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ABSTRACT

Let X ⊂ Pr be an integral projective variety. We study
the dimensions of the joins of several copies of the osculating
varieties J(X,m) of X. Our methods are general, but we give
a full description in all cases only if X is a linearly normal
embedding of P1 × P1. For these embeddings of P1 × P1 we
give several examples and then study the joins of one copy
of J(X,m) and an arbitrary number of copies of X.

RESUMEN

Sea X ⊂ Pr una variedad proyectiva entera. Estudiamos
la dimensión de las adjunciones de varias copias de las va-
riedades osculantes J(X,m) de X. Nuestros métodos son
generales, pero damos una descripción completa en todos los
casos solo si X es un embebimiento linealmente normal de
P1 × P1. Para estos embebimientos de P1 × P1 damos varios
ejemplos y luego estudiamos las adjunciones de una copia de
J(X,m) y un número arbitrario de copias de X.
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1 Introduction

Let X ⊂ Pr be an integral projective variety defined over a fixed algebraically closed field K such

that char(K) = 0. We consider the classical problem about the dimension of joins of varieties

related to X. Let J(X,m) ⊆ Pr, m ≥ 0, denote the m-osculating variety of X, i.e. the closure

in Pr of the union of all m-osculating spaces to the smooth points of X. With our convention of

m-osculating linear spaces we have J(X, 0) = X, while J(X, 1) is the tangential variety of X, i.e.

the with the convention and the dimension of the joins of several J(X,mi), i varying in a finite

set. Our notation calls J(X, 1) the tangential variety τ(X) ⊆ Pr of X, i.e. the closure in Pr of the

union in Pr of the tangent spaces TpX of X at all p ∈ Xreg. For us J(X,m) is the closure in Pr of

the union of the m-osculating spaces at all p in a non-empty open subset of Xreg at which these

m-osculating spaces have constant dimension.

Take integral varieties T, Y ⊂ Pr. The join J(T, Y ) of T and Y is defined in the following way.

If T = Y and Y is a point, p, then J({p}, {p}) = {p}. In all other cases J(T, Y ) is the closure

of the union of all lines spanned by a point of T and a different point of Y . The algebraic set

J(T, Y ) is always an irreducible variety and dim(T, Y ) ≤ min{r, dimT + dimY + 1} if dimT >

0. The integer min{r, dimT + dimY + 1} is the expected dimension of J(T, Y ). One defines

inductively the join J(T1, . . . , Ts) of s ≥ 3 integral varieties Ti ⊂ Pr by the formula J(T1, . . . , Ts) :=

J(J(T1, . . . , Ts−1), Ts) ([1]). If dimT1 > 0 we have dim J(T1, . . . , Ts) ≤ min{r, dimT1 + · · · +
dimTs+s−1}. If dim J(T1, . . . , Ts) = min{r, dimT1+· · ·+dimTs+s−1} we say that J(T1, . . . , Ts)

has the expected dimension. The most famous and useful join is the case Ti = T1 for all i, i.e., the

s-secant variety of T1. However, other cases appear. For instance when X is the Veronese variety

the join of the tangential variety J(X, 1) of X and s−1 copies of X is related to a certain additive

decomposition of forms ([4]).

By the Terracini lemma for joins ([1, Corollary 1.11]) to compute the dimension of the join of

s varieties J(X,mi), 1 ≤ i ≤ s, it is sufficient to compute the dimension of the linear span

of the tangent spaces TQi
J(X,mi) at a general Qi ∈ J(X,mi). Obviously, we first need to

compute dimTQi
J(X,mi), but in all our examples these integers are known and hence the only

problem is to see how linearly independent are these linear spaces TQiJ(X,mi). Fix a general

Qi ∈ J(X,mi) and let pi ∈ Xreg the point of Xreg corresponding to Qi. A key property of the

osculating spaces TQi
J(X,mi), is that even for m > 1 there is a zero-dimensional scheme Zi ⊂ X

such that (Zi) = {pi} and TQi
J(X,mi) is the linear span of Zi (Remark 2.1). If m > 0 the scheme

is not unique, it is associated to the choice of a line of Tpi
X containing pi (Remark 3.4). Fix a

general (p1, . . . , ps) ∈ Xs
reg. For each i with mi > 0 choose a “general” Zi. As always in this type of

problems ([3, 6, 7, 8, 9, 10, 11, 12]) it is sufficient to find the schemes Zi ⊂ X, 1 ≤ i ≤ s, and then

to prove that the dimension of the linear span of Z1∪· · ·∪Zs is the expected one,
∑s

i=1 deg(Zi)−1.
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Set n := dimX. For the joins of several copies of X it is sufficient to take as schemes the first

infinitesimal neighborhood 2p, p ∈ Xreg, i.e. the closed subscheme of X with (Ip)2 as its ideal

sheaf (this is the classical Terracini lemma for secant varieties [1, Corollary 1.11]); in this case the

scheme has degree n + 1. We call it the case m = 0. For the tangential variety the scheme Z1

has degree 2n + 1 and it was used in several papers ([3, 6, 7, 8, 10, 11, 12]), some of them also

considering the general case with any mi > 0. Contrary to the case m = 0 the schemes Zi ⊂ Xreg

are not uniquely determined by the point p ∈ Xreg such that (Zi) = {p}. For any m > 0 the

scheme W (m, p) associated to J(X,m) at p has degree n +
(
n+m
n

)
and it is implicitly computed

in [6] (and by the classical algebraic geometers quoted in [5, 6]) and given in full generality in

[7, 8, 10] at least for the Veronese embeddings of projective spaces. It depends on the choice of

some p ∈ Xreg and a line through p of the embedded tangent space of X at p (Remark 2.1).

Of course, to define the osculating spaces we also need to fix an embedding of X in a projective

space or, more generally, a line bundle L on X and a linear subspace V ⊆ H0(L). This set-up

was described in a modern language by R. Piene ([18]), first defining the bundles of principal parts

Pm
X(L) of L and then considering an evaluation map OX ⊗ V −→ Pm

X(L). Thus for a fixed m ≥ 0

and a general p ∈ Xreg we may choose an irreducible family of zero-dimensional schemes Z(m, p)

such that for each Z ∈ Z(m, p) we have Z = {p} and deg(Z) = n+
(
n+m
m

)
. Moreover, for any s > 0

and any mi ≥ 0, the join of J(X,m1), . . . , J(X,ms) has dimension ⟨W (m1, p1)∪ · · · ∪W (ms, ps)⟩,
where ⟨ ⟩ denote the linear span and (p1, . . . , ps) is general in Xs.

