
CUBO, A Mathematical Journal

Vol. 25, no. 2, pp. 321–329, August 2023
DOI: 10.56754/0719-0646.2502.321

Laeng-Morpurgo-type uncertainty inequalities for
the Weinstein transform

Fethi Soltani1,2 B

Slim Ben Rejeb1

1Faculté des Sciences de Tunis,

Laboratoire d’Analyse Mathématique et

Applications LR11ES11, Université de

Tunis El Manar, Tunis 2092, Tunisia.

fethi.soltani@fst.utm.tn

2École Nationale d’Ingénieurs de

Carthage, Université de Carthage, Tunis

2035, Tunisia.

slimbenrejeb15@gmail.com

ABSTRACT

In this work, by combining Carlson-type and Nash-type in-
equalities for the Weinstein transform FW on K = Rd−1 ×
[0,∞), we show Laeng-Morpurgo-type uncertainty inequali-
ties. We establish also local-type uncertainty inequalities for
the Weinstein transform FW , and we deduce a Heisenberg-
Pauli-Weyl-type inequality for this transform.

RESUMEN

En este trabajo, combinando desigualdades de tipo Carlson
y de tipo Nash para la transformada de Weinstein FW en
K = Rd−1 × [0,∞), demostramos desigualdades de incer-
tidumbre de tipo Laeng-Morpurgo. Establecemos también
desigualdades de incertidumbre de tipo local para la trans-
formada de Weinstein FW , y deducimos una desigualdad de
tipo Heisenberg-Pauli-Weyl para esta transformada.
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1 Introduction

Uncertainty principles are mathematical arguments that give limitations on the simultaneous con-

centration of a function and its Fourier transform. They have implications in quantum physics

and signal analysis. They also play an important role in harmonic analysis, many of them have

already been studied from several points of view for the Fourier transform, Heisenberg-Pauli-Weyl

inequality and local uncertainty [9, 10]. Laeng-Morpurgo and Morpurgo [4, 7] obtained Heisenberg

inequality involving a combination of L1 and L2 norms.

In this paper, we consider the Weinstein transform FW [2, 5, 6] defined on L1(K, νk) by

FW (f)(ξ) :=

∫
K
f(x)Ψξ(x)dνk(x), ξ = (ξ′, ξd) ∈ K,

where K := Rd−1 × [0,∞), dνk(x) :=
x2k+1
d

π(d−1)/22k+(d−1)/2Γ(k+1)
dx′dxd and

Ψξ(x) = e−i⟨x′,ξ′⟩jk(xdξd), x = (x′, xd) ∈ K.

Here jk is the spherical Bessel function.

Many uncertainty principles have already been proved for the Weinstein transform FW on K,

namely Mejjaoli and Salhi are the first that describe the uncertainty principles for the Wein-

stein transform [6]. Next, Ben Salem and Nasr obtained Heisenberg-type inequalities [3] for the

Weinstein transform FW . Saoudi [11] proved a variation of Lp uncertainty principles for the We-

instein transform FW . In this work, by using Carlson-type inequality and Nash-type inequality

[2, 8] for the Weinstein transform FW on L1 ∩ L2(K, νk); we deduce uncertainty inequalities of

Heisenberg-type for the Weinstein transform FW on L1 ∩ L2(K, νk). Next, due to a local uncer-

tainty inequality for the Weinstein transform FW on L2(K, νk), we show uncertainty inequality of

Heisenberg-Pauli-Weyl-type for the transform FW on L2(K, νk).

The analog uncertainty inequalities are also proved, for the Dunkl transform Fk on Rd by Soltani

[12, 13].

This paper is organized as follows. In Section 2, we recall some results about the Weinstein

transform FW on K. In Section 3, we prove uncertainty inequalities of Heisenberg-type for the

Weinstein transform FW on L1 ∩ L2(K, νk). We show also uncertainty inequality of Heisenberg-

Pauli-Weyl-type for the transform FW on L2(K, νk). In the last section, we summarize the obtained

results and describe the future work.
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2 Weinstein transform

In this section we recall some basic results related to the Weinstein analysis.

