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ABSTRACT

The article explores a linear set-valued differential equation
featuring both conformable fractional and generalized con-
formable fractional derivatives. It presents conditions for the
existence of solutions and provides analytical expressions for
the shape of solution sections at different time points. Model
examples are employed to illustrate the results.

RESUMEN

Este artículo explora una ecuación diferencial lineal con val-
ores en conjuntos que exhibe a la vez derivadas fraccionales
conformables y conformables generalizadas. Se presentan
condiciones para la existencia de soluciones y se proveen ex-
presiones analíticas para la forma de secciones solución en
diferentes puntos de tiempo. Se emplean ejemplos modelo
para ilustrar los resultados.
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1 Introduction

Set-valued differential equations have recently been studied within the framework of an independent

theory - set-valued equations, but they are widely used for ordinary differential inclusions and fuzzy

differential equations and inclusions [7, 26,29,30,36,37,46,48,53].

In 1967, M. Hukuhara introduced integral and derivative concepts for set-valued mappings and

explored their relationship [20]. The proposed derivative and integral extend the conventional

single-valued function derivative and integral to the set-valued context. However, the Hukuhara

derivative has a notable limitation: if a mapping is Hukuhara differentiable, its cross-section di-

ameter behaves as a non-decreasing function. To overcome this drawback, alternative derivative

concepts were proposed: T. F. Bridgland introduced the Huygens derivative [6], while Yu. N.

Tyurin [54] and H. T. Banks, M. Q. Jacobs [5] proposed the π-derivative using Radstrom’s em-

bedding theorem [52], and A. V. Plotnikov introduced the T -derivative [39, 48]. Additionally, Ş.

E. Amrahov, A. Khastan, N. Gasilov, A. G. Fatullayev [3,28] and A. V. Plotnikov, N. V. Skripnik

[28,44,45] introduced generalized derivatives for set-valued mappings. Each of these derivatives has

its own set of advantages and disadvantages [8,12,32,33,46,48]. In 2003, A. N. Vityuk introduced

an analogue of the fractional Riemann-Liouville derivative [23, 31] for set-valued mappings and

established its properties [55,56]. Subsequently, in 2019, A. A. Martyniuk introduced an analogue

of the conformable fractional derivative [22] for set-valued mappings and proved its properties

[34,35]. The conformable fractional derivative for single-valued functions serves as a generalization

of the ordinary derivative and, unlike fractional derivatives, adheres to all classical properties of

the ordinary derivative [22]. Consequently, the Hukuhara conformable fractional derivative for

set-valued mappings, introduced by A. A. Martyniuk, serves as a generalization of the Hukuhara

derivative while preserving its properties [34,35].

In 1969, F. S. de Blasi and F. Iervolino explored differential equations involving the Hukuhara

derivative [12]. Subsequently, many authors investigated the properties of solutions to such equa-

tions [26,29,30,36,43,46,48], integral and integro-differential equations [41,42], higher-order equa-

tions [38], as well as differential inclusions [11, 24, 48]. Furthermore, differential equations with

the π-derivative [8, 37,49], T -derivative [39,48], set-valued equations with a generalized derivative

[28,40,44,45,47], nonlinear equations with the fractional Riemann-Liouville derivative [55,56], and

conformable fractional derivative [34, 35, 57] have been explored. At first glance, such equations

resemble their corresponding ordinary analogues; however, when studying and solving them, it is

imperative to consider their set-valued nature. Consequently, traditional methods and approaches

employed in studying and solving of single-valued systems may not always be applicable to set-

valued systems, necessitating novel or alternative methods and approaches. It is also worth noting

that due to set-valued nature, new properties emerge that warrant investigation.
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This article delves into the Cauchy problem for a linear differential equation with the Hukuhara

conformable fractional derivative, yielding analytical solutions in certain cases. Subsequently, we

introduce a generalized conformable fractional derivative based on the generalized derivative for

set-valued mappings [28,44,45], that allows us to expand the class of differentiable mappings. We

then explore the Cauchy problem for a linear differential equation with the generalized conformable

fractional derivative. Such a Cauchy problem boasts infinitely many solutions - two of which are

termed basic [28, 44, 45], and we provide analytical forms for these solutions in selected cases.

In conclusion, we demonstrate the feasibility of introducing conformable fractional derivatives

akin to known conformable fractional derivatives for single-valued functions [1, 2, 4, 15, 17–19, 21,

22], alongside presenting analytical solutions for the corresponding Cauchy problems with these

derivatives. The theoretical results are exemplified through model examples.