The freedom in the choice to define W (m, p) for m > 0 will be used several times in our proofs.

We only consider the case X = P1 × P1 with all its Segre-Veronese embedding. We prove the

following result.

Theorem 1.1. Fix integers c ≥ 0, m ≥ 0 and a ≥ b ≥ m+ 3. Let W ⊂ X be a general union of

one element of Z(m) and c 2-points. Then either h0(IW (a, b)) = 0 or h1(IW (a, b)) = 0.

The following result may also be proved using the tools in [9, 12].

Proposition 1.2. Fix integer c ≥ 0, m ≥ 2 and a ≥ b ≥ m. Let W ⊂ X be a general union of

one m-point and c 2-points. Then either h0(IW (a, b)) = 0 or h1(IW (a, b)) = 0, except in the case

m = 2, b = 2, a even and c = a/2.

In section 3 (again with X = P1 ×P1) we give several examples of our tools and tricks to compute

the dimensions of several joins.
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2 General tools

In this section we collect the necessary tools lifted from the literature and add some remarks which

greatly improve their use to compute the dimensions of joins.

For all p ∈ X and all integers m > 0 let mp denote the closed subscheme of X with (Ip)m as its

ideal sheaf. For any Y ⊆ X and any p ∈ Yreg ∩Xreg set (mp, Y ) := mp ∩ Y . Since p is a smooth

point of both X and Y , (mp, Y ) is the closed subscheme of Y whose ideal sheaf is (Ip,Y )m ⊂ OY .

Let X be an integral projective variety, L a line bundle on X and V ⊆ H0(L) a linear subspace.

Let Z ⊆ W ⊂ X be a zero-dimensional scheme. Obviously if V ∩ H0(IZ ⊗ L) = 0, then V ∩
H0(IW ⊗L) = 0. Since W is zero-dimensional, the restriction map H0(OW ⊗L) −→ H0(OZ ⊗L)
is surjective. Thus h1(IZ ⊗ L) ≤ h1(IW ⊗ L).

Remark 2.1. Let X be an integral projective variety. Set n := dim(X). The schemes Z ∈
Z(X,m), m ≥ 0, used to detect the tangent space TQJ(X,n) at a general Q ∈ J(X,m) are

all schemes obtained in the following way. Set Z(X, 0) := {2p}p∈Xreg . Now assume m > 0.

Set Z(X,m) := ∪p∈Xreg
Z(X, p,m), where each Z(X, p,m) is defined in the following way. Fix

p ∈ Xreg. Any zero-dimensional scheme Z ∈ Z(X, p,m) will have Z = {p} and hence to define

each element Z of Z(X, p,m) it is sufficient to define the ideal J of the local ring OX,p such that

OZ = OX,p/J . Let µ be the maximal ideal of OX,p. The ideal J is constructed taking a germ at

p of a smooth curve contained in a neighborhood of p in X and containing p, i.e. taking a regular

system of parameters t1, . . . , tn of the local ring OX,p, i.e. any system of n generators t1, . . . , tn of

the maximal ideal µ of OX,p and taking any germ of curve with (t2, . . . , tn) as its ideal in OX,p.

As ideal of Z we take µm+2 + tm+1
1 µ. With obvious conventions (i.e. taking as LZ the germ of X

at p) this ideal gives the ideal µm+2 if n = 1, i.e. for n = 1 it gives the correct answer J = µm+2.

The scheme Z is uniquely determined by the choice of a one-dimensional linear subspace of the

n-dimensional vector space µ/µ2, i.e. by the choice of a non-zero element of µ/µ2. We will say

that Z depends on the choice of a tangent vector LZ of X at p. Each Z ∈ Z(X,m) has as its

reduction a unique p ∈ Xreg. We have

(m+ 1)p ⊂ Z ⊂ (m+ 2)p, deg(Z) = n+ deg((m+ 1)p) = n+

(
m+ n

n

)
.

We say that Z is defined by p and the tangent vector LZ , because LZ is uniquely determined by a

connected degree 2 scheme E ⊂ X such that E = {p}.

We often write Z(m) (resp. Z(p,m)) instead of Z(X,m) (resp. Z(X, p,m)).

Remark 2.2. Let X be an integral projective variety and D an effective Cartier divisor of X. For

any zero-dimensional scheme Z ⊂ X the residual scheme ResD(Z) of Z with respect to D is the

closed zero-dimensional subscheme of X with IZ : ID as its ideal scheme. We have ResD(Z) ⊆ Z,
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deg(Z) = deg(ResD(Z))+deg(Z ∩D) and for every line bundle L on X there is an exact sequence

0 −→ IResD(Z) ⊗ L(−D) −→ IZ ⊗ L −→ IZ∩D,D ⊗ L|D −→ 0 (2.1)

For any Z and L we will say that (2.1) is the residual exact sequence of D. Fix Z ∈ Z(X,m),

m > 0, and set {p} := Z. Let LZ be the tangent vector of X at p defining Z and call t1, . . . , tn
a regular system of generators of the maximal ideal of µ of OX,p such that LV is defined by

t2 = · · · = tn = 0, t21 = 0. Now assume p ∈ Dreg.

(a) Assume that LZ is not contained in the tangent space of D at p. Then D∩Z = ((m+1)p,D)

and hence deg(ResD(Z)) = n +
(
m+n
n

)
−

(
m+n−1
n−1

)
= n +

(
m+n−1

n

)
. Moreover, ResD(Z) ∈

Z(X,m− 1) and if m ≥ 2 the scheme ResD(Z) is defined by the same tangent vector LZ .

(b) Assume that LZ is contained in the tangent space of D at p. Then D ∩ Z ∈ Z(D,m) and

hence deg(ResD(Z)) = n+
(
m+n
n

)
−n+1−

(
m+n−1
n−1

)
= 1+

(
m+n−1

n

)
. We have ResD(Z) ⊃ mp

and deg(ResD(Z)) = deg(mp) + 1. The scheme ResD(Z) is the union of mp and the scheme

tm+2
1 = t2 = · · · = tn = 0.

