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ABSTRACT

It has been shown that, under suitable hypotheses, boundary

value problems of the form, Ly + λy = f, BCy = 0 where L

is a linear ordinary or partial differential operator and BC

denotes a linear boundary operator, then there exists Λ > 0

such that f ≥ 0 implies λy ≥ 0 for λ ∈ [−Λ,Λ] \ {0}, where

y is the unique solution of Ly + λy = f, BCy = 0. So, the

boundary value problem satisfies a maximum principle for

λ ∈ [−Λ, 0) and the boundary value problem satisfies an anti-

maximum principle for λ ∈ (0,Λ]. In an abstract result, we

shall provide suitable hypotheses such that boundary value

problems of the form, Dα
0 y + βDα−1

0 y = f, BCy = 0 where

Dα
0 is a Riemann-Liouville fractional differentiable operator

of order α, 1 < α ≤ 2, and BC denotes a linear boundary

operator, then there exists B > 0 such that f ≥ 0 implies

βDα−1
0 y ≥ 0 for β ∈ [−B,B] \ {0}, where y is the unique

solution of Dα
0 y+βDα−1

0 y = f, BCy = 0. Two examples are

provided in which the hypotheses of the abstract theorem

are satisfied to obtain the sign property of βDα−1
0 y. The

boundary conditions are chosen so that with further analysis

a sign property of βy is also obtained. One application of

monotone methods is developed to illustrate the utility of

the abstract result.
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RESUMEN

Se ha demostrado que, bajo hipótesis apropiadas, problemas

de valor en la frontera de la forma Ly + λy = f, BCy = 0,

donde L es un operador diferencial lineal ordinario o parcial

y BC denota un operador lineal de frontera, entonces existe

Λ > 0 tal que f ≥ 0 implica λy ≥ 0 para λ ∈ [−Λ,Λ] \ {0},

donde y es la única solución de Ly + λy = f, BCy = 0.

Así, el problema de valor en la frontera satisface un prin-

cipio del máximo para λ ∈ [−Λ, 0) y el problema de valor

en la frontera satisface un anti-principio del máximo para

λ ∈ (0,Λ]. En un resultado abstracto, entregaremos hipóte-

sis apropiadas tales que los problemas de valor en la fron-

tera de la forma Dα
0 y + βDα−1

0 y = f, BCy = 0 donde Dα
0

es un operador diferencial fraccionario de Riemann-Liouville

de orden α, 1 < α ≤ 2, y BC denota un operador lineal

de frontera, entonces existe B > 0 tal que f ≥ 0 implica

βDα−1
0 y ≥ 0 para β ∈ [−B,B] \ {0}, donde y es la única

solución de Dα
0 y + βDα−1

0 y = f, BCy = 0. Se entregan dos

ejemplos en los cuales las hipótesis del teorema abstracto se

satisfacen para obtener la propiedad de signo de βDα−1
0 y.

Las condiciones de frontera se eligen de tal forma de obtener

también una propiedad de signo para βy con un análisis adi-

cional. Se desarrolla una aplicación de métodos monótonos

para ilustrar la utilidad del resultado abstracto.

Keywords and Phrases: Maximum principle, anti-maximum principle, Riemann-Liouville fractional differential

equation, boundary value problem, monotone methods, upper and lower solution.
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1 Introduction

For γ > 0, y ∈ L[0, 1], the space of Lebesgue integrable functions, the expression

Iγ0 y(t) =

∫ t

0

(t− s)γ−1

Γ(γ)
y(s) ds, 0 ≤ t ≤ 1,

denotes a Riemann-Liouville fractional integral of y of order γ, where Γ denotes the special gamma

function. For γ = 0, I00 is defined to be the identity operator.

Let n denote a positive integer and assume n − 1 < α ≤ n. Then Dα
0 y(t) = DnIn−α

0 y(t), where

Dn =
dn

dtn
and if this expression exists, denotes a Riemann-Liouville fractional derivative of y of

order α. So, if 1 < α < 2, Dα
0 y(t) =

d2

dt2

∫ t

0

(t− s)1−α

Γ(2− α)
y(s) ds if the right hand side exists. In

the case α is a positive integer, we may write Dα
0 y(t) = Dαy(t) or Iα0 y(t) = Iαy(t) since the

Riemann-Liouville derivative or integral agrees with the classical derivative or integral if α is a

positive integer.

For authoritative accounts on the development of fractional calculus, we refer to the monographs

[11, 16, 20]. For the sake of self-containment, we state properties that we shall employ in this study.

It is well-know that the Riemann-Liouville fractional integrals commute; that is if γ1, γ2 > 0, and

y ∈ L[0, 1], then

Iγ1

0 Iγ2

0 y(t) = Iγ1+γ2

0 y(t) = Iγ2

0 Iγ1

0 y(t).

A power rule is valid for the Riemann-Liouville fractional integral; if δ > −1 and γ ≥ 0, then

Iγ0 t
δ = Iγ0 (t− 0)δ =

Γ(δ + 1)

Γ(δ + 1 + γ)
tδ+γ .

A power rule is valid for the Riemann-Liouville fractional derivative; if δ > −1 and γ ≥ 0 then

Dγ
0 t

δ =
Γ(δ + 1)

Γ(δ + 1− γ)
tδ−γ .

Since the gamma function is unbounded at 0, it is the convention that if δ + 1 − γ = 0, then

Dγ
0 t

δ = 0. Note that if 1 < α ≤ 2, and if Dα
0 y(t) exists, then Dα−1

0 y(t) exists and

Dα
0 y(t) = D2I2−α

0 y(t) = DDI
1−(α−1)
0 y(t) = DDα−1

0 y(t).