We consider the Weinstein operator ∆W [1, 3, 8] defined on Rd−1 × (0,∞) by

∆W :=

d∑
i=1

∂2

∂x2
i

+
2k + 1

xd

∂

∂xd
= ∆d−1 + Lk, d ≥ 2, k > −1/2,

where ∆d−1 is the Laplacian operator in Rd−1 and Lk is the Bessel operator with respect to the

variable xd defined on (0,∞) by

Lk :=
∂2

∂x2
d

+
2k + 1

xd

∂

∂xd
.

The Weinstein operator (also called Laplace-Bessel operator) has several applications in pure and

applied mathematics. The harmonic analysis associated to this operator is studied in [1, 2, 3, 5, 6, 8]

and references therein.

Throughout this subsection, let k > −1/2 and K := Rd−1 × [0,∞). We denote by Lp(K, νk),

p ∈ [1,∞], the space of measurable functions f on K, such that

∥f∥Lp(K,νk) :=

(∫
K
|f(x′, xd)|pdνk(x′, xd)

)1/p

< ∞, p ∈ [1,∞),

∥f∥L∞(K,νk) := ess sup
(x′,xd)∈K

|f(x′, xd)| < ∞,

where

dνk(x) := dνk(x′, xd) =
x2k+1
d

π(d−1)/22k+(d−1)/2Γ(k + 1)
dx′dxd,

and dx′ = dx1dx2 · · · dxd−1.

Let r > 0, the measure νk satisfies [3]:

νk(|x| < r) = crα, (2.1)

where

c =
1

2
α
2 Γ(α2 + 1)

and α = 2k + d+ 1. (2.2)
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For all ξ ∈ K, the system

Lku(x) = −ξ2du(x),
∂2u

∂x2
j

(x) = −ξ2ju(x), j = 1, . . . , d− 1,

u(0) = 1,
∂u

∂xd
(0) = 0,

∂u

∂xj
(0) = −iξj , j = 1, . . . , d− 1,

admits a unique solution Ψξ(x), given by

Ψξ(x) = e−i⟨x′,ξ′⟩jk(xdξd), x ∈ K,

where jk is the spherical Bessel function given by

jk(x) := Γ(k + 1)

∞∑
n=0

(−1)n

n! Γ(n+ k + 1)

(x
2

)2n

.

For all x, ξ ∈ K, the Weinstein kernel Ψξ(x) satisfies

|Ψξ(x)| ≤ 1.

The Weinstein (or Laplace-Bessel) transform FW [2, 5, 6] is defined for f ∈ L1(K, νk) by

FW (f)(ξ) :=

∫
K
f(x)Ψξ(x) dνk(x), ξ ∈ K.

The transform FW initially defined on L1∩L2(K, νk) extends uniquely to an isometric isomorphism

on L2(K, νk), that is,

∥FW (f)∥L2(K,νk) = ∥f∥L2(K,νk), f ∈ L2(K, νk). (2.3)

Moreover if f ∈ L1(K, νk), then

∥FW (f)∥L∞(K,νk) ≤ ∥f∥L1(K,νk). (2.4)

Finally, if f and FW (f) are both in L1(K, νk), the inverse Weinstein transform is defined by

f(x) =

∫
K
FW (f)(ξ)Ψ−ξ(x) dνk(ξ), a.e x ∈ K.
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3 Heisenberg-type uncertainty principles

Similar results have been appeared in the literature by Soltani [13], he proved a Laeng-Morpurgo-

type uncertainty inequalities for the Dunkl transform Fk on Rd. In the following, we will give

Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform FW on K.

Proposition 3.1 ([2, 8]).

(i) (Carlson-type inequality). Let a > 0. There exists a constant A(a, α) > 0 such that for every

f ∈ L1 ∩ L2(K, νk), we have

∥f∥L1(K,νk) ≤ A(a, α)∥f∥
2a

α+2a

L2(K,νk)
∥ |x|af∥

α
α+2a

L1(K,νk)
. (3.1)

(ii) (Nash-type inequality). Let b > 0. There exists a constant B(b, α) > 0 such that for every

f ∈ L1 ∩ L2(K, νk), we have

∥f∥L2(K,νk) ≤ B(b, α)∥f∥
2b

α+2b

L1(K,νk)
∥ |ξ|bFW (f)∥

α
α+2b

L2(K,νk)
. (3.2)

Thanks to the above proposition, by combining and multiplying the two relations (3.1) and (3.2)

we obtain the following uncertainty inequalities of Laeng-Morpurgo-type [4, 7] for the Weinstein

transform FW on L1 ∩ L2(K, νk).