In both cases the scheme Z is vertically graded with respect to D in the sense of [2] and hence we

may apply the Differential Horace Horace Lemma to Z ([2]).

For any line bundle L on X, any closed subscheme B of X and any vector space V ⊆ H0(L) set

V (−B) := V ∩H0(IB ⊗ L).

We describe the case of 2-points of the Differential Horace Lemma ([2]). The reader will find in

that paper explicitly the case of points with higher multiplicities and the case (vertically graded

subschemes) sufficient to handle all Z ∈ Z(m). Let X be an integral projective n-dimensional

variety, D an effective Cartier divisor of X, L a line bundle on X, V ⊆ H0(L) a linear subspace.

Let VD be the image of V by the restriction map ρ : H0(L) −→ H0(D,L|D). Set n := dimX. Let

V (−D) be the set of all f ∈ H0(L(−D)) such that zf ∈ V , where z ∈ H0(OX(D)) is the equation

of D. Take a general p ∈ Xreg∩Dreg. To prove that dimV (−Z−2q) = max{0,dimV (−Z)−n−1}
for a general q ∈ Xreg it is sufficient to prove that one of the following sets of conditions is satisfied:

(a) dimVD(−Z ∩D) ≤ 1 and

dimV (−D)(−ResD(Z)− (2p,D)) = max{0,dimW (−ResD(Z))− n};

(b) dimVD(−Z ∩D) > 0 and

dimV (−D)(−ResD(Z)− (2p,D)) = dimV (−D)(−ResD(Z))− n.
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Remark 2.3. Take any projective variety X, any line bundle L on X and any vector space

V ⊆ H0(L). Fix (u, v) ∈ N2. Let B ⊂ X be a general union of u tangent vectors of Xreg and v

points of X. By [14] we have dimV (−B) = max{0,dimV − 2u− v}.

Remark 2.3 is useful because it applies to non-complete linear systems, too. We will use this key

feature in the proof of the next lemma.

Lemma 2.4. Take a projective variety X, a line bundle L on X and an integral Cartier divisor

D ⊂ X. Assume h1(L) = h1(L(−D)) = h1(D,L|D) = 0. Fix (u, v) ∈ N2. Let Z ⊂ X be a

zero-dimensional scheme. Let B ⊂ D be a general union of u tangent vectors of Dreg and v points

of X. Assume h1(IZ ⊗ L) = 0, h1(D, ID∩Z,D ⊗ L|D) = 0 and h0(D, IZ∩D,D ⊗ L|D) ≥ 2u + v.

Then h0(IZ∪B ⊗ L) = max{0, h0(IZ ⊗ L)− 2u− v}.

Proof. Remark 2.3 applied to D, L|D, H0X, (IZ ⊗ L) and H0(D, IZ∩D ⊗ L|D) gives

h0(D, I(Z∩D)∪B,D ⊗ L|D) = h0(D, IZ∩D,D ⊗ L|D)− 2u− v.

Use twice the residual exact sequence of D, first with IZ⊗L in the middle and then with IZ∪B⊗L
in the middle. Use that ResD(Z ∪B) = ResD(Z), because B ⊂ D (as schemes).

If we take the set-up and assumptions of Lemma 2.4 except the inequality on h0(D, IZ∪D,D⊗L|D)

and we have h0(D, IZ∪D,D ⊗L|D) ≤ 2u+ v, then Remark 2.3 gives h0(D, I(Z∩D)∪B,D ⊗L|D) = 0.

Thus the residual exact sequence of D gives h0(IZ∪B ⊗ L) = h0(IResD(Z) ⊗ L(−D)).

Remark 2.5. Fix a line bundle L on an integral projective variety X. Let Z1 ⊆ Z2 be zero-

dimensional schemes. Note that h1(IZ1
⊗L) ≤ h1(IZ2

⊗L). If h0(IZ2
⊗L) = h0(L)−deg(Z2), then

h0(IZ1 ⊗L) = h0(L)−deg(Z1). Set n := dimX. Let U (resp. V) be the set of all triples (e, f, g) ∈
N3 such that h0(L) ≤ e(n+

(
n+2
n

)
)+f(2n+1)+g(n+1) (resp. h0(L) ≥ e(n+

(
n+2
n

)
)+f(2n+1)+g(n+

1)). Fix (e, f, g) ∈ U . Let Z ⊂ X be a general union of e elements of Z(2), f elements of Z(1) and

g 2-points. Suppose you want to prove that h0(IZ⊗L) = h0(L)−e(n+
(
n+2
n

)
)−f(2n+1)−g(n+1).

It is sufficient to show that h0(IZ ⊗ L) = h0(L) − e(n +
(
n+2
n

)
) − f(2n + 1) − g′(n + 1) for some

integer g′ ≥ g, where Z ′ is the union of Z and g′ − g general 2-points. Thus to check for all

(e, f, g) ∈ U that a general union of e elements of Z(2), f element of Z(1) and g 2-points imposes

independent conditions to h0(L) it is sufficient to check all (e, f, g) ∈ N3 such that

h0(L)− n ≤ e

(
n+

(
n+ 2

n

))
+ f(2n+ 1) + g(n+ 1) (2.2)

Suppose you want to prove that h0(IW ⊗ L) = 0 for all (u, v, w) ∈ V, where W is a general

union of u elements of Z(2), v elements of Z(1) and w 2-points. Decreasing if necessary the zero-

dimensional scheme, it is sufficient to check all (u, v, w) ∈ N3 satisfying one of the following sets
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of conditions:

h0(L) ≤ e

(
n+

(
n+ 2

n

))
+ f(2n+ 1) + g(n+ 1) ≤ h0(L) + n (2.3)

g = 0, h0(L) ≤ e

(
n+

(
n+ 2

n

))
+ f(2n+ 1) ≤ h0(L) + 2n (2.4)

f = g = 0, h0(L) ≤ e

(
n+

(
n+ 2

n

))
+ f(2n+ 1) ≤ h0(L) + n− 1 +

(
n+ 2

n

)
(2.5)

With minimal modifications the interested reader may state similar statements for general unions

of prescribed numbers of osculating spaces and multiple points with arbitrary multiplicities and for

m-points instead of just 2-points (see Remark 3.2).