In [12], a boundary value problem,

Dα
0 y(t) = f(t, y(t)), 0 < t ≤ 1, (1.1)

y(0) = 0, Dα−1
0 y(0) = Dα−1

0 y(1), (1.2)
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where 1 < α ≤ 2, was studied. This is an example of a boundary value problem at resonance

since < tα−1 >, the linear span of tα−1, denotes the solution space of the homogeneous problem,

Dα
0 y = 0, with homogeneous boundary conditions, (1.2). In [12], the purpose of that article was

to consider an equivalent shifted equation, Dα
0 y(t) − K2y(t) = f(t, y(t)) − K2y(t), 0 < t ≤ 1,

and apply the method of quasilinearization to the shifted boundary value problem. The method

of quasilinearization is ideally suited when the boundary value problem, in this case the shifted

boundary value problem, satisfies a maximum principle [19]. In particular, in [12], a nonpositive

Green’s function for the shifted boundary value problem was explicitly constructed. Not surpris-

ingly, Mittag-Leffler functions were key to the construction and signing of the Green’s function.

The case, Dα
0 y(t) +K2y(t) = f(t, y(t)) +K2y(t), 0 < t ≤ 1, was not addressed in [12].

The maximum principle is well-known and is an important tool in the qualitative study of dif-

ferential equations; we refer the reader to the well-known monograph [19] for many applications.

In recent years, the maximum principle has become an important tool in the study of boundary

value problems for fractional differential equations. Early applications appear in [24] and [3] where

explicit Green’s functions, expressed in terms of power functions, where constructed and sign prop-

erties were analyzed so that fixed point theorems could be applied. Many authors have continued

the strategy to construct and analyze explicit Green’s functions and apply fixed point theory to

nonlinear boundary value problems for fractional differential equations.

In the example, y′′+λy = f , with Neumann boundary conditions, y′(0) = 0, y′(1) = 0, if λ < 0,

then this boundary value problem satisfies a maximum principle. In particular, for f ∈ L[0, 1],
the boundary value problem is uniquely solvable and f nonnegative implies y is nonpositive where

y is the unique solution associated with f . Clément and Peletier [9] were the first to discover an

anti-maximum principle. They were primarily interested in partial differential equations, but they

illustrated the anti-maximum principle with the the same boundary value problem, y′′ + λy = f ,

y′(0) = 0, y′(1) = 0, but now, 0 < λ < π2

4 . For this particular boundary value problem, if

0 < λ < π2

4 and if f ∈ L[0, 1], then the boundary value problem is uniquely solvable and f

nonnegative implies y is nonnegative where y is the unique solution associated with f . At λ = 0,

the boundary value problem is at resonance, and more precisely, λ = 0 denotes a simple eigenvalue

of the linear problem. So there has been a change in the sign property, maximum principle or

anti-maximum principle, through the simple eigenvalue λ = 0. Since the publication of [9] there

have been many studies of boundary value problems with parameter and the change of behavior

from maximum to anti-maximum principles as a function of the parameter. In the case of partial

differential equations, we refer to [1, 2, 8, 10, 14, 17, 18, 21]. In the case of ordinary differential

equations we refer to [4, 5, 6, 7, 13, 22].

In this article, we intend to study this change in behavior for a boundary value problem for a

Riemann-Liouville fractional differential equation. We shall modify the methods developed in [8],
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where in [8], those authors began with an ordinary differential equation

y′′(t) + λy(t) = f(t), t ∈ [0, 1], (1.3)

and considered either periodic boundary conditions or Neumann boundary conditions. Key to

their argument is that for f = 0, at λ = 0, the boundary value problem, (1.3) with periodic or

Neumann boundary conditions, is at resonance since constant functions are nontrivial solutions.

That is, λ = 0 is a simple eigenvalue for the problem, (1.3) with periodic or Neumann boundary

conditions, and the eigenspace is < 1 >, where < 1 > denotes the linear span of the 1 function.

Rewriting the boundary value problem as an abstract equation and employing the resolvent, the

inverse of (D2+λI) for λ ̸= 0, under the imposed boundary conditions, if it exists, and the partial

resolvent for λ = 0, then under the assumption that f ≥ 0 (with f ∈ L[0, 1]), the authors in [8]

exhibited sufficient conditions for the existence of Λ > 0, and a constant K > 0, independent of f ,

such that

λy(t) ≥ K|f |1, λ ∈ [−Λ,Λ] \ {0}, 0 ≤ t ≤ 1,

where y is the unique solution of the boundary value problem associated with (1.3) and |f |1 =∫ 1

0
|f(s)| ds. With this one inequality the authors showed that for −Λ ≤ λ < 0 the boundary value

problem, (1.3) with periodic or Neumann boundary conditions, satisfies a maximum principle and

for 0 < λ ≤ Λ, the boundary value problem (1.3) with periodic or Neumann boundary conditions,

satisfies an anti-maximum principle. They referred to this principle as a maximum principle (we

shall take the liberty to refer to it as a signed maximum principle in y) and then proceeded to

produce many nice examples.

Recently, [13], the arguments developed in [8] were adapted to study boundary value problems for

the ordinary differential equation

y′′(t) + βy′(t) = f(t), t ∈ [0, 1]; (1.4)

sufficient conditions for a signed maximum principle in Dy, where Dy = y′, were obtained. That

is, under the assumption that f ≥ 0 (with f ∈ L[0, 1]), sufficient conditions were exhibited to

imply the existence of B > 0, and a constant K > 0, independent of f such that

βDy(t) ≥ K|f |1, λ ∈ [−B,B] \ {0}, 0 ≤ t ≤ 1.

Two examples of boundary value problems were presented in which if a solution y of the boundary

value problem is such that Dy = y′ has constant sign on [0, 1], then y has constant sign on

[0, 1]. For one of the examples, an appropriate partial order in C1[0, 1], depending on the sign of

β, was defined and the method of upper and lower solutions, coupled with monotone methods,

was employed to obtain sufficient conditions for the existence of solutions of the boundary value
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problem for a nonlinear differential equation,

y′′(t) = f(t, y(t), y′(t)), t ∈ [0, 1].

