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ABSTRACT

In this paper, we introduce the concept of ternary antideriva-
tion on ternary Banach algebras and investigate the stability
of ternary antiderivation in ternary Banach algebras, associ-
ated to the (α, β)-functional inequality:

∥F(x+ y + z)−F(x+ z)−F(y − x+ z)−F(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z)

+ F(x)−F(z))∥

where α and β are fixed nonzero complex numbers with |α|+
|β| < 2 by using the fixed point method.

RESUMEN

En este arículo, introducimos el concepto de antiderivación
ternaria en álgebras de Banach ternarias e investigamos la es-
tabilidad de las antiderivaciones ternaria en álgebras de Ba-
nach ternarias, asociadas a la (α, β)- desigualdad funcional:

∥F(x+ y + z)−F(x+ z)−F(y − x+ z)−F(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z)

+ F(x)−F(z))∥

donde α y β son números complejos no cero fijos, con |α|+

|β| < 2 usando el método de punto fijo.
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1 Introduction

A ternary Banach algebra is a complex Banach space A, endowed with a ternary product (x, y, z) →
[x, y, z] of A3 into A, which is C−linear in each variable, and associative in the sense that

[x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v], and satisfies ∥[x, y, z]∥ ≤ ∥x∥ · ∥y∥ · ∥z∥ for all

x, y, z, w, u ∈ A.

If a ternary Banach algebra (A, [·, ·, ·]) has an unit, i.e., an element e ∈ A such that x = [x, e, e] =

[e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y := [x, e, y] and

x∗ := [e, x, e], is a unital algebra. Conversely, if (A, ◦) is a unital algebra, then [x, y, z] := x ◦ y∗ ◦ z
makes A into a ternary Banach algebra.

A C−linear mapping H : A → B is called a ternary homomorphism if H([x, y, z]) = [H(x), H(y), H(z)]

for all x, y, z ∈ A. A C−linear mapping δ : A → A is called a ternary derivation if

δ([x, y, z]) = [δ(x), y, z] + [x, δ(y), z] + [x, y, δ(z)]

for all x, y, z ∈ A.

We say that an equation is stable if any function satisfying the equation approximately is near to

an exact solution of the equation.

The stability problem of functional equations started from a question of Ulam, in 1940, on the

stability of group homomorphisms. In 1941, Hyers [17] gave an answer to the question of Ulam

in the context of Banach spaces in the case of additive mappings, that was an major step toward

further solutions in this field.

During the last two decades, a number of articles and research monographs have been published on

various generalizations and applications of the Hyers-Ulam stability to a number of functional equa-

tions and mappings, for example, Cauchy-Jensen mappings, k-additive mappings, multiplicative

mappings, bounded nth differences, Euler-Lagrange functional equations, differential equations,

and Navier-Stokes equations (see [1, 2, 4, 5, 19, 22, 25, 26, 27, 28, 29]).

Also, approximate generalized Lie derivations have been already established in [6, 7].

Ternary algebraic structures appear in various domains of theoretical and mathematical physics,

such as the quark model and Nambu mechanics [18, 21]. Today, many physical systems can be

modeled as a linear system. The principle of additivity has various applications in physics especially

in calculating the internal energy in thermodynamic and also the meaning of the superposition

principle.
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In recent years, the Hyers-Ulam stability of various (among others functional, differential and

integral) equations and other objects (for example in groups, Banach algebra, ternary Banach

algebras and C∗−ternary algebras) has been intensively studied (see [8, 9, 10, 11, 15, 16, 30]).

Fixed-point theory has been studied by various methods. The study on fixed point theory provides

essential tools for solving problems arising in various fields of functional analysis, such as dynamical

systems, equilibrium problems and differential equations (see for instance [3, 14, 24]).

We recall a fundamental result in fixed point theory.