Fix a linear subspace V ⊆ H0(L). Suppose dimV = 1. Thus V (−p) = 0 for a general p ∈ X.

Hence V (−2p) = 0 for a general p ∈ Xreg. Suppose dimV = 2. By [14] V (−A) = 0 for a general

tangent vector A of Xreg. Thus V (−2p) = 0 for a general p ∈ Xreg. Thus in (2.3) it is not necessary

to check all cases with e > 0 and e(n+
(
n+2
n

)
) + f(2n+1)+ g(n+1) ∈ {h0(L) + n− 1, h0(L) + n}

(Remark 3.2).

Remark 2.6. Let X be an integral projective variety, L a line bundle on X and V ⊆ H0(L).

Set n := dimX. Fix a general p ∈ Xreg. The function f : N −→ N defined by the formula

f(m) := dimV (−mp) is non-increasing. Since we take p general in Xreg, the semicontinuity

theorem for cohomology shows that this function does not depend upon the choice of the general p.

Consider its first difference g : N −→ N, i.e. set g(0) := f(0) = dimV and g(m) = f(m−1)−f(m)

for all m > 0.

Observation 1: If f(m) ̸= 0, then g(m + 1) > 0, i.e. f(m + 1) < f(m), unless f(m) = 0 ([13,

Proposition 2.3]).

Now we fix an arbitrary o ∈ Xreg, set R := OX,o and call µ the maximal ideal of the local ring

R. Thus R/µ ∼= K and, since X is smooth at o, the graded ring GRo :=
⊕

t≥0 µ
t/µt+1 (with

the convention µ0 = R) is isomorphic to a polynomial ring in n variables over K. Taking a

regular system of parameters t1, . . . , tn, we may see each µm/µm+1 as the K-vector space of all

degree m homogeneous polynomials in the variables t1, . . . , tn. Thus dimK µm/µm+1 =
(
n+m−1
n−1

)
.

Set fo(m) := dimV (−mo) and go(m) := fo(m + 1) − fo(m). There is an evaluation map eo,m :

V (−m)/V (−(m + 1)o) −→ µm/µm+1 and go(m) is the rank of the evaluation map eo,m. For

a general o we write em instead of eo,m. For any integer v such that 0 ≤ v ≤
(
n+m−1
n−1

)
let

G(v, µm/µm+1) denote the Grassmannian of all v-dimensional linear subspaces of µm/µm+1. Call

π : µm −→ µm+1 the quotient map. Fix v and W ∈ G(v, µm/µm+1). Set IW := π−1(o) ⊂
R and ZW := Spec(R/IW ). Note that ZW is a connected degree 0 subscheme of X of degree(
n+m
n

)
+ dimW . The integer dimV (−ZW ) is the number of conditions that ZW imposes to V .
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We have µk+1 ⊆ IZ ⊂ µk+1. The integer dimV (−ZW ) depends on the integers go(m) and dimW

and on the position of W with respect to the linear subspace Im(em,o). Concerning the integer

dimV (−ZW ) we only know the trivial inequalities coming from the Grassmann formula. Since

the Grassmannian is an irreducible variety, it makes sense to speak about the general element of

G(v, µm/µm+1). For such a general W we have dimV (−ZW ) = dimV (−mo) − min{v, go(m)}.
For a general o we have gm(o) > 0. In this case any W of positive dimension imposes at least

one condition to V (−mo). The m-spread spm(X,V ) of (X,V ) at its general point is the minimal

integer x such that 0 ≤ x ≤ n and there is an x-dimensional linear subspace E ⊆ K[t1, . . . , tn] such

that Im(em) ⊆ Sm(E). Obviously spm(X,V ) ≤ min{n, g(m)}. When g(m) < n the pair (X,V )

has a very particular behaviour ([5, Proposition 1]). We do not know (we lack an integrability

condition) if something similar is true just assuming spm(X,V ) < n.

3 Examples

In this section we take X := P1 × P1. As a warming up for the next section we give 2 cases

(Propositions 3.4 and 3.5) in which the congruence classes for some of the integer a, b of the line

bundle OX(a, b) greatly help and then a case (Proposition 3.6) which shows how to use the lucky

cases to prove more general ones. We also show how to handle some zero-dimensional schemes

with a very particular shape (Lemmas 3.7 and 3.8 and Proposition 3.9).

Remark 3.1. Fix integers a ≥ b > 0. Let W ⊂ X be a general union of c 2-points. Then

either h0(IW (a, b)) = 0 or h1(IW (a, b)) = 0, except in the case b = 2, a even and c = a/2 + 1

([10, 16, 17]). In the exceptional case h0(IW (a, b)) = h1(IW (a, b)) = 1 and |IW (a, 2)| = {2C}
where C ∼= P1 and {C} = |IW(a/2, 1)|.

The following observation simplifies many proofs and it is essential to do by computer in a cheap

way some small degrees cases to be used for inductive proofs for other joins.

Remark 3.2. Fix positive integers a, b and w and a zero-dimensional scheme W ⊂ X such that

deg(W ) = w and h1(IW (a, b)) > 0. To prove that for all integers c ∈ N a general union Z of

W and c 2-points satisfies either h1(IZ(a, b)) = 0 or h0(IW (a, b)) = 0 it is sufficient to check the

integers c ∈ {⌊((a+ 1)(b+ 1)−w)/3⌋, ⌈((a+ 1)(b+ 1)−w)/3⌉}. Hence it is sufficient to check all

c ∈ N such that

(a+ 1)(b+ 1)− 2 ≤ w + 3c ≤ (a+ 1)(b+ 1) + 2 (3.1)

We can do better. Indeed, any 2-point at a general p ∈ X contains a general connected degree 2 zero-

dimensional scheme v. Thus for any V ⊆ H0(OX(a, b)) we have dimV (−2p) ≤ min{0,dimV −2}.
Thus it is sufficient to check all integers c such that

(a+ 1)(b+ 1)− 1 ≤ w + 3c ≤ (a+ 1)(b+ 1) + 1 (3.2)



CUBO
25, 2 (2023)

Osculating varieties 339

Now assume w+ 3c = (a+ 1)(a+ 1) + 1 and that we know that h1(IW∪E(a, b)) = 0 for all unions

of c′ general 2-points with c′ satisfying w + 3c′ ≤ (a + 1)(b + 1). Let E ⊂ X be a general union

of c− 1 2-points. Thus h0(IW∪E(a, b)) = 2. Thus a general union E′ of E and a general 2-point

satisfies h0(IW∪E′(a, b)) = 0. Thus it is sufficient to check all integers c such that

(a+ 1)(b+ 1)− 1 ≤ w + 3c ≤ (a+ 1)(b+ 1) (3.3)

Thus it is sufficient to check the integer c := ⌊((a+ 1)(b+ 1)− w)/3⌋.