Motivated by the work in [13], we shall adapt the methods developed in [8] and exhibit suffi-

cient conditions to obtain a signed maximum principle in Dα−1
0 y, for the boundary value problem

Dα
0 y(t) + βDα−1

0 y(t) = f(t), with boundary conditions

BCy = 0, Dα−1
0 y(0) = Dα−1

0 y(1), (1.5)

where BC denotes a linear boundary operator mapping a function y to the reals. In particular,

we shall exhibit sufficient conditions that imply the existence of B > 0, and a constant K > 0,

independent of f , such that

βDα−1
0 y(t) ≥ K|f |1, β ∈ [−B,B] \ {0}, 0 ≤ t ≤ 1. (1.6)

In two examples, the boundary condition BC will be such that if y satisfies the boundary conditions

(1.5) and βDα−1
0 y(t) > 0 on [0, 1], then βy(t) ≥ 0 on (0, 1]. In one of the examples, an appropriate

partial order in a Banach space is defined and the method of upper and lower solutions, coupled

with monotone methods, is applied to obtain sufficient conditions for the existence of solutions of

the nonlinear differential equation

Dα
0 y(t) = f(t, y(t), βDα−1

0 y(t)), t ∈ (0, 1],

satisfying the boundary conditions, (1.5).

In Section 2, following the lead of [8], we shall first define the concept of a signed maximum

principle in Dα−1
0 y. Then analogous to Lemma 1, Lemma 2 and Lemma 3 in [8], we shall prove the

main theorem and obtain sufficient conditions for (1.6) and hence, obtain sufficient conditions for

adherence to a signed maximum principle in Dα−1
0 y. In Section 3, we shall exhibit two examples

that adhere to a strong signed maximum principle inDα−1
0 y and furthermore (1.6) implies βy(t) ≥ 0

on (0, 1]. We shall close in Section 4 with an application of a monotone method applied to a

nonlinear problem related to one of the examples produced in Section 4. At β = 0, the problem is

at resonance. The problem is shifted [15] by βDα−1
0 y and β > 0 or β < 0 is chosen as a function

of the monotonicity properties of the nonlinear term f(t, y(t), βDα−1
0 y(t)).
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2 The main theorem

As is standard, let C[0, 1] denote the Banach space of continuous functions defined on [0, 1] with

the supremum norm, | · |0, and let L[0, 1] denote the space of Lebesgue integrable functions with

the usual L1 norm. Employing notation introduced in [23], assume 1 < α ≤ 2 and define

Cα−2[0, 1] =

{
y : (0, 1] → R : y(t) is continuous for t ∈ (0, 1], and lim

t→0+
t2−αy(t) exists

}
.

It is clear that y ∈ Cα−2[0, 1] if, and only if, there exists z ∈ C[0, 1] such that y(t) = tα−2z(t) for

t ∈ (0, 1]. Define |y|α−2 = |z|0 and Cα−2[0, 1] with norm | · |α−2 is a Banach space.

Let Xα−2 denote the Banach space

Xα−2 = {y : (0, 1] → R : y ∈ Cα−2[0, 1], D
α−1
0 y ∈ C[0, 1]},

with

||y|| = max{|y|α−2, |Dα−1
0 y|0}.

The following definition is motivated by Definition 1 found in [8].

Definition 2.1. Assume A is a linear operator with Dom(A) ⊂ Xα−2 and Im(A) ⊂ L[0, 1]. For

β ∈ R \ {0}, the operator A + βDα−1
0 satisfies a signed maximum principle in Dα−1

0 y if for

each f ∈ L[0, 1], the equation

(A+ βDα−1
0 )y = f, y ∈ Dom(A),

has unique solution, y, and f(t) ≥ 0, 0 ≤ t ≤ 1, implies βDα−1
0 y(t) ≥ 0, 0 ≤ t ≤ 1. The operator

A + βDα−1
0 satisfies a strong signed maximum principle in Dα−1

0 y if f(t) ≥ 0, 0 ≤ t ≤ 1,

and f(t) ̸= 0 a.e., implies βDα−1
0 y(t) > 0, 0 ≤ t ≤ 1.

Remark 2.2. Throughout this article, the phrases “maximum principle” or “anti-maximum prin-

ciple” may be used loosely. If so, we mean the following. If f ≥ 0 implies Dα−1
0 y ≤ 0 the phrase

maximum principle may be used. This is precisely the case for the classical second order ordinary

differential equation with Dirichlet boundary conditions. If f ≥ 0 implies Dα−1
0 y ≥ 0 the phrase

anti-maximum principle may be used. This is the case observed in [9] for α = 2, where the phrase

anti-maximum principle was coined.

For f ∈ L[0, 1] (or f ∈ C[0, 1]), let |f |1 =

∫ 1

0

|f(s)| ds and define f =

∫ 1

0

f(t) dt. Define

C̃ ⊂ C[0, 1] = {f ∈ C[0, 1] : f = 0}, L̃ ⊂ L[0, 1] = {f ∈ L[0, 1] : f = 0}.
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Assume A : Dom(A) → L[0, 1] denotes a linear operator satisfying

Dom(A) ⊂ Xα−2, ker(A) =< tα−1 + ctα−2 >, Im(A) = L̃, (2.1)

for some real constant c, where < tα−1 + ctα−2 > denotes the linear span of tα−1 + ctα−2. Assume

further that for f̃ ∈ L̃, the problem Ay = f̃ is uniquely solvable with solution y ∈ Dom(A) and

such that
∫ 1

0
Dα−1

0 y(t) dt = (Dα−1
0 y) = 0. In particular, define

Dom(Ã) =
{
y ∈ Dom(A) : (Dα−1

0 y) = 0
}
,

and then

A|Dom(Ã) : Dom(Ã) → L̃

is one to one and onto. Moreover, if Aỹ = f̃ for f̃ ∈ L̃, ỹ ∈ Dom(Ã), assume there exists a constant

M > 0 depending only on A such that

|Dα−1
0 ỹ|0 ≤M |f̃ |1. (2.2)

For f ∈ L, define

f̃ = f − f,

which implies f̃ ∈ L̃, and for y ∈ Dom(A) define

ỹ = y − (Dα−1
0 y)

tα−1

Γ(α)
,

which implies ỹ ∈ Dom(Ã) since

Dα−1
0 (ỹ) = Dα−1

0 y − (Dα−1
0 y).