2 Preliminaries

In this section we recall some results from the publications that are of interest for our paper.

Let R be the set of real numbers and Rn be the n-dimensional Euclidean space (n ≥ 2). Denote

by conv(Rn) the set of nonempty compact and convex subsets of Rn with the Hausdorff metric

h(X,Y ) = min{r ≥ 0 : X ⊂ Y +Br(0), Y ⊂ X +Br(0)},

where X,Y ∈ conv(Rn), Br(c) = {x ∈ Rn : ∥x − c∥ ≤ r} is the closed ball with radius r > 0

centered at the point c ∈ Rn (∥ · ∥ denotes the Euclidean norm), 0 = (0, . . . , 0)T is the zero vector.

In addition to the usual set-theoretic operations, the following operations in the space conv(Rn)

are introduced: the sum of the sets, the product of the scalar on the set and the operation of the

product of the matrix on the set:

X + Y =
⋃

x∈X, y∈Y
{x+ y} λX =

⋃
x∈X

{λx}, AX =
⋃
x∈X

{Ax},

where X,Y ∈ conv(Rn), λ ∈ R, A ∈ Rn×n.

Lemma 2.1 ([51]). The following properties hold:

1) (conv(Rn), h) is a complete metric space,

2) h(X + Z, Y + Z) = h(X,Y ),

3) h(λX, λY ) = |λ|h(X,Y ) for all X,Y, Z ∈ conv(Rn) and λ ∈ R.

However, conv(Rn) is not a linear space because it does not contain inverse elements for the

addition, and therefore the difference is not well defined, i.e. if X ∈ conv(Rn) and X ̸= {x}, then
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X + (−1)X ̸= {0}. As a consequence, alternative formulations for difference have been suggested

[3, 5, 20,39,45,51]. One of these alternatives is the Hukuhara difference [20].

Definition 2.2 ([20]). Let X,Y ∈ conv(Rn). A set Z ∈ conv(Rn) such that X = Y + Z is called

a Hukuhara difference (H-difference) of the sets X and Y and is denoted by X H Y.

In this case X HX = {0} and (X + Y )HY = X for any X,Y ∈ conv(Rn), but obviously, X HY ̸=
X + (−1)Y. The properties of this difference are studied in detail in [37,46,48,51]:

Lemma 2.3 ([27]). If X + Y = B1(0), then X = Bµ(z1) and Y = Bλ(z2), where µ+ λ = 1 and

z1 + z2 = 0.

Remark 2.4. If the set X is subtracted from the ball BR(a) in the sense of Hukuhara and the

difference BR(a)HX exists, then the set X is the ball Br(b) and radius r does not exceed R.

Theorem 2.5 ([14,16]). For any real (n×n)-matrix A there exist two orthogonal (n×n)-matrices

U and V such that UTAV = Σ, where Σ is the diagonal matrix. We can also choose matrices U

and V such that the diagonal elements of the matrix Σ satisfy the condition

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0,

where r is the rank of the matrix A. That is, if A is a nondegenerate matrix, then σ1 ≥ · · · ≥ σn > 0.

Therefore, this matrix A can be represented as A = UΣV T . This decomposition is called singular

decomposition. Columns u1, . . . ,un of matrix U are called the left singular vectors, columns

v1, . . . ,vn of matrix V are called the right singular vectors, and the numbers σ1, . . . , σn are

called the singular numbers of the matrix A.

By [14], the set Y = {Ax : x ∈ B1(0), A ∈ Rn×n } is r-dimensional ellipsoid, its axis lengths

are equal to the corresponding singular numbers of the matrix A, where r = rank(A). Also, if

rank(A) = n, then

Bσn
(0) ⊂ Y ⊂ Bσ1

(0),

where Bσn
(0) is the inscribed ball in the set Y (i.e. the largest ball Br(0) that can fit inside

the set Y ), Bσ1
(0) is the circumscribed ball of the set Y (i.e. the smallest ball Br(0), such that

Y ⊆ Br(0)).

It is also easy to see that if A is an orthogonal matrix, then ABr(0) ≡ Br(0) for all r > 0.