Definition 1.1 ([12]). Let X be a non-empty set and d : X × X → [0,∞] a mapping such that

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y ∈ X ,

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Then d is called a generalized metric and (X , d) is a generalized metric space.

Theorem 1.2 ([12]). Let (X , d) be a complete generalized metric space and T : X → X be a

strictly contractive mapping, that is,

d(T x, T y) ≤ Ld(x, y)

for some L < 1 and all x, y ∈ X . Then for each given element x ∈ X , either

d(T nx, T n+1x) = +∞

for all n ≥ 0 or

d(T nx, T n+1x) < +∞, ∀n ≥ n0,

for some positive integer n0. Moreover, if the second alternative holds, then

(i) the sequence {T nx} is convergent to a fixed point y∗ of T ;

(ii) y∗ is the unique fixed point of T in the set Y := {y ∈ X , d(T n0x, y) < +∞} and d(y, y∗) ≤
1

1− L
d(y, T y) for all y ∈ Y .

In this paper, we consider the following functional inequality

∥F(x+ y + z)−F(x+ z)−F(y − x+ z)−F(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥ (1.1)

for all x, y, z ∈ A, where α and β are fixed nonzero complex numbers with |α|+ |β| < 2.
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Throughout this paper, assume that A is a ternary Banach algebra and α and β are fixed nonzero

complex numbers with |α|+ |β| < 2.

The aim of the present paper is to establish the stability problem of ternary antiderivations in

complex ternary Banach algebras by using the fixed point method.

2 Stability of (α, β)-functional inequality (1.1)

In this section, we prove the Hyers-Ulam stability of the additive (α, β)-functional inequality (1.1)

by using the fixed point method.

Lemma 2.1. Let F : A → A be a mapping satisfying

∥F(x+ y + z)−F(x+ z)−F(y − x+ z)−F(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z)−F(x) + F(z))∥ (2.1)

for all x, y, z ∈ A. Then the mapping F : A → A is additive.

Proof. Assume that F : A → A satisfies (2.1).

Putting x = y = z = 0 in (2.1), we have

2∥F(0)∥ ≤ (|α|+ |β|)∥F(0)∥

and thus F(0) = 0, since |α|+ |β| < 2.

Letting z = x in (2.1), we obtain

∥F(2x+ y)−F(2x)−F(y)∥ ≤ 0

and so F(2x+ y) = F(2x) + F(y) for all x, y ∈ A. Therefore F is additive.

Theorem 2.2. Suppose that Λ : A×A×A → [0,∞) is a function such that there exists an L < 1

with

Λ(x, y, z) ≤ L

2
Λ(2x, 2y, 2z) (2.2)

for all x, y, z ∈ A. Let F : A → A be a mapping satisfying

∥F(x+ y + z)−F(x+ z)−F(y − x+ z)−F(x− z)∥ (2.3)

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ Λ(x, y, z)



CUBO
25, 2 (2023)

Maximum, anti-maximum principles 277

for all x, y, z ∈ A. Then there exists a unique additive mapping ∆ : A → A such that

∥F(x)−∆(x)∥ ≤ L

2(1− L)
Λ
(x
2
, x,

x

2

)
(2.4)

for all x ∈ A.

Proof. Setting x = y = z = 0 in (2.3), we have

2∥F(0)∥ ≤ (|α|+ |β|)∥F(0)∥+ Λ(0, 0, 0)

and thus F(0) = 0, since |α|+ |β| < 2 and by (2.2) Λ(0, 0, 0) = 0.

Letting x = z = t
2 and y = t in (2.3), we get

∥F(2t)− 2F(t)∥ ≤ Λ

(
t

2
, t,

t

2

)
(2.5)

for all t ∈ A.

Now, consider the set Ω = {ω : A → A : ω(0) = 0} and the mapping d defined on Ω× Ω by

d(δ, ω) = inf
{
k ∈ R+ : ∥δ(x)− ω(x)∥ ≤ kΛ

(x
2
, x,

x

2

)
,∀x ∈ A

}
,

where as usual, inf ∅ = +∞. d is a complete generalized metric on Ω (see [20]).