Finally assume there exists A′ : Dom(A′) → L such that A = A′Dα−1
0 . In this context, we rewrite

Ay + βDα−1
0 y = f, y ∈ Dom(A), (2.3)

as

(A′ + βI)Dα−1
0 y = f, Dα−1

0 y ∈ Dom(A′). (2.4)

Define Dom(Ã′) = {v ∈ Dom(A′) : v = 0} ⊂ C[0, 1] and it follows that

A′|Dom(Ã′) : Dom(Ã′) → L̃
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is one to one and onto. With the decompositions f̃ = f − f and ỹ = y −Dα−1
0 y

tα−1

Γ(α)
, it follows

that f̃ ∈ L̃ and ỹ ∈ Dom(Ã), or more appropriately, Dα−1
0 ỹ ∈ Dom(Ã′). So, equation (2.3) or

equation (2.4) decouples as follows:

A′Dα−1
0 ỹ + βDα−1

0 ỹ = (A′ + βI)Dα−1
0 ỹ = f̃ , (2.5)

βDα−1
0

(
Dα−1

0 y
tα−1

Γ(α)

)
= βDα−1

0 y = f. (2.6)

Denote the inverse of (A′ + βI), if it exists, by Rβ and denote the inverse of A′|Dom(Ã′) by R0.

So, R0 : L̃ → C[0, 1] and

Dα−1
0 ỹ = R0f̃ if, and only if, A′(Dα−1

0 ỹ) = f̃ . (2.7)

Note that (2.7) implies that since Dα−1
0 ỹ ∈ Dom(Ã′), then

Dα−1
0 ỹ = R0A′Dα−1

0 ỹ. (2.8)

Since C̃ ⊂ L̃, we can also consider R0 : C̃ → C[0, 1]. Let

||R0||C̃→C̃ = sup
|v|0=1

|R0v|0, v,R0v ∈ C[0, 1],

and

||R0||L̃→C̃ = sup
|v|1=1

|R0v|0, v ∈ L[0, 1], R0v ∈ C[0, 1].

Since Dα−1
0 ỹ ∈ C̃ then |R0D

α−1
0 ỹ|0 ≤ ||R0||C̃→C̃ |D

α−1
0 ỹ|0. Similarly, f̃ ∈ L̃ implies |R0f̃ |0 ≤

||R0||L̃→C̃ |f̃ |1.

The following theorem is proved in [13] for the case α = 2 and closely models the motivating lemmas

and proofs found in [8]. We supply the proof again for 1 < α ≤ 2, for the sake of self-containment.

Theorem 2.3. Assume A : Dom(A) → L[0, 1] denotes a linear operator satisfying (2.1) and (2.2),

and assume that for f̃ ∈ L̃, the problem Ay = f̃ is uniquely solvable with solution y ∈ Dom(A)

such that Dα−1
0 y = 0. Further, assume there exists A′ : Dom(A′) → L[0, 1] such that A = A′Dα−1

0 .

Assume Ã′|Dom(Ã′) : Dom(Ã′) → L̃ is one to one and onto. Then there exists B1 > 0 such if

0 < |β| ≤ B1, then Rβ, the inverse of (A′ + βI), exists. Moreover, if f̃ ∈ L̃, if B1||R0||C̃→C̃ < 1,

where R0 denotes the inverse of A′|Dom(Ã′), and if 0 < |β| ≤ B1, then

|Rβ f̃ |0 ≤
||R0||L̃→C̃

1−B1||R0||C̃→C̃
|f̃ |1. (2.9)

Further, there exists B ∈ (0, B1) such that if 0 < |β| ≤ B, then the operator (A+ βDα−1
0 ) satisfies



260 P. W. Eloe & J. T. Neugebauer CUBO
25, 2 (2023)

a strong signed maximum principle in Dα−1
0 y.

Proof. Employ (2.8) and apply R0 to (2.5) to obtain

Dα−1
0 ỹ + βR0D

α−1
0 ỹ = R0f̃ .

Note that (2.2) implies that R0 : L̃ → C̃ is continuous and hence, bounded. Assume |β|||R0||C̃→C̃ <

1. Then (I + βR0) : C̃ → C̃ is invertible and

Dα−1
0 ỹ = (I + βR0)

−1R0f̃ .

So, assume 0 < B1 <
1

||R0||C̃→C̃
and assume |β| ≤ B1. Then Rβ = (I + βR0)

−1R0 exists.

Moreover,

|Dα−1
0 ỹ|0 −B1||R0||C̃→C̃ |D

α−1
0 ỹ|0 ≤ |Dα−1

0 ỹ|0 − |β|||R0||C̃→C̃ |D
α−1
0 ỹ|0

≤ |(I + βR0)Dỹ|0 = |R0f̃ |0 ≤ ||R0||L̃→C̃ |f̃ |1

and (2.9) is proved since Rβ f̃ = Dα−1
0 ỹ ⊂ C[0, 1].

Now assume f ∈ L and assume f ≥ 0 a.e. Then f̄ = |f |1. Let 0 < |β| ≤ B1 <
1

||R0||C̃→C̃
, write

f = f̄ + f̃ and consider

βDα−1
0 y = βRβf = βRβ(f̄ + f̃).

Note that βRβ f̄ = f̄ since (A′ + βI)f̄ = βf̄ . So,

βDα−1
0 y = βRβf = βRβ(f̄ + f̃)

= f̄ + βRβ f̃ ≥ |f |1 − |β||Rβ f̃ |0.

Continuing to assume that 0 < |β| ≤ B1, it now follows from (2.9) that

βDα−1
0 y ≥ |f |1 − |β|

( ||R0||L̃→C̃
1−B1||R0||C̃→C̃

)
|f̃ |1.

