. During round

n, Alice choose An ∈ A, followed by Bob choosing Bn ∈ An. Player Bob wins in the case that

{Bn : n < ω} ∈ B, and Player Alice wins otherwise.

We consider the following strategies:
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• A strategy for player Alice in G1(A,B) is a function σ : (
⋃

A)<ω → A. A strategy σ for

Alice is called winning if whenever xn ∈ σ⟨xi : i < n⟩ for all n < ω, {xn : n ∈ ω} ̸∈ B. If

player Alice has a winning strategy, we write Alice ↑ G1(A,B).

• A strategy for player Bob in G1(A,B) is a function τ : A<ω →
⋃

A. A strategy τ for Bob is

winning if An ∈ A for all n < ω, {τ(A0, . . . , An) : n < ω} ∈ B.

• A predetermined strategy for Alice is a strategy which only considers the current turn number.

Formally it is a function σ : ω → A. If Alice has a winning predetermined strategy, we write

Alice ↑
preG1(A,B).

• A Markov strategy for Bob is a strategy which only considers the most recent move of player

Alice and the current turn number. Formally it is a function τ : A× ω →
⋃
A. If Bob has a

winning Markov strategy, we write Bob ↑
markG1(A,B).

Note that, Bob ↑
markG1(A,B) ⇒ Bob ↑ G1(A,B) ⇒ Alice ̸↑ G1(A,B) ⇒ Alice ̸↑

preG1(A,B).

It is worth noting that Alice ̸↑
preG1(A,B) is equivalent to the selection principle S1(A,B).

Two games G1 and G2 are said to be strategically dual provided that the following two hold:

• Alice ↑ G1 iff Bob ↑ G2

• Alice ↑ G2 iff Bob ↑ G1.

Two games G1 and G2 are said to be Markov dual provided that the following two hold:

• Alice ↑
preG1 iff Bob ↑

markG2

• Alice ↑
preG2 iff Bob ↑

markG1.

Two games G1 and G2 are said to be dual provided that they are both strategically dual and

Markov dual.

For a set X, let C(X) = {f ∈ (
⋃
X)X : x ∈ X ⇒ f(x) ∈ x} be the collection of all choice functions

on X.

Write X ⪯ Y if X is coinitial in Y with respect to ⊆; that is, X ⊆ Y , and for all y ∈ Y , there

exists x ∈ X such that x ⊆ y.

In the context of selection games, A′ is a selection basis for A when A′ ⪯ A [6].

Definition 3.3 ([6]). The set R is said to be a reflection of the set A if {range(f) : f ∈ C(R)}
is a selection basis for A.

Let G1(A,¬B) := G1(A,P(
⋃
A) \ B).
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Theorem 3.4 ([6], Corollary 26). If R is a reflection of A, then G1(A,B) and G1(R,¬B) are

dual.

The point-open game PO(X) is a game where Alice chooses points of X, Bob chooses an open

neighborhood of each chosen point, and Alice wins if Bob’s choices are a cover.

Theorem 3.5 ([8]). The game G1(O,O) is strategically dual to the point-open game on each

topological space.

Theorem 3.6 ([5]). The game G1(O,O) is Markov dual to the point-open game on each topological

space.

Corollary 3.7. The game G1(O,O) is dual to the point-open game on each topological space.

Recall that two games G and G
′
are equivalent (isomorphic) if

(1) Alice ↑ G iff Alice ↑ G′
.

(2) Bob ↑ G iff Bob ↑ G′
.

Since PX is a reflection of O [6, Proposition 28], the Rothberger game G1(O,O) and G1(PX ,¬O)

are dual [6, Corollary 29]. It is well known that the game G1(PX ,¬O) is equivalent to the point-

open game.