Let X : [0, T ] → conv(Rn) be a set-valued mapping.
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Definition 2.6 ([34]). Let t ∈ (0, T ) and α ∈ (0, 1]. If the Hukuhara differences X
(
t+ εt1−α

)
H X

(
t
)

and X
(
t
)
H X

(
t− εt1−α

)
exist for all sufficiently small ε > 0 and there exists Z ∈ conv(Rn) such

that the following equality holds:

lim
ε→0

ε−1
(
X
(
t+ εt1−α

)
H X

(
t
))

= lim
ε→0

ε−1
(
X
(
t
)
H X

(
t− εt1−α

))
= Z, (2.1)

then we say that the set-valued mapping X(·) has a Hukuhara conformable fractional deriva-

tive of order α at the point t ∈ (0, T ) and DαX(t) = Z.

If DαX(t) exists for all t ∈ (0, T ) and lim
t→0

DαX(t) exists, then we will assume that DαX(0) =

lim
t→0

DαX(t).

Definition 2.7. If the Hukuhara conformable fractional derivative DαX(t) of order α exists for

all t ≥ 0, then we say that the set-valued mapping X(·) is α-differentiable on R+.

Next, we give some properties of the Hukuhara conformable fractional derivative of order α.

Lemma 2.8 ([34]). If the set-valued mapping X(·) is α-differentiable on R+, then the set-valued

mapping X(·) is continuous on R+.

Lemma 2.9 ([34]). If the set-valued mapping X(·) is α-differentiable on R+, then the function

diam(X(·)) is a nondecreasing function on R+, where diam(X) = max
ψ∈S1(0)

|c(X,ψ) + c(X,−ψ)| ,

S1(0) = {ψ ∈ Rn : ∥ψ∥ = 1} , c(X,ψ) = max
x∈X

{x1ψ1 + · · ·+ xnψn} .

Lemma 2.10 ([34]). If the set-valued mapping X(t) ≡ X for all t ≥ 0, then

DαX(t) ≡ {0},

and vice versa, if DαX(t) ≡ {0} for all t ≥ 0 and X(t′) = X, then X(t) ≡ X for all t ≥ 0, where

t′ ≥ 0 is an arbitrary value.

Lemma 2.11 ([34]). If the set-valued mappings X(·) and Y (·) are α-differentiable at t > 0, then

Dα(aX(t) + bY (t)) = aDαX(t) + bDαY (t),

where a, b ∈ R+.

Lemma 2.12 ([34]). If the set-valued mapping X(·) is α-differentiable at t > 0, then

DαX(t) = t1−αDHX(t),

where DHX(t) is the Hukuhara derivative [20].
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Remark 2.13. From Lemma 2.12 we have that the necessary and sufficient condition for the

existence of a Hukuhara conformable fractional derivative DαX(t) of order α for the set-valued

mapping X(·) is the existence of the Hukuhara derivative DHX(t).

Remark 2.14. From Definition 2.6 and Lemma 2.12, we have that D1X(t) coincides with the

Hukuhara derivative DHX(t).

Definition 2.15 ([34]). The fractional integral associated with the Hukuhara conformable fractional

derivative of order α is defined by

IαX(t) =

t∫
0

tα−1X(s)ds, t ≥ 0,

where the integral on the right-hand side is understood in the sense of the Hukuhara integral [20].

Lemma 2.16 ([34]). If the set-valued mapping X(·) is continuous on R+, then

DαIαX(t) = X(t), t > 0.

Lemma 2.17 ([34]). If the set-valued mapping X(·) is α-differentiable on R+, then

IαDαX(t) = X(t)HX(0), t > 0.

3 A linear set-valued differential equation with a Hukuhara

conformable fractional derivative.

Consider the following Cauchy problem for linear set-valued differential equation with a Hukuhara

conformable fractional derivative of order α

DαX(t) = AX(t), X(0) = B1(0), (3.1)

where X : R+ → conv(R2) is a set-valued mapping, A ∈ R2×2 is a nondegenerate matrix.

Definition 3.1. A set-valued mapping X : R+ → conv(R2) is called a solution of Cauchy problem

(3.1) if it is continuous and satisfies differential equation (3.1) for all t ≥ 0 and X(0) = B1(0).

Let

A =

a b

c d

 ,

where a, b, c, d ∈ R such that ad− bc ̸= 0.



CUBO
26, 2 (2024)

Some properties of solutions of a linear set-valued... 197

It is easy to obtain that the singular numbers of the matrix A have the form

σ1 =

√
a2 + b2 + c2 + d2 +

√
δ

2
, σ2 =

√
a2 + b2 + c2 + d2 −

√
δ

2
,

where δ = (a2 + b2 + c2 + d2)2 − 4(ad− bc)2.

