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ABSTRACT

In this research article, we study ∗-η-Ricci-Yamabe soli-
tons on an α-cosymplectic manifold by giving an example
in the support and also prove that it is an η-Einstein man-
ifold. In addition, we investigate an α-cosymplectic man-
ifold admitting ∗-η-Ricci-Yamabe solitons under some
conditions. Lastly, we discuss the concircular, confor-
mal, conharmonic, and W2-curvatures on the said mani-
fold admitting ∗-η-Ricci-Yamabe solitons.

RESUMEN

En el presente artículo, estudiamos solitones ∗-η-Ricci-
Yamabe en una variedad α-cosimpléctica dando un ejem-
plo que lo soporta y también probamos que es una
variedad η-Einstein. Adicionalmente, investigamos una
variedad α-cosimpléctica que admite solitones ∗-η-Ricci-
Yamabe bajo ciertas condiciones. Finalmente, discuti-
mos las curvaturas concircular, conforme, con-armónica
y W2 en dicha variedad admitiendo solitones ∗-η-Ricci-
Yamabe.
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1 Introduction

In the year 1982, R. S. Hamilton [9] investigated the concept of Ricci flow on a smooth Riemannian

manifold (shortly, RM). A self-similar solution to the Ricci flow is nothing but a Ricci soliton if it

moves only by a one parameter family of diffeomorphism and scaling. After introducing the idea of

Ricci flow, the theory of Yamabe flow was also initiated by Hamilton in [10] to construct Yamabe

metrics on a compact RM. A Yamabe soliton is again corresponded to a self-similar solution of the

Yamabe flow.

S. Guler and M. Crasmareanu gave a new class of geometric flow of type (ρ, q), known as Ricci-

Yamabe flow in [7]. They proposed the idea of Ricci-Yamabe soliton (shortly, RYS) if it moves

only by one parameter group of diffeomorphism and scaling. The metric of the RM (Mn, h), n > 2,

is said to be RYS (h,V ,Λ, ρ, q) if it satisfies the following [20]:

£V h+ 2ρRic = [2Λ− qr]h, (1.1)

where Lie derivative operator of the metric h along the vector field V represented by £V h, the

Ricci curvature tensor by Ric (the Ricci operator Q defined by Ric(A,B) = h(QA,B) for A,B

∈ χ(M), χ(M) being the Lie algebra of vector fields of M), the scalar curvature by r and the real

scalars by Λ, ρ, q. According to Λ, RYS will be expanding, steady or shrinking if Λ is negative,

zero or positive, respectively.

The concept of η-Ricci-Yamabe solitons (η-RYS) was defined by M. D. Siddiqi, et al. [20] in 2020

as a new generalization of RYS and it is defined as

£V h+ 2Ric+ [2Λ− qr]h+ 2µη ⊗ η = 0, (1.2)

where µ is a constant and η is a 1-form on M .

On the other hand, S. Dey and S. Roy [5] inaugurated a new generalization of η-Ricci soliton

(η-RS) [3], namely ∗-η-Ricci soliton (∗-η-RS), defined below:

£V h+ 2Ric∗ + 2Λh+ 2µη ⊗ η = 0, (1.3)

where ∗-Ricci tensor (shortly, ∗-RT) is denoted by Ric∗.

Tachibana [22] brought up the concept of ∗-RT on almost Hermitian manifolds and afterwards

Hamada [8] studied ∗-RT on real hypersurfaces of non-flat complex space forms. Such geometrical

works inspired S. Roy, et al. to come up with new idea ∗-η-Ricci-Yamabe soliton (shortly, ∗-η-RYS)

of type (ρ, q), which is RM and fulfilling [18]
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£V h+ 2ρRic∗ + [2Λ− qr∗]h+ 2µη ⊗ η = 0, (1.4)

where r∗(= trace(Ric∗)) is the ∗-scalar curvature and Λ, ρ, q, µ are real scalars. The ∗-η-RYS is

shrinking, steady or expanding if Λ is negative, zero or positive respectively. And they discussed

∗-η-RYS on α-cosymplectic manifolds with a quarter-symmetric metric (shortly, QSM) connection.