Theorem 3.2. Let a, b > 0. There exist three constants C(a, b, α) > 0, N(a, b, α) > 0 and

D(a, b, α) > 0 such that for every f ∈ L1 ∩ L2(K, νk), we have

(i) ∥f∥α+2a+2b
L2(K,νk)

≤ C(a, b, α)∥ |x|af∥2bL1(K,νk)
∥ |ξ|bFW (f)∥α+2a

L2(K,νk)
,

(ii) ∥f∥α+2a+2b
L1(K,νk)

≤ N(a, b, α)∥ |x|af∥α+2b
L1(K,νk)

∥ |ξ|bFW (f)∥2aL2(K,νk)
,

(iii) ∥f∥α+2a
L1(K,νk)

∥f∥α+2b
L2(K,νk)

≤ D(a, b, α)∥ |x|af∥α+2b
L1(K,νk)

∥ |ξ|bFW (f)∥α+2a
L2(K,νk)

.

By application of the two relations (3.1) and (3.2) we deduce also the following results which are

a local-type uncertainty inequalities for the Weinstein transform FW on L1 ∩ L2(K, νk).

Theorem 3.3. Let E be a measurable subset of K such that 0 < νk(E) < ∞, and let a, b > 0. If

f ∈ L1 ∩ L2(K, νk), then

(i) ∥1EFW (f)∥L2(K,νk) ≤ A(a, α)(νk(E))1/2∥f∥
2a

α+2a

L2(K,νk)
∥ |x|af∥

α
α+2a

L1(K,νk)
, where A(a, α) is the con-

stant given by Proposition 3.1 (i).

(ii) ∥1EFW (f)∥L1(K,νk) ≤ B(b, α)(νk(E))1/2∥f∥
2b

α+2b

L1(K,νk)
∥ |ξ|bFW (f)∥

α
α+2b

L2(K,νk)
, where B(b, α) is

the constant given by Proposition 3.1 (ii).

Being 1E the characteristic function of the set E.



326 F. Soltani & S. B. Rejeb CUBO
25, 2 (2023)

Proof. Let f ∈ L1 ∩ L2(K, νk) and a, b > 0.

(i) From (2.4) we have

∥1EFW (f)∥L2(K,νk) ≤ (νk(E))1/2∥FW (f)∥L∞(K,νk) ≤ (νk(E))1/2∥f∥L1(K,νk).

The desired result follows from Proposition 3.1 (i).

(ii) From (2.3) we have

∥1EFW (f)∥L1(K,νk) ≤ (νk(E))1/2∥FW (f)∥L2(K,νk) ≤ (νk(E))1/2∥f∥L2(K,νk).

The desired result follows from Proposition 3.1 (ii).

Soltani [12] proved a Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform Fk on

Rd. In the following, we will give Heisenberg-Pauli-Weyl uncertainty principle for the Weinstein

transform FW on L2(K, νk).

Proposition 3.4. (local-type inequality). Let a > 0 and let f ∈ L2(K, νk). If E be a measurable

subset of K such that 0 < νk(E) < ∞, then

∥1EFW (f)∥L2(K,νk) ≤ A(a, α)(νk(E))
a

α+2a ∥f∥
2a

α+2a

L2(K,νk)
∥ |x|af∥

α
α+2a

L2(K,νk)
, (3.3)

where A(a, α) is the constant given by Proposition 3.1 (i).

Proof. Let f ∈ L2(K, νk) and a > 0. The inequality holds if ∥ |x|af∥L2(K,νk) = ∞. Assume that

∥ |x|af∥L2(K,νk) < ∞. For all r > 0, we have

∥1EFW (f)∥L2(K,νk) ≤ ∥1EFW (1Br
f)∥L2(K,νk) + ∥1EFW ((1− 1Br

)f)∥L2(K,νk)

≤ (νk(E))1/2∥FW (1Br
f)∥L∞(K,νk) + ∥FW ((1− 1Br

)f)∥L2(K,νk).