It is obvious that

δ = (a2 + b2 + c2 + d2)2 − 4(ad− bc)2 = (a2 − d2)2 + (b2 − c2)2 + 2(ab+ cd)2 + 2(ac+ bd)2,

i.e. δ ≥ 0.

Accordingly, if d = a and c = −b or d = −a and b = c, i.e. if

A =

 a b

−b a

 or A =

a b

b −a

 ,

then δ = 0 and σ1 = σ2 = σ =
√
a2 + b2. In other cases δ ̸= 0.

Theorem 3.2. If matrix A satisfies the condition δ = 0, then Cauchy problem (3.1) has the

following solution

X(t) = eβt
α

B1(0),

where t ≥ 0, β =

√
a2 + b2

α
.

Proof. Let us prove that X(·) is a solution of Cauchy problem (3.1) by the direct substitution of

the set-valued mapping X(t) = eβt
α

B1(0) into differential equation (3.1) and by checking that the

identity is satisfied:

Dα
(
eβt

α

B1(0)
)
≡ Aeβt

α

B1(0).

Since β > 0, then eβt
α

is an increasing function and as

eβt
α

B1(0) = Beβtα (0),

then accordingly diam(X(·)) is an increasing function. Then, according to Definition 2.6, it follows

that B1(0) is a centrally symmetric body and (−1)B1(0) = B1(0), we have

lim
ε→0+

ε−1
(
X
(
t+ εt1−α

)
H X

(
t
))

= lim
ε→0+

ε−1
(
eβ(t+εt

1−α)
α

B1(0)
H eβt

α

B1(0)
)

= lim
ε→0+

ε−1
(
eβ(t+εt

1−α)
α

− eβt
α
)
B1(0) = αβeβt

α

B1(0)
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and

lim
ε→0+

ε−1
(
X
(
t
)
H X

(
t− εt1−α

))
= lim
ε→0+

ε−1
(
eβt

α

B1(0)
H eβ(t−εt

1−α)
α

B1(0)
)

= lim
ε→0+

ε−1
(
eβt

α

− eβ(t−εt
1−α)

α)
B1(0) = −αβeβt

α

B1(0) = αβeβt
α

B1(0).

That is,

DαX(t) = Dα
(
eβt

α

B1(0)
)
= αβeβt

α

B1(0).

Since the singular numbers of the matrix A are equal (σ1 = σ2 = σ), then the singular decompo-

sition of the matrix A has the form A = UΣV T , where U, V are orthogonal matrices and Σ = σI,

I is the identity matrix. Since V TBr(0) = Br(0) and UBr(0) = Br(0) for all r > 0, then

Aeβt
α

B1(0) = UΣV T eβt
α

B1(0) = UσIV T eβt
α

B1(0)

= σUIV T eβt
α

B1(0) = σeβt
α

UIV TB1(0) = σeβt
α

B1(0).

As αβ = α
√
a2+b2

α =
√
a2 + b2 = σ, then we have

DαX(t) = Dα
(
eβt

α

B1(0)
)
= αβeβt

α

B1(0) = σeβt
α

B1(0) ≡ σeβt
α

B1(0) = Aeβt
α

B1(0) = AX(t),

i.e. X(·) is a solution of differential equation (3.1). The theorem is proved.

Example 3.3. Let A =

√
3 1

1 −
√
3

 . Then the singular numbers σ1 and σ2 of the matrix A are

σ1 = σ2 = 2. Accordingly, Cauchy problem (3.1) has a solution X(t) = e2α
−1tαB1(0). That is,

1) if α = 0.25, then at every moment of time t ≥ 0 the cross section X(t) is a circle of radius

e8
4√t (Figure 1);

2) if α = 0.5, then at every moment of time t ≥ 0 the cross section X(t) is a circle of radius

e4
√
t (Figure 2);

3) if α = 0.75, then at every moment of time t ≥ 0 the cross section X(t) is a circle of radius

e
8
3

4√
t3 (Figure 3);

4) if α = 1, then at every moment of time t ≥ 0 the cross section X(t) is a circle of radius e2t

(Figure 4).
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Figure 1: α = 0.25, X(t) = e8
4√tB1(0).
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Figure 2: α = 0.5, X(t) = e4
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tB1(0).
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Figure 4: α = 1, X(t) = e2tB1(0).

Next, we consider the case when the matrix A satisfies the condition δ ̸= 0.