Since f̃ = f − f̄ , and |f̃ |1 ≤ |f |1 + f̄ = 2|f |1, the theorem is proved with

B < min
{
B1,

(1−B1||R0||C̃→C̃
2||R0||L̃→C̃

)}
.

In particular, if 0 < |β| ≤ B, then

βDα−1
0 y(t) ≥ K|f |1 =

(
1− B

( 2||R0||L̃→C̃
1−B1||R0||C̃→C̃

))
|f |1.
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3 Two examples

This article is modeled after [13] and in [13] the conclusion of the theorem analogous to Theorem

2.3 is that the operator (A + βD) satisfies a strong signed maximum principle in Dy. So the

elementary observation that βDy > 0 on an interval implies that βy is monotone increasing on

that interval is employed to consider boundary value problems for which βDy > 0 on [0, 1] implies

that βy has constant sign on (0, 1). In the following lemma, we state and prove a modest extension

of this principle to the fractional Riemann-Liouville derivative of order γ = α− 1, 0 < γ ≤ 1.

Lemma 3.1. Assume 0 < γ ≤ 1. Assume β ̸= 0. Assume y ∈ Cγ−1[0, 1] and assume Dγ
0y(t) ∈

C[0, 1]. Assume βDγ
0y(t) > 0, 0 ≤ t ≤ 1, and assume β limt→0+ t

1−γy(t) ≥ 0. Then βy(t) > 0,

0 < t ≤ 1.

Proof. If γ = 1, then y can be extended continuously to [0, 1] and βy(0) ≥ 0. Then βy is increasing

on [0, 1] and the result is true.

So, assume 0 < γ < 1 and define a = lim
t→0+

t1−γy(t). Thus, βa ≥ 0. Then [11, Theorem 2.23] or [23,

Proposition 6.1],

y(t) = atγ−1 + Iγ0D
γ
0y(t), 0 < t ≤ 1,

and

βy(t) = βatγ−1 + Iγ0 βD
γ
0y(t), 0 < t ≤ 1.

If a = 0, then Iγ0 βD
γ
0y(t) > 0 if 0 < t ≤ 1 and the statement is proved. If βa > 0, then both terms

βatγ−1 and Iγ0 βD
γ
0y(t) are positive for t ∈ (0, 1], and the statement is proved.

Example 3.2. Let 1 < α ≤ 2, and consider the linear boundary value problem

Dα
0 y(t) + βDα−1

0 y(t) = f(t), 0 ≤ t ≤ 1, (3.1)

y(0) = 0, Dα−1
0 y(0) = Dα−1

0 y(1). (3.2)

For the boundary value problem (3.1), (3.2), A = Dα
0 , A′ = D = d

dt , ker(A) =< tα−1 > . We show

that the operators A and A′ satisfy the hypotheses of Theorem 2.3.

One can show directly that Im(A) = L̃. If f ∈ Im(A) then there exists a solution y of

Dα
0 y(t) = f(t), 0 ≤ t ≤ 1, y(0) = 0, Dα−1

0 y(0) = Dα−1
0 y(1),

which implies

0 = Dα−1
0 y(1)−Dα−1

0 y(0) =

∫ 1

0

Dα
0 y(t) dt =

∫ 1

0

f(t) dt,
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and f ∈ L̃. Likewise, if f ∈ L̃, then

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds = Iα0 f(t) ∈ Dom(Ã) (3.3)

is a solution of

Dα
0 y(t) = f(t), 0 ≤ t ≤ 1, y(0) = 0, Dα−1

0 y(0) = Dα−1
0 y(1).

To see that y ∈ Dom(Ã), note that

Dα−1
0 y(t) = Dα−1

0 Iα0 f(t) = Dα−1
0 Iα−1

0 I1f(t) =

∫ t

0

f(s) ds.

So, Dα−1
0 y = f = 0. To see that the boundary conditions are satisfied, y(0) = Iα0 y|t=0, and the

condition y(0) = 0 is clear. Moreover, Dα−1
0 Iα0 f(t) =

∫ t

0

f(s) ds, which implies Dα−1
0 Iα0 f |t=0 =

Dα−1
0 Iα0 f |t=1 = 0 since f ∈ L̃.

To argue that Ay = f̃ is uniquely solvable with solution y ∈ Dom(Ã), (3.3) implies the solvability.

For uniqueness, if y1 and y2 are two such solutions, then (y1−y2)(t) = ctα−1 and y1−y2 ∈ Dom(Ã)

implies c = 0.

Finally, (3.3) implies (2.2) is satisfied with M = 1 since

|Dα−1
0 y(t)| =

∣∣∣∣∫ t

0

f(s) ds

∣∣∣∣ ≤ |f |1.

Theorem 2.3 applies and there exists B > 0 such that if 0 < |β| ≤ B then (A + βDα−1
0 y) has

the strong maximum principle in Dα−1
0 y. Thus, f ≥ 0 implies βDα−1

0 y ≥ 0. To apply Lemma 3.1,

recall [11, Theorem 2.23] or [23, Theorem 6.8], that

y(t) = atα−2 +
Dα−1

0 y|t=0

Γ(α)
tα−1 + Iα0 D

α
0 y(t)

= at(α−1)−1 +
Dα−1

0 y|t=0

Γ(α)
tα−1 + Iα−1

0 IDDα−1
0 y(t)

= at(α−1)−1 +
Dα−1

0 y|t=0

Γ(α)
tα−1 + Iα−1

0 (Dα−1
0 y(t)−Dα−1

0 y|t=0)

= at(α−1)−1 + Iα−1
0 Dα−1

0 y(t).

where a = lim
t→0+

t2−αy(t) = lim
t→0+

t1−(α−1)y(t). Since y(0) = 0 implies a = 0, Lemma 3.1 applies

with γ = α − 1 and βa = 0. Thus, βy(t) ≥ 0, for 0 < t ≤ 1, and if |f |1 > 0, then βy(t) > 0, for

0 < t ≤ 1.
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Hence, a natural partial order on Xα−2 in which to apply the method of upper and lower solutions

and monotone methods to a nonlinear boundary value problem is

y ∈ Xα−2 ⪰ 0 ⇐⇒ βy(t) ≥ 0, 0 < t ≤ 1, and βDα−1
0 y(t) ≥ 0, 0 ≤ t ≤ 1, (3.4)

and

y ∈ Xα−2 ≻ 0 ⇐⇒ βy(t) > 0, 0 < t ≤ 1, and βDα−1
0 y(t) > 0, 0 ≤ t ≤ 1.