Now, let us consider the linear mapping T : Ω → Ω such that

T δ(x) := 2δ
(x
2

)
for all x ∈ A. Thus d(δ, ω) = ε implies that

∥δ(x)− ω(x)∥ ≤ ϵΛ
(x
2
, x,

x

2

)
for all x ∈ A. Hence

∥T δ(x)− T ω(x)∥ =
∥∥∥2δ (x

2

)
− 2ω

(x
2

)∥∥∥ ≤ 2εΛ
(x
4
,
x

2
,
x

4

)
≤ LεΛ

(x
2
, x,

x

2

)
for all x ∈ A, that is d(δ, ω) = ε implies that d(T δ(x), T ω(x)) ≤ Lε. This means that

d(T δ(x), T ω(x)) ≤ Ld(δ, ω)

for all δ, ω ∈ Ω.
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Next, from (2.5), we get

∥∥∥F(x)− 2F
(x
2

)∥∥∥ ≤ Λ
(x
4
,
x

2
,
x

4

)
≤ L

2
Λ
(x
2
, x,

x

2

)
for all x ∈ A, it follows that d(F , T F) ≤ L

2 .

Using the fixed point alternative we deduce the existence of a unique fixed point of T , that is, the

existence of a mapping ∆ : A → A such that

∆(x) = 2∆
(x
2

)
with the following property: there exists a k ∈ (0,∞) satisfying

∥F(x)−∆(x)∥ ≤ kΛ
(x
2
, x,

x

2

)
for all x ∈ A.

Since limn→∞ d(T nF ,∆) = 0,

lim
n→∞

2nF
( x

2n

)
= ∆(x)

for all x ∈ A.

Also, d(F ,∆) ≤ 1

1− L
d(F , T F) which implies

∥F(x)−∆(x)∥ ≤ L

2(1− L)
Λ
(x
2
, x,

x

2

)
for all x ∈ A. It follows from (2.2) and (2.3) that

∥∆(x+ y + z)−∆(x+ z)−∆(y − x+ z)−∆(x− z)∥

= lim
n→∞

2n
∥∥∥∥F (

x+ y + z

2n

)
−F

(
x+ z

2n

)
−F

(
y − x+ z

2n

)
−F

(
x− z

2n

)∥∥∥∥
≤ lim

n→∞
2n

∥∥∥∥α(
F
(
x+ y − z

2n

)
+ F

(
x− z

2n

)
−F

( y

2n

))∥∥∥∥
+ lim

n→∞
2n

∥∥∥∥β(
F
(
x− z

2n

)
+ F

( x

2n

)
−F

( z

2n

))∥∥∥∥+ lim
n→∞

2nΛ
( x

2n
,
y

2n
,
z

2n

)
= ∥α(∆(x+ y − z) + ∆(x− z)−∆(y))∥+ ∥β(∆(x− z) + ∆(x)−∆(z))∥

for all x, y, z ∈ A. Therefore, by Lemma 2.1, the mapping ∆ is additive.
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Corollary 2.3. Let F : A → A be a mapping satisfying

∥F(x+ y + z)−F(x+ z)−F(y − x+ z)−F(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ ∥[x, y, z]∥

for all x, y, z ∈ A. Then there exists a unique additive mapping ∆ : A → A such that

∥F(x)−∆(x)∥ ≤ ∥[x, x, x]∥

for all x ∈ A.

Proof. The proof follows from Theorem 2.2 by taking L = 8
9 and Λ(x, y, z) = ∥[x, y, z]∥ for all

x, y, z ∈ A.

3 Stability of ternary antiderivations in ternary algebras

In this section we introduce the concept of ternary antiderivation in ternary Banach algebras and

prove the stability of ternary antiderivations associated to (1.1) in ternary Banach algebras.