Further, A. Haseeb, R. Prasad and F. Mofarreh [12] obtained some interesting results on an

α-Sasakian manifold admitting ∗-η-RYS with the potential vector field ζ satisfying conditions

Rim(ζ,X ).Ric = 0, Q(h,Ric) = 0 and pseudo-Ricci symmetric and also showed that α-Sasakian

admitting ∗-η-RYS is an η-EM.

In last few years, numerous authors have worked on the characterizations of Ricci, Ricci-Yamabe,

η-Ricci-Yamabe and ∗-η-Ricci-Yamabe solitons (respectively, RS, RYS, η-RYS and ∗-η-RYS) in

contact geometry. First, the study of RS in contact geometry was proposed by Sharma in [19].

After the initial work on Ricci solitons, some notable classes of contact geometry explored by H.

I. Yoldas in [25,26] where Ricci solitons have been investigated. Later on, D. Dey [2] provided the

idea of an almost Kenmotsu metric as RYS. Also, P. Zhang et al. [27] have studied conformal RYS

on perfect fluid space-time. New type of soliton namely ∗-RYS on contact geometry introduced

by M. D. Siddiqi and Akyol in [20] and they have discussed the notion of η-RYS for geometrical

structure on Riemannian submersions admitting η-RYS with the potential field. In recent years, a

Kenmotsu metric in terms of η-RYS was measured by Yoldas in [23]. Next, the notion of ∗-η-RYS

was studied by many authors on different odd dimensional Riemannian manifolds. It should be

noted that the geometry of ∗-k-RYS and gradient ∗-k-RYS on Kenmotsu manifolds were given by

S. Dey and S. Roy in [4].

We organize this paper as follows: In section 2, we review some basic definitions and tools of an

α-cosymplectic manifold M . The main results are stated in section 3. In fact, we prove that an

n-dimensional M admitting a ∗-η-RYS is an η-Einstein manifold. Then some curvature tensor

conditions are studied on M with ∗-η-RYS. Finally, in section 4, we discuss some results on M

when it is ζ-concircularly flat, ζ-conharmonically flat, ζ-W2 flat and ζ-conformal.

2 Preliminaries

On an n(= 2m+ 1)-dimensional RM M , if an almost contact metric structure (Φ, ζ, η, h) satisfies

the following relations, then M is called an almost contact metric manifold:

Φ2A = A− η(A)ζ (2.1)

η(ζ) = 1, Φ(ζ) = 0, η(Φζ) = 0 (2.2)
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h(A,ΦB) = −h(ΦA,B), (2.3)

h(A, ζ) = η(A), h(ΦA,ΦB) = h(A,B)− η(A)η(B), (2.4)

for all A,B ∈ χ(M), where Φ denotes a (1, 1) tensor field, ζ is a vector field, η is a 1-form and h

is the compatible Riemannian metric.

The fundamental form ϕ on M is defined as [1]

ϕ(A,B) = h(ΦA,B), (2.5)

for all A,B ∈ χ(M).

If the Nijenhuis tensor field of Φ on M satisfies NΦ(A,B) + 2dη(A,B)ζ = 0, then M is called a

normal almost contact metric manifold. Here

NΦ(A,B) = Φ2[A,B ] + [ΦA,ΦB ]− Φ[A,ΦB ]− Φ[ΦA,B ],

for any A,B ∈ χ(M).

Under the following conditions, a normal almost contact metric manifold M is known as an α-

cosymplectic manifold (shortly, α-CM):

(1) dη = 0,

(2) dϕ = 2αη ∧ ϕ,

for α ∈ R.

We note that an α-CM can be

(1) a cosymplectic manifold provided that α = 0,

(2) an α-Kenmotsu manifold provided that α ̸= 0.

For an α-CM M , we have

(∇AΦ)B = α(h(ΦA,B)ζ − η(B)ΦA) (2.6)

and

∇Aζ = −αΦ2A = α[A− η(A)ζ], (2.7)

where ∇ is the Levi-Civita connection associated with h.