In Section 4, we shall employ monotone methods with respect to this partial order and obtain

sufficient conditions for existence of maximal and minimal solutions of a nonlinear boundary value

problem

Dα
0 y(t) = f(t, y(t), Dα−1

0 y(t)), t ∈ (0, 1],

associated with the boundary conditions (3.2).

Example 3.3. For the second example, let 0 < h < 1, and consider a family of boundary conditions

lim
t→0+

t2−αy(t) = hy(1), Dα−1
0 y(0) = Dα−1

0 y(1). (3.5)

Remark 3.4. Note that the boundary condition y(1) can be expressed as t2−αy(t)|t=1 and so, if

h = 1 in (3.5), we intend that these boundary conditions represent a Riemann-Liouville fractional

analogue of periodic boundary conditions. In this example however, we require that 0 < h < 1.

For the boundary value problem (3.1), (3.5), A = Dα
0 , A′ = D = d

dt and

ker(A) =

〈
tα−1 +

h

1− h
tα−2

〉
.

Precisely as in Example (3.2), Im(A) = L̃. Again, f ∈ L̃ implies

Dom(Ã) =
{
y ∈ Xα−2 : Dα−1

0 y = 0
}
.

Again, M in (2.2) can be computed since if f ∈ L̃, then

ỹ(t) = Iα0 f(t) +
h

1− h
Iα0 f(1)t

α−2

denotes the unique solution y ∈ Dom(Ã) of the boundary value problem Dα
0 y = f , (3.5). Thus,

Theorem 2.3 applies and there exists B > 0 such that if 0 < |β| ≤ B then (A+ βDα−1
0 ) satisfies a

strong maximum principle in Dα−1
0 y.

To determine a sign condition on βy we appeal to Lemma 3.1. Let a = lim
t→0+

t2−αy(t). We first rule

out the case a = 0. Assume 0 < |β| ≤ B, and 0 < h < 1. If a = 0, then y(t) = Iα−1
0 Dα−1

0 y(t) and
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βy(1) > 0. In particular, y(1) ̸= 0. Since lim
t→0+

t2−αy(t) = a = 0, y does not satisfy the boundary

condition, lim
t→0+

t2−αy(t) = hy(1). Thus, a ̸= 0.

Now, continue to assume 0 < |β| ≤ B, and assume 0 < h < 1. If βDα−1
0 y(t) > 0, 0 ≤ t ≤ 1, we rule

out the case βa < 0. The condition 0 < h < 1, the boundary condition, lim
t→0+

t2−αy(t) = hy(1) and

the identity y(t) = atα−2 + Iα−1
0 Dα−1

0 y(t) imply that with a = lim
t→0+

t2−αy(t) = lim
t→0+

t1−(α−1)y(t),

then

0 <
a

a+ Iα−1
0 Dα−1

0 y|t=1

< 1,

or

0 <
βa

βa+ Iα−1
0 βDα−1

0 y|t=1

< 1.

If βa < 0, then βa < βa+ Iα−1
0 βDα−1

0 y|t=1 < 0 and |βa| >
∣∣βa+ Iα−1

0 βDα−1
0 y|t=1

∣∣, which implies

βa

βa+ Iα−1
0 βDα−1

0 y|t=1

> 1,

and so the condition 0 < h < 1 is contradicted. So, βa > 0 and Lemma 3.1 applies with γ = α−1.

Thus, if 0 < |β| ≤ B and 0 < h < 1, then a natural partial order in which to apply the method of

upper and lower solutions and monotone methods to a nonlinear problem is

y ∈ Xα−2 ⪰ 0 ⇐⇒ βy(t) ≥ 0, 0 < t ≤ 1, and βDα−1
0 y(t) ≥ 0, 0 ≤ t ≤ 1,

and

y ∈ Xα−2 ≻ 0 ⇐⇒ βy(t) > 0, 0 < t ≤ 1, and βDα−1
0 y(t) > 0, 0 ≤ t ≤ 1.

In particular, there is a transition from a maximum principle to an anti-maximum principle at

β = 0.

Remark 3.5. The work in this article extends the work produced in [13], where α = 2. In [13],

it is shown if 1 < h, then βDα−1
0 y(t) = βD1y(t) ≥ 0, 0 ≤ t ≤ 1, implies βy(t) ≤ 0, 0 ≤ t ≤ 1.

In [13], the sign of the derivative implies monotonicity of the function. For the fractional case,

1 < α < 2, the case 1 < h remains open.

4 A Monotone Method

Assume 1 < α ≤ 2. Let f : [0, 1]× R2 → R be continuous. Consider the boundary value problem

Dα
0 y(t) = f(t, y(t), Dα−1

0 y(t)), 0 ≤ t ≤ 1, (4.1)

y(0) = 0, Dα−1
0 y(0) = Dα−1

0 y(1). (4.2)
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Assume that f satisfies the following monotonicity properties.

f(t, y, z1) < f(t, y, z2) for (t, y) ∈ [0, 1]× R, z1 > z2, (4.3)

f(t, y1, z) < f(t, y2, z) for (t, z) ∈ [0, 1]× R, y1 > y2;

that is, f is monotone decreasing in each of the third component and second component.

Note for y ∈ Cα−2, one should initially consider the differential equationDα
0 y(t) = f(t, y(t), Dα−1

0 y(t))

on (0, 1]. The boundary condition y(0) = 0 implies the functions produced in the following iterative

schemes exist on [0, 1] and so, we assume (4.1) on [0, 1].