3.3 The point-clopen and quasi-component-clopen games

The point-clopen game PC(X) on a space X is played according to the following rules:

In each inning n ∈ ω, Alice picks a point xn ∈ X, and then Bob chooses a clopen set Un ⊆ X with

xn ∈ Un. At the end of the play

x0, U0, x1, U1, x2, U2, . . . , xn, Un, . . . ,

the winner is Alice if X =
⋃

n∈ω Un, and Bob otherwise.

We denote the collection of all non-empty clopen subsets of a space X by τc and the collection of

all finite subsets of τc by τ<ω
c .

A strategy for Alice in the point-clopen game on a space X is a function φ : τ<ω
c → X.

A strategy for Bob in the point-clopen game on a space X is a function ψ : X<ω → τc such that,

for all ⟨x0, x1, . . . , xn⟩ ∈ X<ω \ {⟨⟩}, we have xn ∈ ψ(⟨x0, . . . , xn⟩) = Un.

A strategy φ : τ<ω
c → X for Alice in the point-clopen game on a space X is a winning strategy

for Alice if, for every sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X such that ∀n ∈ ω,
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(xn = φ(⟨U0, U1, . . . , Un−1⟩) ∈ Un), we have X =
⋃

n∈ω Un. If Alice has a winning strategy in the

point-clopen game on a space X, we write Alice↑PC(X).

A strategy ψ : X<ω → τc for Bob in the point-clopen game on a space X is a winning strategy

for Bob if, for every sequence ⟨xn : n ∈ ω⟩ of points of a space X, we have X =
⋃

n∈ω{Un : Un =

ψ(⟨x0, x1, . . . , xn⟩)}. If Bob has a winning strategy in the point-clopen game on a space X, we

write Bob↑PC(X).

The game G1(CO, CO) is a game for two players, Alice and Bob, with an inning per each natural

number n. In each inning, Alice picks a clopen cover of the space and Bob selects one member

from this cover. Bob wins if the sets he selected throughout the game cover the space. If this is

not the case, Alice wins.

The intersection of all clopen sets containing a component is called a quasi-component of the

space [7].

The quasi-component-clopen game QC(X) on a space X is played according to the following rules:

In each inning n ∈ ω, Alice picks a quasi-component An of X, and then Bob chooses a clopen set

Un ⊆ X with An ⊆ Un. At the end of the play

A0, U0, A1, U1, A2, U2, . . . , An, Un, . . . ,

the winner is Alice if X =
⋃

n∈ω Un, and Bob otherwise.

We denote the collection of all quasi-components of a space X by QX and the collection of all

finite subsets of QX by Q<ω
X .

A strategy for Alice in the quasi-component-clopen game on a space X is a function φ : τ<ω
c → QX .

A strategy for Bob in the quasi-component-clopen game on a space X is a function ψ : Q<ω
X → τc

such that, for all ⟨A0, A1, . . . , An⟩ ∈ Q<ω
X \ {⟨⟩}, we have An ⊆ ψ(⟨A0, . . . , An⟩) = Un.

A strategy φ : τ<ω
c → QX for Alice in the quasi-component-clopen game on a space X is a winning

strategy for Alice if, for every sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X such that

∀n ∈ ω, (An = φ(⟨U0, U1, . . . , Un−1⟩) ⊆ Un), we have X =
⋃

n∈ω Un. If Alice has a winning

strategy in the quasi-component-clopen game on a space X, we write Alice↑QC(X).

A strategy ψ : Q<ω
X → τc for Bob in the quasi-component-clopen game on a space X is a winning

strategy for Bob if, for every sequence ⟨An : n ∈ ω⟩ of quasi-components of a space X, we

have X =
⋃

n∈ω{Un : Un = ψ(⟨A0, A1, . . . , An⟩)}. If Bob has a winning strategy in the quasi-

component-clopen game on a space X, we write Bob↑QC(X).

Proposition 3.8. The point-clopen game is equivalent to the quasi-component-clopen game.