The main examples and curvature characteristics of α-CM were firstly obtained in [11,14,15]. Also,

we have the following relations for the Riemannian curvature tensor Rim and the Ricci curvature
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tensor Ric of M :

Rim(A,B)ζ = α2 [η(A)B − η(B)A] , (2.8)

Rim(ζ,A)B = α2 [η(B)A− h(A,B)ζ] , (2.9)

Rim(ζ,A)ζ = α2 [A− η(A)ζ] , (2.10)

η(Rim(A,B)C ) = α2 [η(B)h(A,C )− η(A)h(B ,C )] , (2.11)

Ric(A, ζ) = −α2(n− 1)η(A), (2.12)

for all A,B ,C ∈ χ(M).

In [11], the ∗-RT Ric∗ of type (0, 2) on an n-dimensional α-CM M is obtained as

Ric∗(B ,C ) = Ric(B ,C ) + α2(n− 2)h(B ,C ) + α2η(B)η(C ), (2.13)

for any B ,C ∈ χ(M).

Let {Ei|i = 1, 2, . . . , n} be an orthonormal basis of Tp(M), p ∈ M . We set B = C = Ei and it is

easy to derive the ∗-scalar curvature r∗ = trace(Ric∗) as

r∗ = r + α2(n− 1)2. (2.14)

On the other hand, α-CM M is said to be an η-EM if the Ricci curvature tensor has the following

form [24]:

Ric(A,B) = uh(A,B) + vη(A)η(B), (2.15)

for A,B ∈ χ(M), where u and v being constants.

For this paper, we need some curvature tensors on a RM (Mn, h), which are given below [17]:

C(A,B)C = Rim(A,B)C − r

n(n− 1)
[h(B ,C )A− h(A,C )B ], (2.16)

H(A,B)C = Rim(A,B)C − 1

n− 2
[h(B ,C )QA− h(A,C )QB +Ric(B ,C )A−Ric(A,C )B ],

(2.17)

W2(A,B)C = Rim(A,B)C +
1

n− 1
[h(A,C )QB − h(B ,C )QA], (2.18)

C∗(A,B)C = Rim(A,B)C − 1

n− 2
[Ric(B ,C )A−Ric(A,C )B + h(B ,C )QA (2.19)

− h(A,C )QB ] +
r

(n− 1)(n− 2)
[h(B ,C )A− h(A,C )B ],

where C, H, W2 and C∗ represent the concircular curvature tensor [16], the conharmonic curvature

tensor [13], the W2-curvature tensor [16] and the conformal curvature tensor [6].
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3 On α-CM admitting ∗-η-RYS

Let us take a ∗-η-RYS (h, ζ,Λ, µ, ρ, q) on an n-dimensional α-CM M , which is given by

(£ζh)(A,B) + 2ρRic∗(A,B) + [2Λ− qr∗]h(A,B) + 2µη(A)η(B) = 0, (3.1)

for any A,B ∈ χ(M).

Theorem 3.1. An n-dimensional α-CM M admitting ∗-η-RYS (h, ζ,Λ, µ, ρ, q) is an η-EM of the

constant scalar curvature r. Moreover, the scalars Λ and µ are related by

Λ + µ =
qr

2
+

qα2(n− 1)2

2
. (3.2)

Proof. From (2.4) and (2.7), we arrive at

(£ζh)(A,B) = h(∇Aζ,B) + h(A,∇Bζ) = 2α

(
h(A,B)− η(A)η(B)

)
. (3.3)

Substitute (3.3)) into (3.1) to get

Ric∗(A,B) = −1

ρ

(
Λ− qr∗

2
+ α

)
h(A,B)− (µ− α)

ρ
η(A)η(B). (3.4)

By using (2.13) and (2.14) in (3.4), we obtain

Ric(A,B) =

[
−1

ρ

(
Λ− qr

2
− qα2(n− 1)2

2
+ α

)
− α2(n− 2)

]
h(A,B)−

(
(µ− α)

ρ
+ α2

)
η(A)η(B),

(3.5)

that is,

Ric(A,B) = σ1h(A,B) + σ2η(A)η(B), (3.6)

where

σ1 = −1

ρ

(
Λ− qr

2
− qα2(n− 1)2

2
+ α

)
− α2(n− 2), σ2 = −

(
(µ− α)

ρ
+ α2

)
.