Definition 3.1. Let A be a ternary Banach algebra. A C−linear mapping I : A → A is called a

ternary antiderivation if it satisfies

[I(x), I(y), I(z)] = I[I(x), y, z] + I[x, I(y), z] + I[x, y, I(z)]

for all x, y, z ∈ A.

Example 3.2. The complex number set C with a ternary product [x, y, z] = xyz for all x, y, z ∈ C,

is a ternary Banach algebra.

Define I : C → C by

I(x) = 3x

for all x ∈ C. Then I is a ternary antiderivation.

Definition 3.3 ([13]). Let A be a ternary Banach algebra. A double sequence {an,m} in A con-

verges to L ∈ A and we write lim
n,m→∞

an,m = L if for every ϵ > 0 there is an integer N such that

for all n,m ≥ N ,

|an,m − L| < ϵ.

If no such number L exists, we say that {an,m} diverges.
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Lemma 3.4 ([23]). Let A be complex Banach algebra and let f : A → A be an additive mapping

such that f(µx) = µf(x) for all µ ∈ T1 := {λ ∈ C : |λ| = 1} and all x ∈ A, then f is C−linear.

Theorem 3.5. Let Λ : A × A × A → [0,∞) be a function, and let there exists an L < 1 with

satisfying

Λ (x, y, z) ≤ L

8
Λ(2x, 2y, 2z) (3.1)

for all x, y, z ∈ A. Assume that F : A → A is a mapping such that

∥F(µ(x+ y + z))− µF(x+ z)− µF(y − x+ z)− µF(x− z)∥ (3.2)

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ Λ(x, y, z)

and

∥[F(x),F(y),F(z)]−F [F(x), y, z]−F [x,F(y), z]−F [x, y,F(z)]∥ ≤ Λ(x, y, z) (3.3)

for all µ ∈ T1 and all x, y, z ∈ A. If F is continuous and in addition, Fn(x) := 2nF
(

x
2n

)
converges

uniformly for all x ∈ A, double sequences {2n+mF
(
F
(

x
2n

)
y
2m

)
} and {2n+mF

(
x
2nF

(
y
2m

))
} are

convergent for all x, y ∈ A, then there exists a unique continuous ternary antiderivation I : A → A
such that

∥F(x)− I(x)∥ ≤ L

2(4− L)
Λ
(x
2
, x,

x

2

)
for all x ∈ A.

Proof. Assume that F : A → A satisfies (3.2).

Putting µ = 1 and x = y = z = 0 in (3.2), we obtain

2∥F(0)∥ ≤ (|α|+ |β|)∥F(0)∥+ Λ(0, 0, 0)

and thus F(0) = 0, since |α|+ |β| < 2 and by (3.1), Λ(0, 0, 0) = 0.

Letting x = z = t
2 and y = t in (3.2), we have

∥F(2µt)− 2µF(t)∥ ≤ Λ

(
t

2
, t,

t

2

)
(3.4)

for all µ ∈ T1 and all t ∈ A.

Next, consider the set

Ω := {ω : A → A : ω(0) = 0}
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and define the generalized metric on Ω

d(θ, ω) = inf
{
k ∈ R≥0 : ∥θ(x)− ω(x)∥ ≤ kΛ

(x
2
, x,

x

2

)
,∀x ∈ A

}
,

where as usual, inf ∅ = +∞. By [20, Lemma 1.2], (Ω, d) is a complete generalized metric space.

Now we define the linear mapping T : Ω → Ω such that

T θ(x) = 2θ
(x
2

)
for all x ∈ A.