Lemma 3.3. Fix (a, b) ∈ N2, L ∈ |OX(1, 0)| and a zero-dimensional scheme W ⊂ X such

that h1(IW (a, b)) = 0. Set u := deg(W ∩ L). Let E ⊂ L be a zero-dimensional scheme such that

E∩W = ∅ and set x := deg(E). Assume h1(IResL(W )(a−1, b)) ≤ b+1−u. Then h1(IW∪E(a, b)) =

max{0, h0(IW (a, b))− x}.

Proof. First assume x = b+1−u. Thus hi(L, IL∩(W∪E)(a, b)) = 0, i = 0, 1. Hence hi(IW∪E(a, b)) =

hi(IResL(W )(a− 1, b)), i = 0, 1.

If x < b+1− u, then we reduce the proof to the case just proved taking instead of E the union of

E and b+ 1− u− x points.

Now assume x > b+1. Instead of E we use any subscheme E′ ⊂ E such that deg(E′) = b+1−u.

Proposition 3.4. Fix positive integers a and b such that a is odd and b ≡ 4 (mod 5). Then for

all c > 0 the join of c copies of J(1) has the expected dimension min{(a+ 1)(b+ 1)− 1, 5c− 1}.

Proof. Let Z ⊂ X be a general union of c elements of Z(1). It is sufficient to do the case

c = (a+ 1)(b+ 1)/5 and prove that hi(IZ(a, b)) = 0, i = 0, 1. We fix L ∈ |OX(1, 0)|. Let Z ′ ⊂ X

be a general union of (a− 1)(b+ 1)/5 elements of Z(1) with the convention Z ′ = ∅ if a = 1. Take

a general A ∪ B ⊂ L such that #A = #B = (b+ 1)/5 and A ∩ B = ∅. Let W be the union of Z ′

and the scheme Z ′′ obtained in the following way. We degenerate (b+1)/5 connected components

of Z to elements of Z(p, 1), p ∈ A, with respect to a tangent vector not tangent to L and (b+1)/5

connected components of Z to elements of Z(p, 1), p ∈ B, with respect to the tangent vector of

L. Remark 2.2 gives deg(Z ′′ ∩ L) = b + 1 and deg(ResL(Z) ∩ L) = b + 1. Thus using twice the

residual exact sequence of L we get that it is sufficient to prove that hi(IZ′(a− 1, b)) = 0, i = 0, 1.

This is true if a = 1 (and hence Z ′ = ∅), while if a ≥ 3 we use induction on a.

Proposition 3.5. Fix positive integers a and b such that b ≡ 4 (mod 5) and a ≥ 3. The join of

(b+ 1)/5 copies of J(2) and an arbitrary number, c, of copies of X has the expected dimension.

Proof. Let Z1 be a general union of c 2-points. Since each element of J(2) has degree 8, it is

sufficient to check the positive integers c such that 8(b + 1)/5 + 3c ≤ (a + 1)(b + 1) (Remark

3.2). Fix L ∈ |OX(1, 0)|. For every p ∈ L, let E(p) be an element of Z(p, 2) with as tangent
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vector the one associated to L. We have deg(E(p) ∩ L) = 4, deg(ResL(E(p)) ∩ L) = 3 and

ResL(ResL(E(p))) = {p}. Set E :=
⋃

p∈A E(p). By semicontinuity to prove the proposition for

the integer c it is sufficient to prove that hj(IE∪Z1
(a, b)) = 0.

Take a general A ∪ B ⊂ L such that #A = #B = (b + 1)/5 and A ∩ B = ∅. Let E be the

union of all E(p), p ∈ A. By semicontinuity to prove the proposition for the integer c it is

sufficient to prove h1(IE∪Z1
(a, b)) = 0. Let (2B,L) denote the union of all 2-points of L with

a point of B as their reduction. We apply the Differential Horace Lemma for 2-points at each

p ∈ B. Since hi(L, IB∪(E∩L)(a, b)) = 0, i = 0, 1, the Differential Horace Lemma gives that to

prove that h1(IE∪E′(a, b)) = 0 for a general union E′ of 2(b+1)/5 2-points, it is sufficient to prove

h1(IResL(E)∪(2B,L)(a − 1, b)) = 0. Since deg((ResL(E) ∪ (2B,L)) = b + 1, it is sufficient to prove

h1(IA(a− 2, b)) = 0. Since a ≥ 2, we proved the case c ≤ 2(b+ 1)/5.

Now assume c > 2(b + 1)/5 and set x := c − 2(b + 1)/5. Let W ⊂ X be a general union of x

2-points. Either h0(IW (a− 2, b)) = 0 or h1(IW (a− 2, b)) = 0 or a and b are even, x = b+ 1 and

h1(IW (a− 2, b)) = h0(IW (a− 2, b)) = 1 (Remark 3.1).

If h0(IW (a− 2, b)) ≤ 1, then h0(IE′∪W (a, b)) = 0, concluding the proof in this case.

Now assume h1(IW (a− 2, b)) = 0 and hence h0(IW (a− 2, b)) = (a− 1)(b+ 1)− 3x. To prove this

case we need to prove that either h0(IW∪A(a − 2, b)) = 0 or h1(IW∪A(a − 2, b) = 0. Since W is

general, W ∩ L = ∅. Since A is general in L and #A = (b + 1)/5, it is sufficient to prove that

h0(IW (a− 3, b)) ≤ min{0, (a− 1)(b+ 1)− 3x− (b+ 1)/5}.

If a ≥ 4, the inequality h0(IW (a− 3, b)) ≤ min{0, (a− 1)(b+ 1)− 3x− (b+ 1)/5} is true, because

either h0(IW (a − 3, b)) = 0 or h1(IW (a − 3, b)) = 0 or h0(IW (a − 3, b)) = h1(IW (a − 3, b)) = 1

(Remark 3.1).