Apply a shift [15] to (4.1) and consider the equivalent boundary value problem,

Dα
0 y(t) + βDα−1

0 y(t) = f(t, y(t), Dα−1
0 y(t)) + βDα−1

0 y(t), 0 ≤ t ≤ 1,

with boundary conditions (4.2), where −B ≤ β < 0 and B > 0 is shown to exist in Theorem 2.3.

Note that if g(t, y, z) = f(t, y, z) + βz and f satisfies (4.3), then g satisfies (4.3) if β < 0.

Assume the existence of solutions, w1, v1 ∈ Xα−2, of the following boundary value problems for

fractional differential inequalities

Dα
0w1(t) ≥ f(t, w1(t), D

α−1
0 w1(t)), Dα

0 v1(t) ≤ f(t, v1(t), D
α−1
0 v1(t)), 0 ≤ t ≤ 1, (4.4)

w1(0) = 0, Dα−1
0 w1(0) = Dα−1

0 w1(1), v1(0) = 0, Dα−1
0 v1(0) = Dα−1

0 v1(1).

Assume further that

(v1(t)− w1(t)) ≥ 0, 0 ≤ t ≤ 1, (Dα−1
0 v1(t)−Dα−1

0 w1(t)) ≥ 0, 0 ≤ t ≤ 1. (4.5)

Motivated by (3.4) and noting that β < 0, define a partial order ⪰β<0 on Xα−2 by

u ∈ Xα−2 ⪰β<0 0 ⇐⇒ u(t) < 0, 0 < t ≤ 1, and Dα−1
0 u(t) ≤ 0, 0 ≤ t ≤ 1.

Then the assumption (4.5) implies w1 ⪰β<0 v1.

Define iteratively, the sequences {vk}∞k=1, {wk}∞k=1, where

Dα
0 vk+1(t) + βDα−1

0 vk+1(t) = f(t, vk(t), D
α−1
0 vk(t)) + βDα−1

0 vk(t), 0 ≤ t ≤ 1, (4.6)

vk+1(0) = 0, Dα−1
0 vk+1(0) = Dα−1

0 vk+1(1),
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and

Dα
0wk+1(t) + βDα−1

0 wk+1(t) = f(t, wk(t), D
α−1
0 wk(t)) + βDα−1

0 wk(t), 0 ≤ t ≤ 1, (4.7)

wk+1(0) = 0, Dα−1
0 wk+1(0) = Dα−1

0 wk+1(1).

Theorem 2.3 implies the existence of each vk+1, wk+1 since if |β| ≤ B, the inverse of (A + βD)

exists.

Theorem 4.1. Assume f : [0, 1]×R2 → R is continuous and assume f satisfies the monotonicity

properties (4.3). Assume the existence of functions v1, w1 ∈ Xα−2 satisfying (4.4) and (4.5).

Define the sequences of iterates {vk}∞k=1, {wk}∞k=1 by (4.6) and (4.7) respectively. Then, for each

k ∈ N1,

wk ⪰β<0 wk+1 ⪰β<0 vk+1 ⪰β<0 vk. (4.8)

Moreover, {vk}∞k=1 converges in Xα−2 to a solution v of the boundary value problem (4.1), (4.2) and

{wk}∞k=1 converges in Xα−2 to a solution w of the boundary value problem (4.1), (4.2) satisfying

wk ⪰β<0 wk+1 ⪰β<0 w ⪰β<0 v ⪰β<0 vk+1 ⪰β<0 vk. (4.9)

Proof. Since v1 satisfies a differential inequality given in (4.5), then for 0 ≤ t ≤ 1,

Dα
0 v2(t) + βDα−1

0 v2(t) = f(t, v1(t), D
α−1
0 v1(t)) + βDα−1

0 v1(t) ≥ Dα
0 v1(t) + βDα−1

0 v1(t).

Set u = v2 − v1 and u satisfies a boundary value problem for a differential inequality,

Dα
0 u(t) + βDα−1

0 u(t) ≥ 0, 0 ≤ t ≤ 1, u(0) = 0, Dα−1
0 u(0) = Dα−1

0 u(1).

The signed maximum principle applies and u ⪰β<0 0; in particular, v2 ⪰β<0 v1. Similarly, w1 ⪰β<0

w2. Now set u = w2 − v2 and

Dα
0 u(t) + βDα−1

0 u(t) =
(
f(t, w1(t), D

α−1
0 w1(t))− f(t, v1(t), D

α−1
0 v1(t))

)
+ β(Dα−1

0 w1(t)−Dα−1
0 v1(t)), 0 ≤ t ≤ 1,

u(0) = 0, Dα−1
0 u(0) = Dα−1

0 u(1).

Since f satisfies (4.3) and w1 ⪰β<0 v1, then

Dα
0 u(t) + βDα−1

0 u(t) ≥ 0, 0 ≤ t ≤ 1,

and again the signed maximum principle applies and u ⪰β<0 0. In particular, w2 ⪰β<0 v2. Thus,
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(4.8) is proved for k = 1. A straightforward induction implies that (4.8) is valid using the arguments

presented in this paragraph.

To obtain the existence of limiting solutions v and w satisfying (4.9), note that the sequence

{Dα−1
0 vk} is monotone decreasing and bounded below by {Dα−1

0 w1}. So the sequence {Dα−1
0 vk}

is converging pointwise on [0, 1] to some function g defined on [0, 1]. Moreover, Dα
0 vk = DDα−1

0 vk

is uniformly bounded on

Ω = {(t, y, z) : w1(t) ≤ y ≤ v1(t), D
α−1
0 w1(t) ≤ z ≤ Dα−1

0 v1(t), 0 ≤ t ≤ 1},

and so the pointwise limit g is continuous on [0, 1]. Dini’s theorem applies and {Dα−1
0 vk} is con-

verging uniformly to g on [0, 1]. Note a = 0, and so, we can define vk(0) = 0 and extend vk to a

continuous function on [0, 1]. The sequence {vk} is monotone decreasing and bounded below, and

so there exists v such that {vk} is converging pointwise to v on [0, 1]. Note that since vk(0) = 0,

then vk = Iα−1
0 Dα−1

0 vk which converges uniformly Iα−1
0 g. So v = Iα−1

0 g which implies Dα−1
0 v = g.