Hence it follows from (2.3) and (2.4) that

∥1EFW (f)∥L2(K,νk) ≤ (νk(E))1/2∥1Brf∥L1(K,νk) + ∥(1− 1Br )f∥L2(K,νk). (3.4)

On the other hand, by Hölder’s inequality and (2.1), we obtain

∥1Brf∥L1(K,νk) ≤ (crα)1/2∥f∥L2(K,νk), (3.5)

where c is the constant given by (2.2).
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Moreover,

∥(1− 1Br
)f∥L2(K,νk) ≤ r−a∥ |x|af∥L2(K,νk). (3.6)

Combining the relations (3.4), (3.5) and (3.6), we deduce that

∥1EFW (f)∥L2(K,νk) ≤ (νk(E))1/2(crα)1/2∥f∥L2(K,νk) + r−a∥ |x|af∥L2(K,νk).

By choosing

r =

(
2a∥ |x|af∥L2(K,νk)

αc1/2∥f∥L2(K,νk)

) 2
α+2a

(νk(E))−
1

α+2a ,

we obtain the desired inequality.

We shall use the local uncertainty principle to obtain uncertainty principle of Heisenberg-Pauli-

Weyl-type for the Weinstein transform FW on L2(K, νk). We note that the following theorem is

given in [3] but in the proof, the approach is not the same.

Theorem 3.5. Let a, b > 0. There exists a constant K(a, b, α) > 0 such that for every f ∈
L2(K, νk), we have

∥f∥a+b
L2(K,νk)

≤ K(a, b, α)∥ |x|af∥bL2(K,νk)
∥ |ξ|bFW (f)∥aL2(K,νk)

.

Proof. Let a, b > 0 and let r > 0. Then

∥f∥2L2(K,νk)
= ∥1Br

FW (f)∥2L2(K,νk)
+ ∥(1− 1Br

)FW (f)∥2L2(K,νk)
. (3.7)

Firstly,

∥(1− 1Br
)FW (f)∥2L2(K,νk)

≤ r−2b∥ |ξ|bFW (f)∥2L2(K,νk)
. (3.8)

From (2.1) and (3.3), we get

∥1BrFW (f)∥2L2(K,νk)
≤ (A(a, α))2(crα)

2a
α+2a ∥f∥

4a
α+2a

L2(K,νk)
∥ |x|af∥

2α
α+2a

L2(K,νk)
, (3.9)

where c is the constant given by (2.2).

Combining the relations (3.7), (3.8) and (3.9), we obtain

∥f∥2L2(K,νk)
≤ (A(a, α))2(crα)

2a
α+2a ∥f∥

4a
α+2a

L2(K,νk)
∥ |x|af∥

2α
α+2a

L2(K,νk)
+ r−2b∥ |ξ|bFW (f)∥2L2(K,νk)

.

By setting

r =

 b(α+ 2a)∥ |ξ|bFW (f)∥2L2(K,νk)

aα(A(a, α))2c
2a

α+2a ∥f∥
4a

α+2a

L2(K,νk)
∥ |x|af∥

2α
α+2a

L2(K,νk)


α+2a

2aα+2b(α+2a)

,
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we get the inequality with

K(a, b, α) = (A(a, α))2b(α+2a)c2ab
(
b(α+ 2a)

aα

)aα (
1 +

aα

b(α+ 2a)

)aα+b(α+2a)

.

This completes the proof of the theorem.

4 Conclusion and perspective

The manuscript deals with some uncertainty inequalities associated with the Weinstein transform

FW . Especially, we studied Laeng-Morpurgo type uncertainty inequalities for this transform. As

it is well known, uncertainty inequalities are of great interest in harmonic analysis, in applied

mathematics and in several areas of mathematical physics. The results given in Section 3 are

complements to those given in references [3, 6, 8] and others. They also represent our contribution

in the study of local-type uncertainty inequalities and the Heisenberg type inequality for the

Weinstein transform FW . Finally, in a future paper, we have the idea to study the Weinstein-

Stockwell transform Sg, g ∈ L2(K, να), in which we will prove some uncertainty inequalities for

this transform analogous to those proven for the Weinstein transform FW in this paper.
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