Let θ, ω ∈ Ω be given such that d(θ, ω) = ε. Then

∥θ(x)− ω(x)∥ ≤ εΛ
(x
2
, x,

x

2

)
for all x ∈ A. Hence

∥T θ(x)− T ω(x)∥ =
∥∥∥2θ (x

2

)
− 2ω

(x
2

)∥∥∥ ≤ 2εΛ
(x
4
,
x

2
,
x

4

)
≤ L

4
εΛ

(x
2
, x,

x

2

)
for all x ∈ A. So d(θ, ω) = ε implies that d(T θ(x), T ω(x)) ≤ L

4 ε. Hence

d(T θ(x), T ω(x)) ≤ L

4
d(θ, ω)

for all θ, ω ∈ Ω. It follows from (3.4) that

∥∥∥F(x)− 2F
(x
2

)∥∥∥ ≤ Λ
(x
4
,
x

2
,
x

4

)
≤ L

8
Λ
(x
2
, x,

x

2

)
for all x ∈ A and so d(F , T F) ≤ L

8 .

Using the fixed point alternative we deduce the existence of a unique fixed point of T , that is, the

existence of a mapping I : A → A such that

I(x) = 2I
(x
2

)
with the following property: there exists a k ∈ (0,∞) satisfying

∥F(x)− I(x)∥ ≤ kΛ
(x
2
, x,

x

2

)
for all x ∈ A.

Since lim
n→∞

d(T nF , I) = 0,

lim
n→∞

2nF
( x

2n

)
= I(x)
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for all x ∈ A. Also, d(F , I) ≤ 1
1−L

4

d(F , T F) which implies

∥F(x)− I(x)∥ ≤ L

2(4− L)
Λ
(x
2
, x,

x

2

)
for all x ∈ A. It follows from (3.1) and (3.2) that

∥I(x+ y + z)− I(x+ z)− I(y − x+ z)− I(x− z)∥

= lim
n→∞

∥∥∥∥2n (F (
x+ y + z

2n

)
−F

(
x+ z

2n

)
−F

(
y − x+ z

2n

)
−F

(
x− z

2n

))∥∥∥∥
≤ lim

n→∞
2n

∥∥∥∥α(
F
(
x+ y − z

2n

)
+ F

(
x− z

2n

)
−F

( y

2n

))∥∥∥∥
+ lim

n→∞
2n

∥∥∥∥β(
F
(
x− z

2n

)
+ F

( x

2n

)
−F

( z

2n

))∥∥∥∥+ lim
n→∞

2nΛ
( x

2n
,
y

2n
,
z

2n

)
= ∥α(I(x+ y − z) + I(x− z)− I(y))∥+ ∥β(I(x− z) + I(x)− I(z))∥

for all x, y, z ∈ A. By Lemma 2.1, the mapping I is additive.

Letting x = z = t
2 and y = 0 in (3.2), we get

∥F(µt)− µF(t)∥ ≤ Λ

(
t

2
, 0,

t

2

)

for all µ ∈ T1 and all t ∈ A. Thus

∥I(µx)− µI(x)∥ = lim
n→∞

2n
∥∥∥F (

µ
x

2n

)
− µF

( x

2n

)∥∥∥
≤ lim

n→∞
2nΛ

( x

2n+1
, 0,

x

2n+1

)
≤ lim

n→∞

(
L

4

)n

Λ
(x
2
, 0,

x

2

)
,

which tends to zero as n → ∞ and so I(µx) = µI(x) for all µ ∈ T1 and all x ∈ A. Therefore, by

Lemma 3.4, the mapping I is C−linear.

Since F is continuous and Fn converges uniformly, I is continuous. It follows from (3.1) and (3.3)

that

∥[I(x), I(y), I(z)]− I[I(x), y, z]− I[x, I(y), z]− I[x, y, I(z)]∥

= lim
n→∞

∥∥∥23n [F ( x

2n

)
,F

( y

2n

)
,F

( z

2n

)]
− 2nI

[
F
( x

2n

)
, y, z

]
−2nI

[
x,F

( y

2n

)
, z
]
− 2nI

[
x, y,F

( z

2n

)]∥∥∥
= lim

n→∞
23n

∥∥∥[F ( x

2n

)
,F

( y

2n

)
,F

( z

2n

)]
−F

[
F
( x

2n

)
,
y

2n
,
z

2n

]
−F

[ x

2n
,F

( y

2n

)
,
z

2n

]
−F

[ x

2n
,
y

2n
,F

( z

2n

)]∥∥∥
≤ lim

n→∞
23nΛ

( x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞
LnΛ(x, y, z)
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for all µ ∈ T1 and all x, y, z ∈ A. Since L < 1, the C−linear mapping I is a ternary antiderivation.