To summarize, vk is converging to v in Cα−2 and {Dα−1
0 vk} is converging to {Dα−1

0 v} in C[0, 1].

Finally, using Dα
0 vk+1(t) = f(t, vk(t), D

α−1
0 vk(t)) + β(Dα−1

0 vk(t) − Dα−1
0 vk+1(t)), it now follows

that the sequence {Dα
0 vk} converges uniformly on [0, 1] to f(t, v(t), Dα−1

0 v(t)). Since Dα
0 vk =

D1Dα−1
0 vk, we conclude that lim

k→∞
Dα

0 vk = Dα
0 v.

Similar details apply to {wk} and the theorem is proved.

Suppose now f satisfies the “anti”-inequalities to (4.3); that is suppose f satisfies

f(t, y, z1) > f(t, y, z2) for (t, y) ∈ [0, 1]× R, z1 > z2, (4.10)

f(t, y1, z) > f(t, y2, z) for (t, z) ∈ [0, 1]× R, y1 > y2.

One can appeal to the signed maximum principle and apply a shift to (4.1) and consider the

equivalent boundary value problem, Dα
0 y(t) + βDα−1

0 y(t) = f(t, y(t), Dα−1
0 y(t)) + βDα−1

0 y(t), 0 ≤
t ≤ 1, where 0 < β < B. Note, if f satisfies (4.10) and β > 0, then g(t, y, z) = f(t, y, z) + βz

satisfies (4.10).

Now, assume the existence of solutions, w1, v1 ∈ Xα−2, of the following differential inequalities

Dα
0w1(t) ≤ f(t, w1(t), D

α−1
0 w1(t)), Dα

0 v1(t) ≥ f(t, v1(t), D
α−1
0 v1(t)), 0 ≤ t ≤ 1, (4.11)

w1(0) = 0, Dα−1
0 w1(0) = Dα−1

0 w1(1), v1(0) = 0, Dα−1
0 v1(0) = Dα−1

0 v1(1).

Assume further that

(v1(t)− w1(t)) ≥ 0, 0 < t ≤ 1, (Dα−1
0 v1(t)−Dα−1

0 w1(t)) ≥ 0, 0 ≤ t ≤ 1. (4.12)
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Noting that β > 0 define a partial order ⪰β>0 on Xα−2 by

u ∈ Xα−2 ⪰β>0 0 ⇐⇒ u(t) ≥ 0, 0 < t ≤ 1, and Dα−1
0 u(t) ≥ 0, 0 ≤ t ≤ 1.

In particular, in (4.12), assume v1 ⪰β>0 w1.

Theorem 4.2. Assume f : [0, 1]×R2 → R be continuous and assume f satisfies the monotonicity

properties, (4.10). Assume the existence of w1, v1 ∈ Xα−2 satisfying (4.11) and (4.12). Define the

sequences of iterates {vk}∞k=1, {wk}∞k=1 by (4.6) and (4.7) respectively. Then, for each k ∈ N1,

vk ⪰β>0 vk+1 ⪰β>0 wk+1 ⪰β>0 wk.

Moreover, {vk}∞k=1 converges in Xα−2 to a solution v of (4.1) and {wk}∞k=1 converges in Xα−2 to

a solution w of (4.1) satisfying

vk ⪰β>0 vk+1 ⪰β>0 v ⪰β>0 w ⪰β>0 wk+1 ⪰β>0 wk.

We close the article with two corollaries of Theorem 4.2 in which upper and lower solutions, v1
and w1 are explicitly produced.

Corollary 4.3. Let B be given by Theorem 2.3. Assume f : [0, 1]×R2 → R be continuous, assume

there exists β ∈ (0,B] such that f(t, y, z) + βz is bounded on [0, 1] × R2, and assume g(t, y, z) =

f(t, y, z) + βz satisfies the monotonicity conditions (4.10). Then v1(t) =
M

βΓ(α)
tα−1 ∈ Xα−2 and

w1(t) = −v1(t) ∈ Xα−2 satisfy (4.11) and (4.12) where M = sup
[0,1]×R2

|f(t, y, z) + βz|; in particular,

there exists a solution y ∈ Xα−2 of the boundary value problem (4.1), (4.2) satisfying

v1 ⪰β>0 y ⪰β>0 w1.

Remark 4.4. Remove the hypothesis that g satisfies (4.10), and the Schauder fixed point theorem

implies the existence of a solution of the boundary value problem (4.1), (4.2) in the case g is

bounded.

Corollary 4.5. Let B be given by Theorem 2.3. Assume f : [0, 1]×R2 → R be continuous, assume

there exists β ∈ (0,B] such that g(t, y, z) = f(t, y, z) + βz satisfies the monotonicity conditions

(4.10). Assume there exist σ ∈ C[0, 1] and a nondecreasing function ψ : R+ → R+ such that

|g(t, y, z)| ≤ σ(t)ψ(|y|), (t, y, z) ∈ [0, 1]× R2.
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Moreover, assume there exists M > 0 such that

βM

|σ|0ψ
(

M
Γ(α)

) > 1.

Then there exists a solution of the boundary value problem (4.1), (4.2).

Proof. Set v1(t) =
M

Γ(α)
tα−1 ∈ Xα−2. Then

Dα
0 v1(t) + βDα−1

0 v1(t) = βM > |σ|0ψ
(

M

Γ(α)

)
≥ g(t, v1, D

α−1
0 v1(t)).

Set w1(t) = −v1(t) and v1(t), w1(t) ∈ Xα−2 satisfy (4.11) and (4.12).
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