Now assume a = 3. We have h0(IW (1, b)) = 2b+2−3x and h0(IW (0, b)) = b+1 < h0(IW (1, b))−
(b+ 1)/5.

Fix the bidegree a, b of the line bundle OX(a, b). Instead of a prescribed number of copies of J(2)

we may use an arbitrary, but small with respect to b, number of copies of J(2) as in the following

statement (taking all possible e ≤ b− 2 with e ≡ 4 (mod 5)).

Proposition 3.6. Fix positive integers a, e and b such that e ≡ 4 (mod 5), a ≥ 3 and b ≥ e+ 4.

The join of (e + 1)/5 copies of J(2) and an arbitrary number, c, of copies of X has the expected

dimension.

Proof. Let Z1 be a general union of s 2-points. Since each element of J(2) has degree 8, it is

sufficient to check the positive integer c such that 8(e+ 1)/5 + 3c ≤ (a+ 1)(b+ 1) (Remark 3.2).

Fix L ∈ |OX(1, 0)|. For every p ∈ L let E(p) be an element of Z(p, 2) with as tangent vector the one

associated to L. We have deg(E(p)∩L) = 4, deg(ResL(E(p))∩L) = 3 and ResL(ResL(E(p))) = {p}.
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Set E1 :=
⋃

p∈A E(p). Set e1 := ⌊(b − e)/2⌋, f1 := b − e − 2e1, e2 := ⌊(b − e − e1 − 2f1)/2⌋ and

f2 := b−e−e1−f1−2f1. Note that 0 ≤ f1 ≤ 1 and 0 ≤ f2 ≤ 1. Since b ≥ e+2, (e1, f1) ̸= (0, 1) and

hence 2e1+f1 ≥ e1+2f1. Since b ≥ e+4, we have e1+2f1 ≥ 2. Take a general A∪B∪E∪F ⊂ L

such that #A = #B = (e + 1)/10, #E = e1, #F = f1 and the sets A, B, E and F are pairwise

disjoint. Let U be the union of all E(p), p ∈ A. By semicontinuity to prove the proposition for the

integer c it is sufficient to prove hj(IU∪Z1(a, b)) = 0.

Let (2B,L) (resp. (2F,L), resp. (2E,L)) denote the union of all 2-points of L with a point of B

(resp. F ) as their reduction. We apply the Differential Horace Lemma for 2-points at each p ∈
B∪F , while add all 2-points 2p of X with p ∈ E. Since hi(L, IB∪(U∩L)∪(2E,L)∪F (a, b)) = 0, i = 0, 1,

the Differential Horace Lemma gives that to prove that h1(IU∪U ′(a, b)) = 0 for a general union U ′ of

(e+1)/10+ e1+f1 2-points, it is sufficient to prove h1(IResL(E1)∪(2B,L)∪(E,L)∪(2F,L)(a−1, b)) = 0.

We have deg(ResL(E) ∩ L) + deg((2B,L)) + deg((2F,L)) ≤ b + 1. Thus the intersection τ of

ResL(E)∪ (2B,L)∪ (E,L)∪ (2F,L) with L satisfies h1(L, Iτ (a− 1, b)) = 0, while its residue is A.

If c ≤ (e+ 1)/5 + e1 + f1, then we get that the join has the expected dimension e+ 1 + 3c− 1.

Assume for the moment c ≥ (e+1)/5+e1+f1+e2+f2. Fix a general G∪H ⊂ L such that #G = e2

and #H = f2 ≤ 1. We apply the Differential Horace Lemma to H (if f2 = 1) and specialize e2

2-points to the 2-points 2p, p ∈ G. Let Z2 be a general union of c− (e1 +1)/5− e1 − f1 − e2 − f2.

To prove that h1(IU∪Z1
(a, b)) = 0 it is sufficient to prove that hj(IZ2∪A∪F∪(2H,L)(a − 2, b)) = 0.

This is done as in the proof of Proposition 3.5, even if H ̸= ∅, by Remark 2.3 applied to L or by

Lemma 3.3.

If (e+ 1)/5 + e1 + f1 < c < (e+ 1)/5 + e1 + f1 + e2 + f2 (and hence c ≤ (e+ 1)/5 + e1 + f1 + e2)

instead of G and H we take G′ with #G′ = c− (e+ 1)/5− e1 − f1 − e2 and H ′ = ∅.

We explain why a general union of 2 m-points (plus other objects) are easy to handle.

Lemma 3.7. Let Z ⊂ X be a general union of 2 m-points, m ≥ 2. Then hi(IZ(m,m − 1)) = 0,

i = 0, 1.

Proof. Fix L ∈ |OX(0, 1)| and o, o′ ∈ L, o ̸= o′. We take mo and apply the Differential Horace

Lemma with respect to L and o′. Thus on L we add {o}, at the first residual with respect to L

intersected with L we add (2o, L) and so on. Thus the intersection with L of the union W of mo

with this virtual scheme has degree m + 1 and the same holds for the intersection of L with the

first m residual with respect to L. Thus we get the lemma taking several residual exact sequences

of L.

In the same way we get the following result.

Lemma 3.8. Let Z ⊂ X be a general union of one m-point, m > 0, and one (m+1)-point. Then

hi(IZ(m,m)) = 0, i = 0, 1.
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Proposition 3.9. Fix integer m ≥ 3, c ≥ 0, and a ≥ b ≥ m + 3. Let Z ⊂ X be a general union

of 2 m-points and c 2-points. Then either h0(IZ(a, b)) = 0 or h1(IZ(a, b)) = 0.

Proof. It is sufficient to check the positive integers c such that (m + 1)m + 3c ≤ (a + 1)(b + 1)

(Remark 3.2). Fix L ∈ |OX(0, 1)| and o, o′ ∈ L, o ̸= o′. We take mo and apply the Differential

Horace Lemma with respect to L and o′. Thus on L we add {o}, at the first residual with respect

to L intersected with L we add (2o, L) and so on. Thus the intersection with L of the union W of

mo with this virtual scheme has degree m + 1 and the same holds for the intersection of L with

the first m residual with respect to L. We call W this virtual degeneration of a general union

of 2 m-points. Recall (Lemma 3.7) that hi(IW (m,m − 1)) = 0, i = 0, 1. We set W0 := W and

for each i ≥ 1 define recursively the virtual scheme Wi by the formula Wi := ResL(Wi−1). Thus

Wj = ∅ for all j ≥ m and deg(Wi ∩ L) = m + 1 for all i < m. The proof of Lemma 3.7 gives

hi(IWj
(m,m− 1− j)) = 0, 0 ≤ j ≤ m.