Corollary 3.6. Let F : A → A be a mapping satisfying

∥F(µ(x+ y + z))− µF(x+ z)− µF(y − x+ z)− µF(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ ∥[[x, x, y], y, z]∥,

∥[F(x),F(y),F(z)]−F [F(x), y, z] + F [x,F(y), z] + F [x, y,F(z)]∥ ≤ ∥[[x, x, y], y, z]∥

for all x, y, z ∈ A. If F is continuous and in addition, Fn(x) := 2nF
(

x
2n

)
converges uniformly for

all x ∈ A, double sequences {2n+mF
(
F
(

x
2n

)
y
2m

)
} and {2n+mF

(
x
2nF

(
y
2m

))
} are convergent for

all x, y ∈ A, then there exists a unique continuous ternary antiderivation I : A → A such that

∥F(x)− I(x)∥ ≤ 1

50
∥x∥5

for all x ∈ A.

Proof. The proof follows from Theorem 3.5 by taking L = 32
33 and Λ(x, y, z) = ∥[[x, x, y], y, z]∥ for

all x, y, z ∈ A.

4 Stability of continuous ternary antiderivations in ternary

Banach algebras

In this section, we prove the stability of continuous ternary antiderivations in ternary Banach

algebras.

Theorem 4.1. Let Λ : A×A×A → [0,∞) be a function. If there exists an L < 1 with satisfying

Λ (x, y, z) ≤ L

8
Λ(2x, 2y, 2z) (4.1)

for all x, y, z ∈ A. Assume that F : A → A is a mapping satisfying

∥F(µ(x+ y + z))− µF(x+ z)− µF(y − x+ z)− µF(x− z)∥ (4.2)

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ Λ(x, y, z)

and (3.3) for all µ with |µ| < 1 (resp. |µ| > 1). If F is continuous and in addition, Fn(x) :=

2nF
(

x
2n

)
converges uniformly for all x ∈ A, double sequences {2n+mF

(
F
(

x
2n

)
y
2m

)
} and
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{2n+mF
(

x
2nF

(
y
2m

))
} are convergent for all x, y ∈ A, then there exists a unique continuous ternary

antiderivation I : A → A such that

∥F(x)− I(x)∥ ≤ L

2(4− L)
Λ
(x
2
, x,

x

2

)
(4.3)

for all x ∈ A.

Proof. Let µ ∈ T1. Then there exists a sequence {µn}∞n=1 with |µn| < 1 (resp. |µn| > 1) such that

lim
n→∞

µn = µ.

By (4.2) we get

∥F(µn(x+ y + z))− µnF(x+ z)− µnF(y − x+ z)− µnF(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ Λ(x, y, z)

for all positive integers n, all µn with |µn| < 1 (resp. |µn| > 1) and all x, y, z ∈ A.

Passing to the limit as n → ∞, and using the continuity of F and ∥ · ∥, we obtain

∥F(µ(x+ y + z))− µF(x+ z)− µF(y − x+ z)− µF(x− z)∥

≤ ∥α(F(x+ y − z) + F(x− z)−F(y))∥+ ∥β(F(x− z) + F(x)−F(z))∥+ Λ(x, y, z)

for all µ ∈ T1 and all x, y, z ∈ A

Therefore, by the same reasoning as in the proof of Theorem 3.5, there exists a unique ternary

antiderivation I : A → A satisfying (4.3).
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