Now, if we fix B = ζ in (3.6), then we can easily get the following relation:

Ric(A, ζ) =

[
− 1

ρ

(
Λ− qr

2
− qα2(n− 1)2

2
+ µ

)
− α2(n− 1)

]
η(A). (3.7)

Using (2.12) and values of σ1 and σ2 in (3.7), we can have (3.2). Also, on contracting (3.6) and

using the values of σ1 and σ2, we find

r = (n− 1)

(
µ

ρ
− α

ρ
− α2(n− 1)

)
, (3.8)
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where µ and ρ(̸= 0) are constant.

Thus, (3.6) together with (3.2) and (3.8) give the relation of Λ and µ, which shows that ∗-η-RYS

on α-CM is an η-EM.

Remark 3.2. For the particular value of ρ = 0 in (3.1), an n-dimensional α-CM M endowed with

∗-η-RYS (h, ζ,Λ, µ, ρ, q) furnishes the scalar quantities as Λ = −α+
qr∗

2
and µ = α.

First we give the more general construction of α-cosymplectic manifold:

Example 3.3. Let (N, J, h̃) be a Kähler manifold. Denote by R×σN the manifold (R×N,Φ, ζ, η, h),

where Φ is the tensor field such that

Φ

(
d

dt

)
= 0, Φ(A) = J(A), A ∈ TN,

ζ =
d

dt
, η = dt, h = dt⊗ dt+ exp(2αt)h̃, α ∈ R.

Putting σ = exp(αt), h is the warped product metric of the Euclidean metric and h̃ by means of

the function σ. Then R×σ N is α-cosymplectic and (N, h̃) is a totally umbilical submanifold with

mean curvature vector −αζ. Assume that α ̸= 0. Applying well-known curvature formulas, one

relates the Ricci tensors of N and R ×σ N . But here we consider the flat Kähler manifold R4

endowed with the canonical complex structure and then the α-cosymplectic manifold R ×σ R4. If

α = 0, one has σ = 1, R×σ N = R×N is cosymplectic and N is totally geodetic. In this case the

Ricci tensors are related by:

Ric(A,B) = R̃ic(A− η(A)ζ,B − η(B)ζ). (3.9)

It follows that if N is an Einstein manifold, then R×N is η-Einstein.

Next, by giving the following example we can show the existence of this soliton in α-cosymplectic

manifold:

Example 3.4. Recall an example of 5-dimensional α-CM in [11], that is,

M = {(x1, x2, y1, y2, z) ∈ R5,Φ, ζ, η, h},

where (x1, x2, y1, y2, z) are the standard coordinates in R5.

The linearly independent vector fields on M are denoted by E1 = expαz ∂x1, E2 = expαz ∂x2,

E3 = expαz ∂y1, E4 = expαz ∂y2 and E5 = ζ = −∂z for i = {1, 2}. Thus, h and Φ are respectively

defined as

h(Ei, Ei) = 1, h(Ei, Ej) = 0, i ̸= j = {1, 2, 3, 4, 5}
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and

ΦE1 = −E2, ΦE2 = E1, ΦE3 = −E4, ΦE4 = E3, ΦE5 = Φζ = 0.

By the linearity of these tensors, it is quite easy to compute (2.1)-(2.4). Also, (2.6) and (2.7) are

verified in [11].

By applying Koszul’s formula, Rim of M (see [11]) can be obtained easily and hence the com-

ponents Ric of Ricci tensor of M are: Ric(Ei, Ei) = −4α2 for i = {1, 2, 3, 4, 5}. Since r =∑5
i=1 Ric(Ei, Ei), so we have r = −20α2.

Now, we use (3.7) and find

Ric(E5, E5) = Ric(ζ, ζ) =

[
− 1

ρ

(
Λ + 2qα2 + µ

)
− 4α2

]
.

By equating the values of Ric(ζ, ζ), we arrive at a relation: Λ + µ = −2qα2. We also verify this

relation for n = 5 by using (3.2). Thus, h gives an ∗-η-RYS (h, ζ,Λ, µ, ρ, q) on an α-cosymplectic

manifold M of dimension 5.