Proof. Let φ : τ<ω
c → X be a winning strategy for Alice in the point-clopen game on a space
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X. Then the function ψ : τ<ω
c → QX such that ψ(⟨U0, U1, . . . , Un−1⟩) = Q[φ(⟨U0, U1, . . . , Un−1⟩)]

(Q[x] is the quasi-component of x) for every sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X

and n ∈ ω, is a winning strategy for Alice in the quasi-component-clopen game. This follows from

the fact that xn = φ(⟨U0, U1, . . . , Un−1⟩) ∈ Q[xn] ⊆ Un.

Let φ : τ<ω
c → QX be a winning strategy for Alice in the quasi-component-clopen game on a space

X. Then the function ψ : τ<ω
c → X such that ψ(⟨U0, U1, . . . , Un−1⟩) ∈ φ(⟨U0, U1, . . . , Un−1⟩) for

every sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X and n ∈ ω, is a winning strategy for

Alice in the point-clopen game.

Let ψ : X<ω → τc be a winning strategy for Bob in the point-clopen game on X. Then the function

ρ : Q<ω
X → τc such that ρ(⟨A0, A1, . . . , An⟩) = ψ(⟨x0, x1, . . . , xn⟩) for every sequence ⟨An : n ∈ ω⟩

of quasi-components of a space X and some x0, . . . , xn that Ai = Q[xi] for each i = 0, . . . , n, is a

winning strategy for Bob in the quasi-component-clopen game.

Let ψ : Q<ω
X → τc be a winning strategy for Bob in the quasi-component-clopen game on X. Then

the function ρ : X<ω → τc such that ρ(⟨x0, x1, . . . , xn⟩) = ψ(⟨A0, A1, . . . , An⟩) for every sequence

⟨xn : n ∈ ω⟩ of points of a space X where Ai = Q[xi] for each i = 0, . . . , n, is a winning strategy

for Bob in the point-clopen-clopen game.

Proposition 3.9. CX is a reflection of CO.

Proof. For every clopen cover U , the corresponding choice function f ∈ C(CX) is simply the witness

that x ∈ f(CTX,x
) ∈ U .

By Theorem 3.4, we get the following result.

Corollary 3.10. G1(CO, CO) and G1(CX ,¬CO) are dual.

Note that PC(X) and G1(CX ,¬CO) are the same game.

By Proposition 3.8, PC(X) and QC(X) are equivalent, hence, we get the following result.

Proposition 3.11. The game G1(CX ,¬CO) is equivalent to the quasi-component-clopen game.

Corollary 3.12. If a space X is a union of countable number of quasi-components, then Bob

↑ G1(CO, CO).
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The following chain of implications always holds:

X is a union of countable number of quasi-components

⇓
Bob ↑ G1(CO, CO)

⇓
Alice ̸↑ G1(CO, CO)

⇕
X has mildly Rothberger property.

The proof of the following result easily follows from replacing the open sets with sets of a clopen

base of the topological space.

Theorem 3.13. For a zero-dimensional space, the following statements hold:

(1) The game G1(CO, CO) is equivalent to the game G1(O,O).

(2) The point-clopen game is equivalent to the point-open game.

From [11] and [?], we have the following result.

Theorem 3.14. For a space X, the following statements hold:

(1) [11] X satisfies S1(O,O) iff Alice ̸↑ G1(O,O).

(2) [?] X satisfies S1(CO, CO) iff Alice ̸↑ G1(CO, CO).

Corollary 3.15. For a space X, the following statements are equivalent:

(1) X satisfies S1(CO, CO);

(2) Alice ̸↑
preG1(CO, CO);

(3) Alice ̸↑ G1(CO, CO);

(4) Bob ̸↑ G1(CX ,¬CO);

(5) Bob ̸↑
markG1(CX ,¬CO);

(6) Bob ̸↑ PC(X);

(7) Bob ̸↑ QC(X);

(8) Bob ̸↑
markPC(X);

(9) Bob ̸↑
markQC(X).