Theorem 3.4. If matrix A is symmetric and d ̸= −a, then Cauchy problem (3.1) has the following

solution

X(t) = Ueα
−1tαΣB1(0), t ≥ 0,

where Σ =

σ1 0

0 σ2

, σ1,2 = |λ1,2| =
∣∣∣∣a+d±√(a−d)2+4b2

2

∣∣∣∣, U =

 b√
(λ1−a)2+b2

λ2−d√
(λ2−d)2+b2

λ1−a√
(λ1−a)2+b2

b√
(λ2−d)2+b2

 .

Proof. Since the matrix A is symmetric and d ̸= −a, it has the following form

A =

a b

b d

 .

It is known that the eigenvalues λ1,2 of the symmetric matrix A are real, so in our case (δ ̸= 0), they

will be different and not equal to zero. Let us consider all possible cases related to the eigenvalues

of the matrix A, that is, three different cases are possible:
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1) the eigenvalues λ1,2 = a+d±
√
D

2 of matrix A are positive, where D = (a−d)2+4b2, i.e. matrix

A is a positive-definite matrix. In this case, the singular decomposition coincides with the

spectral decomposition, i.e. σ1 = λ1, σ2 = λ2 and UΛUT = UΣUT , where

Λ = Σ =

λ1 0

0 λ2

 , U =

 b√
(λ1−a)2+b2

λ2−d√
(λ2−d)2+b2

λ1−a√
(λ1−a)2+b2

b√
(λ2−d)2+b2

 .

2) the eigenvalues λ1,2 of matrix A are of different signs and |λ1| > |λ2|, i.e. matrix A is an

indeterminate matrix. In this case, the singular decomposition is the following: σ1 = |λ1|,
σ2 = |λ2| and

UΣWT = U |Λ|DUT ,

where WT = DUT , D =

 λ1

|λ1| 0

0 λ2

|λ2|

 .

3) the eigenvalues λ1,2 of matrix A are negative and |λ1| > |λ2|, i.e. matrix A is a negative-

definite matrix. In this case, the singular decomposition is σ1 = |λ1|, σ2 = |λ2| and

UΣWT = U |Λ|DUT ,

where WT = DUT , D =

−1 0

0 −1

 .

That is, in general, the singular decomposition of the matrix A has the form A = UΣWT , where

Σ = |Λ|, W = UD.

We will prove that X(·) is a solution of Cauchy problem (3.1) by the direct substitution of the

set-valued mapping X(t) = Ueα
−1tαΣB1(0) into differential equation (3.1) and by checking that

the identity is satisfied:

Dα
(
Ueα

−1tαΣB1(0)
)
≡ AUeα

−1tαΣB1(0). (3.2)

Since σ1,2 > 0, then eα
−1σ1t

α

and eα
−1σ2t

α

are the increasing functions and as

eα
−1σ1t

α

> eα
−1σ2t

α

,

then accordingly diam(X(t)) = 2eα
−1σ1t

α

is an increasing function. Then, according to Definition

2.6, it follows that B1(0) is a centrally symmetric body and, accordingly, (−1)B1(0) = B1(0), we

have
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lim
ε→0+

ε−1
(
X
(
t+ εt1−α

)
H X

(
t
))

= lim
ε→0+

ε−1
(
Ueα

−1(t+εt1−α)
α
ΣB1(0)

H Ueα
−1tαΣB1(0)

)
= U lim

ε→0+
ε−1

(
eα

−1(t+εt1−α)
α
Σ − eα

−1tαΣ
)
B1(0)

= U lim
ε→0+

ε−1

eα−1σ1(t+εt1−α)
α

− eα
−1σ1t

α

0

0 eα
−1σ2(t+εt1−α)

α

− eα
−1σ2t

α

B1(0)

= U

σ1eα−1σ1t
α

0

0 σ2e
α−1σ2t

α

B1(0) = UΣeα
−1tαΣB1(0)

and similarly

lim
ε→0+

ε−1
(
X
(
t
)
H X

(
t− εt1−α

))
= U lim

ε→0+
ε−1

(
eα

−1tαΣ − eα
−1(t−εt1−α)

α
Σ
)
B1(0)

= UΣeα
−1tαΣB1(0).

That is,

DαX(t) = Dα
(
eα

−1tαΣB1(0)
)
= UΣe α

−1tαΣB1(0).

Since the singular matrix decomposition of the symmetric matrix A has the form A = UΣDUT ,

then

AUe α
−1tαΣB1(0) = UΣDUTUe α

−1tαΣB1(0) = UΣe α
−1tαΣB1(0).