On the other hand, suppose that an n-dimensional α-CM M admitting ∗-η-RYS (h, ζ,Λ, µ, ρ, q)

satisfies

Q(h,Ric)(A,B ,C ,D) = 0, (3.10)

where Q(h,Ric)(A,B ,C ,D) = (h(A,B).Ric)(C ,D), for all vector fields A,B ,C ,D on M . This

can be expressed as

Q(h,Ric)(A,B ,C ,D) =h(B ,C )Ric(A,D)− h(A,C )Ric(B ,D) (3.11)

+ h(B ,D)Ric(A,C )− h(A,D)Ric(B ,C ).

Theorem 3.5. If ∗-η-RYS on an α-CM M satisfies Q(h,Ric) = 0, then

Λ =
q

2

(
r + α2(n− 1)2

)
− α (1− αρ) , (3.12)

µ = α(1− αρ). (3.13)

Proof. From the expressions (3.6), (3.10) and (3.11), we have

σ2[h(B ,C )η(A)η(D)− h(A,C )η(B)η(D) + h(B ,D)η(A)η(C )− h(A,D)η(B)η(C )] = 0. (3.14)

Above equation follows that σ2 = 0, which implies that

µ = α(1− αρ).
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We obtain the following from (3.2)

Λ =
q

2

(
r + α2(n− 1)2

)
− α (1− αρ) . (3.15)

Now, by using these values of σ1, σ2 and Λ as well as µ in (3.6), we calculate

Ric(A,B) = −(α2(n− 1))h(A,B). (3.16)

Thus, from above we can state the following result:

Corollary 3.6. If ∗-η-RYS on an α-CM M satisfies Q(h,Ric) = 0, then M is an EM.

Next, we have

Rim(ζ,A).Ric = 0, (3.17)

then we have

Ric(Rim(ζ,A)B ,C ) +Ric(B , Rim(ζ,A)C ) = 0, (3.18)

for all vector fields A,B ,C on M .

Theorem 3.7. If ∗-η-RYS on an α-CM M satisfies Rim(ζ,A).Ric = 0, then either M becomes

CM or we have

Λ =
q

2

(
r + α2(n− 1)2

)
− α(1− αρ) (3.19)

µ = α(1− αρ). (3.20)

Proof. In view of (3.6) and (3.18), we compute

α2σ2

(
2η(A)η(B)η(C )− η(C )h(A,B)− η(B)h(A,C )

)
= 0. (3.21)

Putting C = ζ into (3.21) and using (2.4), it is quite easy to see

α2σ2h(ΦA,ΦB) = 0, (3.22)

which implies either α = 0 or σ2 = 0. Further, from later case we find µ = α(1 − αρ) and hence

from (3.2), we calculate the value of Λ. From the first case we can also say that M is CM. This is

the desired result.

Next, by using the values of Λ as well µ in (3.6), we have

Ric(A,B) = −(α2(n− 1))h(A,B). (3.23)
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Thus, we can state the following:

Corollary 3.8. If ∗ − η-RYS on an α-CM M satisfies Rim(ζ,A).Ric = 0 then M is either an

EM or CM.

The non-flat manifold M of n-dimension is named pseudo Ricci symmetric, if Ric ( ̸= 0) of M

satisfies the condition:

(∇CRic) (A,B) = 2κ(C )Ric(A,B) + κ(A)Ric(C ,B) + κ(B)Ric(C ,A), (3.24)

where κ is a non-zero 1-form. In particular, M is said to be Ricci symmetric if κ = 0.

Theorem 3.9. If an α-CM M admitting ∗-η-RYS is pseudo-Ricci-symmetric, then M is either

Ricci symmetric or CM.

Proof. The covariant derivative of (3.6) leads

(∇CRic) (A,B) = ∇C [σ1h(A,B) + σ2η(A)η(B)] = ασ2 [h(ΦA,ΦC )η(B) + η(A)h(ΦB ,ΦC )] . (3.25)

Further, we use the relations (3.6), (3.24), (3.25) and obtain

2κ(C ) [σ1h(A,B) + σ2η(A)η(B)] + κ(A) [σ1h(C ,B) + σ2η(C )η(B)] (3.26)

+ κ(B) [σ1h(C ,A) + σ2η(C )η(A)] = ασ2 [h(ΦA,ΦC )η(B) + η(A)h(ΦB ,ΦC )] .