Set e := ⌊(a−m)/2⌋ and f := a−m− 2e. Fix a general A ∪ B ⊂ L such that #A = e, #B = f

and A ∩B = ∅.

We call Hi, 0 ≤ i ≤ m, the assertion that a general union of Wi and an arbitrary number of

2-points has the expected postulation with respect to OX(a, b − i). The case i = m is true by

Remark 3.1. Since H0 proves the proposition for c, we prove all Hi by descending induction on i,

Thus (changing b and m) we may assume H1.

Assume for the moment c ≥ e+ f . Let E ⊂ X be a general union of c− e− f 2-points. We take

as e of the 2-points the 2-points 2p, p ∈ A. If f ̸= 0 we apply the Differential Horace Lemma to

F . Since 2e+ f +deg(W ∩L) = a+1, the Differential Horace Lemma shows that to show that to

prove the proposition it is sufficient to prove that hj(IW1∪E∪A∪(2F,L)(a, b− 1)) = 0.

Claim 1: h1(IW1∪E(a, b− 1)) = 0.

Proof of Claim 1: By the inductive assumption either h1(IW1∪E(a, b−1)) = 0 or h0(IW1∪E(a, b−
1)) = 0. Since deg(W1 ∪ E)− e− 2f = deg(W ) + 3c ≤ (a+ 1)(b+ 1), h1(IW1∪E(a, b− 1)) = 0.

Claim 1 gives h0(IW1∪E(a, b− 1)) = (a+ 1)b−m(m+ 1)− 3(c− e− f). Claim 1 and Remark 2.3

applied to L or Lemma 3.3 show that to prove H0 it is sufficient to prove that h0(IW1∪E(a, b−2)) ≤
max{0, (a+1)b−m(m+1)−3(c−e−f)−e−2f}. Since 2e+f = a−m and f ≤ 1, 3e+3f+2 ≤ 2(a+1).

Thus h0(IW2∪E(a, b− 2)) = 0.

In the case c < e+f (and hence c ≤ e) instead of A and B we take B = ∅ and A with #A = c.
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4 The proofs

In this section we take X = P1 × P1. Since dimX = 2, for each m ≥ 0, any p ∈ X and any

Z ∈ Z(m) we have deg((m+ 1)p) =
(
m+2
2

)
and deg(Z) = 2 +

(
m+2
2

)
.

Remark 4.1. Fix integers a ≥ b ≥ 0 and z ≥ 2. Fix homogeneous coordinates x0, x1 and y0, y1 of

P1. The vector space H0(OX(a, b)) is formed by all f ∈ K[x0, x1, y0, y1] which are bihomogenous

of bidegree (a, b), i.e. homogenous of degree a with respect to x0, x1 and homogeneous of degree b

with respect to y0, y1. Thus H0(OX(a, b)) has as a basis all monomials xα0
0 xα1

1 yβ0

0 yβ1

1 such that

(α0, α1, β0, β1) ∈ N4, α0 + α1 = a and β0 + β1 = b. Fix p ∈ X and choose bihomogeneous

coordinates x0, x1, y0, y1 such that p = ((1 : 0), (1 : 0)). Set x := x1/x0 and y := y1/y0. The vector

space H0(Izp(a, b)) is isomorphic to the subspace of the polynomial ring K[x, y] with as a bases all

monomials xuyv with u + v ≥ z, 0 ≤ u ≤ a and 0 ≤ v ≤ b. Since deg(Ozp) =
(
z+1
2

)
and a ≥ b,

h1(Izp(a, b)) = 0 if and only if b ≥ z − 1. If a > b = z − 2, then h1(Izp(a, z − 2)) = 1.

Proposition 4.2. Fix positive integers a ≥ b and m.

(1) If b < m, then h1(IZ(a, b)) > 0 for all Z ∈ Z(m).

(2) If b > m, then h1(IZ(a, b)) = 0 for all Z ∈ Z(m).

(3) If a > m, then h1(IZ(a,m)) = 0 for a general Z ∈ Z(m).

(4) There is Z ∈ Z(m) such that h1(IZ(a,m)) > 0.

Proof. Fix p ∈ X. We consider Z ∈ Z(p,m). Thus (m + 1)p ⊂ Z ⊂ (m + 2)p. Parts (1) and (2)

follow from Remark 4.1.

Let L denote the only element of |OX(1, 0)| passing through p.

(a) Now we prove part (4). Use L as LZ to define the scheme Z. Note that L ∼= P1 and

deg(OL(a,m)) = m. Thus h0(L,OL(a,m)) = m + 1. By part (b) of Remark 2.2 we have

deg(Z ∩ L) = m+ 2 and hence h1(L, IZ∩L,L(a,m)) = 1. Thus h1(IZ(a,m)) > 0.

(b) Now we prove part (3). Thus a > m. By the semicontinuity theorem for cohomology

it is sufficient to find one Z ∈ Z(p,m) such that h1(IZ(a,m)) = 0. Take Z ∈ Z(p,m)

whose tangent vector is not contained in L. We have deg(Z ∩ L) = m + 1 and ResL(Z) ∈
Z(m − 1) (even if m = 1) by Remark 2.2. Use the residual exact sequence of L and that

h1(IResL(Z)(a− 1,m)) = 0, because a− 1 ≥ m.

Proof of Proposition 1.2: The case m = 2, i.e. the case of c + 1 general 2-points is described in

Remark 3.1. Assume m > 2 and that the proposition is true for smaller multiplicities. In step (b)
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we check the case m = 3 and see that the exceptional case b = 2 and a even of the case m = 2

gives no problem for the inductive proof.

(a) Fix L ∈ |OX(0, 1)|, p ∈ L, and take mp. For any x ∈ Z we have h0(OL(a, x)) = a + 1.