Corollary 3.16. For a zero-dimensional space X, the following statements are equivalent:

(1) X satisfies S1(O,O);

(2) X satisfies S1(CO, CO);

(3) Alice ̸↑
preG1(CO, CO);

(4) Alice ̸↑
preG1(O,O);

(5) Alice ̸↑ G1(O,O);

(6) Alice ̸↑ G1(CO, CO);
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(7) Bob ̸↑ G1(PX ,¬O);

(8) Bob ̸↑ G1(CX ,¬CO);

(9) Bob ̸↑ PO(X);

(10) Bob ̸↑ PC(X);

(11) Bob ̸↑ QC(X);

(12) Bob ̸↑
markPO(X);

(13) Bob ̸↑
markPC(X);

(14) Bob ̸↑
markQC(X).

In [8], Galvin and Telgársky in [14, Theorem 6.3] prove: If X is a Lindelöf space in which each

element is Gδ, then Bob has a winning strategy in G1(O,O) if, and only if, X is countable.

Theorem 3.17. Let X be a space in which each quasi-component is an intersection of countably

many clopen sets, then Bob ↑ G1(CO, CO) if, and only if, X is a union of countably many quasi-

components.

Proof. Let Bob have a winning strategy in the game G1(CO, CO) on X. Since the game G1(CO, CO)
and the point-clopen game are dual and, by Proposition 3.8, the point-clopen game and the quasi-

component-clopen game are equivalent.

Let Alice have a winning strategy in the quasi-component-clopen game. Let φ be a winning

strategy of Alice in the quasi-component-clopen game on X. For every quasi-component Q, there

is a sequence ⟨Vk : k ∈ ω⟩ of clopen sets such that Q =
⋂

k∈ω Vk.

So we restrict the move of Bob from {Vk : k ∈ ω} for Q played by Alice.

Let Alice start the play of the point-clopen game by quasi-component φ(⟨⟩) = Q⟨⟩. Then Bob

replies with a clopen set of the form Vk0,⟨⟩ for some k0 ∈ ω.

Alice’s next move in the play is a quasi-component φ(⟨Vk0,⟨⟩⟩) = Q⟨k0⟩. Then Bob replies with a

clopen set of the form Vk1,⟨k0⟩ for some k1 ∈ ω.

Now Alice’s next move in the play is a quasi-component φ(⟨Vk0,⟨⟩, Vk1,⟨k0⟩⟩) = Q⟨k0,k1⟩. Then Bob

replies with a clopen set of the form Vk2,⟨k0,k1⟩ for some k2 ∈ ω and so on.

Similarly we are defining ⟨Qs : s ∈ ω<ω⟩ by setting Q⟨⟩ = φ(⟨⟩) and for each s ∈ ω<ω and for each

k ∈ ω, defining

Qs⌢⟨k⟩ = φ(⟨Vs(0),s↾0, Vs(1),s↾1, . . . , Vs(m−1),s↾(m−1), Vk,s⟩),

where m = dom(s). From this we construct a countable collection {Qs : s ∈ ω<ω}.

Now to show that
⋃
{Qs : s ∈ ω<ω} = X. If possible suppose that

⋃
{Qs : s ∈ ω<ω} ̸= X, then

there is y ∈ X \ {Qs : s ∈ ω<ω}. Then y /∈ Qs for any s ∈ ω<ω. For each Qn ∈ {Qs : s ∈ ω<ω},
there is some kn such that y /∈ Vkn,n. Then Alice loses the following play of the quasi-component-

clopen game



CUBO
25, 2 (2023)

Some observations on a clopen version of the Rothberger property 171

⟨Q0, Vk0,0, Q1, Vk1,1, . . . , Qn, Vkn,n, . . . ⟩

in which Alice uses the strategy φ since y /∈
⋃

n∈ω Vkn,n, a contradiction.