Taking C = B = ζ in (3.26), we get

(σ1 + σ2)
(
κ(A) + 3η(A)κ(ζ)

)
= 0,

which gives either

κ(A) = −3η(A)κ(ζ) (3.27)

or

σ1 + σ2 = 0. (3.28)

Putting A = ζ in (3.27), we have κ(ζ) = 0, which further implies that κ(A) = 0. Also, from (3.28)

and (3.2), we can have α2(n− 1) = 0. This implies that α = 0 because n ̸= 1. Thus, we arrive at

our desired result.
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4 Some curvature properties on α-CM admitting ∗-η-RYS

This section deals with the curvature properties on M admitting ∗-η-RYS. We mainly discuss the

conditions that M is ζ-concircularly flat, ζ-conharmonically flat, ζ-W2 flat and ζ-conformal flat.

Theorem 4.1. Let M be an n-dimensional α-CM admitting ∗-η-RYS (h, ζ,Λ, µ, ρ, q), where ζ

being the Reeb vector field on M . Then M is

(1) ζ-concircularly flat if and only if µ = α− ρα2.

(2) ζ-conformal curvature flat.

(3) ζ-conharmonically flat if and only if µ = α+ (n− 1)α2ρ.

(4) ζ −W2−curvature flat if and only if µ = α− ρα2.

Proof. By using the property h(QA,B) = Ric(A,B) in (3.6), we arrive at

QB = σ1B + σ2η(B)ζ, (4.1)

where σ1 = − 1
ρ

(
Λ− qr

2 − qα2(n−1)2

2 + α
)
− α2(n− 2) and σ2 = −

(
µ−α
ρ + α2

)
.

Firstly, we put C = ζ into (2.16) and use the relations (2.4), (2.8) and (3.8), we have

C(A,B)ζ =
1

n

(
µ

ρ
− α

ρ
+ α2

)
(η(A)B − η(B)A) , (4.2)

which gives C(A,B)ζ = 0 if and only if µ = α− ρα2.

Secondly, if we put C = ζ and use (2.8), (2.12), (4.1) in (2.19), then we have

C∗(A,B)ζ =

(
α2 − σ1

n− 2
+

r

(n− 1)(n− 2)

)
(η(B)A− η(A)B) . (4.3)

Again, using the value of σ1, (3.2) and (3.8), we have

C∗(A,B)ζ = 0. (4.4)

Thirdly, we take C = ζ in (2.17) and make use of (2.8), (4.1) and (2.12), we get

H(A,B)ζ =

(
σ1 − α2

n− 2

)
(η(A)B − η(B)A). (4.5)

This implies

H(A,B)ζ = 0
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if and only if

σ1 = α2.

Thus,

H(A,B)ζ = 0

if and only if

µ = α+ (n− 1)α2ρ.

Lastly, by taking C = ζ and using (2.8) and (4.1) in (2.18), we conclude

W2(A,B)ζ =

(
α2 +

σ1

n− 1

)
(η(A)B − η(B)A) . (4.6)

From (4.6),

W2(A,B)ζ = 0

if and only if

α2 +
σ1

n− 1
= 0.

This further implies that

W2(A,B)ζ = 0

if and only if

µ = α− ρα2.

Remark 4.2. We observe that above results are true only for α-Kenmotsu manifolds because Λ

and µ are depending on α. But for α = 0, one puts in (3.1) B = ξ obtains

Λ + µ =
1

2
qr.

Then (3.1) implies

Ric =
µ

ρ
(h− η ⊗ η).

So, according to the cases µ is zero or non-zero, M is Ricci-flat or η-Einstein for α = 0. This is

consistent with the formula (3.9), when N is Einstein.

Remark 4.3. If M is a cosymplectic manifold, then we have

C(A,B)ζ = −
(

µ

n− ρ

)
(η(B)A− η(A)B) .

and similar relations can be obtained for H(A,B)ζ and W2(A,B)ζ, while

C∗(A,B)ζ = 0.
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By the above formulas, one has µ = 0 if and only if C(A,B)ζ = 0 if and only if H(A,B)ζ = 0 if

and only if W2(A,B)ζ = 0.
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