Note that deg(mp ∩ L) = m and ResL(mp) = (m − 1)p. Since deg(mp) = (m + 1)m/2,

it is sufficient we may assume 3c ≤ (a + 1)(b + 1) − (m + 1)m/2. Thus we need to prove

that h1(Imp∪G(a, b)) = 0 for a general union of c 2-points. Set e := ⌊(a + 1 − m)/2⌋ and

f := a+ 1−m− 2e. Thus 0 ≤ f ≤ 1. Assume for the moment c ≥ e+ f . Let E ⊂ X be a

general union of c − e − f 2-points. Take a general A ∪ B ⊂ L such that #A = e, #B = f

and A ∩ B = ∅. We degenerate e 2-points to the 2-points 2q, q ∈ A and, if f = 1, apply

the Differential Horace Lemma to F . Since m + 2e + f = a + 1, ResL(mp) = (m − 1)p

and ResL(q) = {q} for all q ∈ A, the Differential Horace Lemma shows that to prove

h1(Imp∪G(a, b)) = 0 it is sufficient to prove h1(I(m−1)p∪E∪A∪(2B,L)(a, b− 1)) = 0.

Claim 1: h1(I(m−1)p∪E(a, b− 1)) = 0.

Proof of Claim 1: Since b − 1 − (m − 1) = b −m, we may use the inductive assumption.

We have deg(mp) + deg(G) − deg((m − 1)p) − 2e + f = h0(OX(a, b)) − h0(OX(a, b − 1)).

Thus to prove Claim 1 it is sufficient to observe that e+ 2f ≤ 2e+ f , which is true because

a+ 1−m ≥ 2 and 0 ≤ f ≤ 1.

Claim 1 implies h0(I(m−1)p∪E(a, b− 1)) = (a+ 1)b−m(m− 1)/2− 3(c− e− f). Note that

ResL((m−1)p) = (m−2)p and that deg(A∪ (2B,L)) = e+2f . By Lemma 2.3 to prove that

h1(I(m−1)p∪E∪A∪(2B,L)(a, b− 1)) = 0 it is sufficient to prove that h0(I(m−2)p∪E(a, b− 2)) ≤
max{0, (a + 1)b − m(m − 1)/2 − 3(c − e − f) − e − 2f}. Recall that (m + 1)m/2 + 3c ≤
(a + 1)(b + 1). We have deg((m − 1)p) + deg(E) − deg((m − 2)p) − deg(E) = m. We have

a + 1 − (m − 1) − e − 2f ≥ 0, because e > 0, f ≤ 1 and hence 2e + f ≥ e + 2f . Since

m − 2 − b + 2 = m − 2, we may use the inductive assumption (or Remark 3.1 for m = 4 or

that h0(Ip∪E(a, b− 2)) = max{0, h0(IE(a, b− 2))− 1} for a general p ∈ X if m = 3).

If c < e+ f (and hence c ≤ e) the proof works taking B = ∅ and #A = c.

(b) Assume m = 3. Take L, p, A, B and E as in step (a). We first check Claim 1. Taking a

general L and a general p ∈ L and then taking a general E we see that 2p ∪ E is a general

union of c− e− f + 1 2-points of X. We have a > b > 0 and deg(2p∪E) = 3c+ 3− 3e− 3f

with 6 + 3c ≤ (a + 1)(b + 1) and 2e + f = a − 2. To conclude the proof of Claim 1 it is

sufficient to use Remark 3.1 and that e + 2f ≥ 2. By Claim 1 to conclude it is sufficient to

check that h0(Ip∪E(a, b− 2)) ≤ max{0, (a+ 1)b− 3− 3(c− e− f)− e− 2f}. The generality

of p gives h0(Ip∪E(a, b− 2)) = max{0, h0(IE(a, b− 2))− 1}. Since m = 3, b− 2 > 0. Remark

3.1 gives that either h0(IE(a, b−2)) ≤ 1 or h0(IE(a, b−2)) = (a+1)(b−1)−3(c−e−f).
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Proof of Theorem 1.1: Since the case m = 0 is true by Remark 3.1, we may use induction on m

even if m = 1. Fix L ∈ |OX(0, 1)| and o ∈ L. Take U ∈ Z(o,m) with L not as its tangent vector.

By (3.3) it is sufficient to take a positive integer c such that
(
m+1
2

)
+ 2 + 3c ≤ (a+ 1)(b+ 1) and

prove that h1(IU∪W (a, b)) = 0 for a general union W of c 2-points. By part (a) of Remark 2.2

W := ResL(U) ∈ Z(o,m − 1), L is not the tangent vector of W and deg(W ∩ L) = m + 1. Set

e := ⌊(a − m)/2⌋ and f = a − m − 2e. We have 0 ≤ f ≤ 1. Since a ≥ m + 2, e > 0 and hence

2e+ f ≥ e+ 2f .

Claim 1: h1(IG∪E(a, b− 1)) = 0.

Proof of Claim 1: We have b−m = (b−1)−(m−1) and hence it is sufficient to use the inductive

assumption. We have deg(U ∪W )−deg(G∪E) = m+1−3(e+f) and h0(OX(a, b))−h0(OX(a, b−
1)) = a+ 1. Since a+ 1 = m+ 1 + 2e+ f , Claim 1 follows from the inductive assumption.

Claim 1 implies h0(IG∪E(a, b− 1)) = (a+ 1)b−
(
m
2

)
− 2− 3(c− e− f). We have G′ = ResL(G) ∈

Z(o,m − 2) if m ≥ 2 and G′ = {o} if m = 1. We use Lemma 2.4 applied to the image of the

restriction map H0(IG∪E∪A∪(2B,L)(a, b− 1)) −→ H0(OL(a, b− 1)). To conclude the proof for m, c,

a and b using it is sufficient to prove that h0(IG′∪E(a, b−2)) ≤ max{0, (a+1)b−
(
m
2

)
−2−3(c−e−

f)− e− 2f} and that deg(G′ ∪E) ≤ (a+1)(b− 1). The first inequality follows from the inductive

assumption, while the second one follows from the following facts: deg(U) + 3c ≤ (a + 1)(b + 1),

deg(U)− deg(G′) = 2m+ 1, 3c− deg(E) = 3e+ 3f , m+ 1 + 2e+ f = a+ 1 and f ≤ 1.

If c < e+ f (and hence c ≤ e) the proof works taking B = ∅ and #A = c.
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