The converse follows from Corollary 3.12.

3.4 Determinacy and G1(CO, CO) game

A game G played between two players Alice and Bob is determined if either Alice has a winning

strategy in game G or Bob has a winning strategy in game G. Otherwise G is undetermined.

It can be observed that the game G1(CO, CO) is determined for every countable space. But in

a mildly Rothberger space in which each quasi-component is an intersection of countably many

clopen sets with uncountable many quasi-components, none of the players Alice and Bob have a

winning strategy. So G1(CO, CO) is undetermined for a mildly Rothberger space in which each

quasi-component is an intersection of countably many clopen sets with uncountable many quasi-

components. Thus every uncountable zero-dimensional mildly Rothberger metric space is unde-

termined.

Recall that an uncountable set L of reals is a Luzin set if for each meager set M , L∩M is countable.

The Continuum Hypothesis implies the existence of a Luzin set. A Luzin set is an example of a

space for which the game G1(CO, CO) is undetermined.

Acknowledgements

The authors would like to thank the referees for careful reading and valuable comments. The work

was performed as part of research conducted in the Ural Mathematical Center with the financial

support of the Ministry of Science and Higher Education of the Russian Federation (Agreement

number 075-02-2023-913).



172 Manoj Bhardwaj & Alexander V. Osipov CUBO
25, 2 (2023)

References

[1] E. Borel, “Sur la classification des ensembles de mesure nulle”, Bull. Soc. Math. France, vol.

47, pp. 97–125, 1919.

[2] M. Bhardwaj and A. V. Osipov, “Mildly version of Hurewicz basis covering property and

Hurewicz measure zero spaces”, Bull. Belg. Math. Soc. Simon Stevin, vol. 29, no. 1, pp. 123–

133, 2022.

[3] M. Bhardwaj and A. V. Osipov, “Some observations on the mildly Menger property and

topological games”, Filomat, vol. 36, no. 15, pp. 5289–5296, 2022.

[4] M. Bhardwaj and A. V. Osipov, “Star versions of the Hurewicz basis covering property and

strong measure zero spaces”, Turkish J. Math., vol. 44, no. 3, pp. 1042–1053, 2020.

[5] S. Clontz and J. Holshouser, “Limited information strategies and discrete selectivity”, Topology

Appl., vol. 265, Art. ID 106815, 2019.

[6] S. Clontz, “Dual selection games”, Topology Appl., vol. 272, Art. ID 107056, 2020.

[7] R. Engelking, General Topology, Revised and completed edition. Berlin, Germany: Heldermann

Verlag, 1989.

[8] F. Galvin, “Indeterminacy of point-open games”, Bull. Acad. Pol. Sci., vol. 26, no. 5, pp.

445–449, 1978.

[9] W. Hurewicz, “Über eine verallgemeinerung des Borelschen theorems”, Math. Z., vol. 24, pp.

401–421, 1925.

[10] A. W. Miller and D. H. Fremlin, “Some properties of Hurewicz, Menger and Rothberger”,

Fund. Math., vol. 129, pp. 17–33, 1988.

[11] J. Pawlikowski, “Undetermined sets of point-open games”, Fund. Math., vol. 144, pp. 279–285,

1994.

[12] F. Rothberger, “Eine Verschörfung der Eigenschaft C”, Fund. Math., vol. 30, pp. 50–55, 1938.

[13] M. Scheepers, “Combinatorics of open covers (I): Ramsey theory”, Topology Appl., vol. 69, no.

1, pp. 31–62, 1996.

[14] R. Telgársky, “Spaces defined by topological games”, Fund. Math., vol. 88, pp. 193–223, 1975.


	Introduction
	Preliminaries
	Results on S1(CO, CO)
	S1(CO, CO) and Borel strong measure zeroness are independent
	Dual selection games
	The point-clopen and quasi-component-clopen games
	Determinacy and G1(CO, CO) game