It is obvious that identity (3.2) holds and, accordingly, X(·) is a solution of Cauchy problem (3.1).

The theorem is proved.

Example 3.5. Let A =

0.8 0.5

0.5 0.3

. Then the singular decomposition of the matrix A has the fol-

lowing form UΣUT =

0.8507 −0.5257

0.5257 0.8507

1.1090 0

0 0.0090

 0.8507 0.5257

−0.5257 0.8507

. Accordingly,

Cauchy problem (3.1) has a solution X(t) = Ueα
−1tαΣB1(0). That is,

1) if α = 0.25, then at every moment of time t ≥ 0 the cross section X(t) is an ellipse with

semi-axes e4.4361
4√t and e0.0361

4√t, rotated at an angle θ ≈ 33◦, which is determined by the

matrix U (Figure 5);

2) if α = 0.5, then at every moment of time t ≥ 0 the cross section X(t) is an ellipse with

semi-axes e2.2368
√
t and e0.0298

√
t, rotated at an angle θ ≈ 33◦ (Figure 6);

3) if α = 0.75, then at every moment of time t ≥ 0 the cross section X(t) is an ellipse with

semi-axes e1.4787
4√
t3 and e0.0120

4√
t3 , rotated at an angle θ ≈ 33◦ (Figure 7);
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4) if α = 1, then at every moment of time t ≥ 0 the cross section X(t) is an ellipse with

semi-axes e1.1090t and e0.009t, rotated at an angle θ ≈ 33◦ (Figure 8).
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Figure 5: α = 0.25, X(t) = e4
4√tΣB1(0).
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Figure 6: α = 0.5, X(t) = e2
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Figure 8: α = 1, X(t) = etΣB1(0).

4 A linear set-valued differential equation with a generalized

conformable fractional derivative.

Let X : [0, T ] → conv(Rn) be a set-valued mapping.

Definition 4.1. We say that a set-valued mapping X(·) has a generalized conformable frac-

tional derivative of order α Dα
gX(t) ∈ conv(Rn) at t ∈ (0, T ), if for all sufficiently small ε > 0

the Hukuhara differences and the limits exist in at least one of the following cases:

i) lim
ε→0

ε−1
(
X
(
t+ εt1−α

)
H X

(
t
))

= lim
ε→0

ε−1
(
X
(
t
)
H X

(
t− εt1−α

))
= Dα

gX(t),

ii) lim
ε→0

ε−1
(
X(t) H X

(
t+ εt1−α

))
= lim
ε→0

ε−1
(
X
(
t− εt1−α

)
H X(t)

)
= Dα

gX(t),



CUBO
26, 2 (2024)

Some properties of solutions of a linear set-valued... 203

iii) lim
ε→0

ε−1
(
X
(
t+ εt1−α

)
H X(t)

)
= lim
ε→0

ε−1
(
X
(
t− εt1−α

)
H X(t)

)
= Dα

gX(t),

iv) lim
ε→0

ε−1
(
X(t) H X

(
t+ εt1−α

))
= lim
ε→0

ε−1
(
X(t) H X

(
t− εt1−α

))
= Dα

gX(t).

Definition 4.2. If a generalized conformable fractional derivative of order α Dα
gX(t) exists for

all t ≥ 0, then we will say that the set-valued mapping X(·) is generalized α-differentiable on

R+.

Remark 4.3. Obviously, if the set-valued mapping X(·) is α-differentiable at a point t > 0, then

the set-valued mapping X(·) is generalized α-differentiable at a point t > 0.

Lemma 4.4. If the set-valued mapping X(·) is generalized α-differentiable at a point t > 0, then

Dα
gX(t) = t1−αDgX(t),

where DgX(t) is the generalized derivative [25,28,45].

Proof. If the set-valued mapping X(·) is generalized α-differentiable at a point t > 0, then at least

one of the conditions of Definition 4.1 must be fulfilled. We will assume that the first condition is

fulfilled, i.e.

lim
ε→0

ε−1
(
X
(
t+ εt1−α

)
H X

(
t
))

= lim
ε→0

ε−1
(
X
(
t
)
H X

(
t− εt1−α

))
= Dα

gX(t).

Let θ = εt1−α. Then

Dα
gX(t) = lim

ε→0
ε−1

(
X
(
t+ εt1−α

)
H X

(
t
))

= lim
θ→0

t1−αθ−1
(
X (t+ θ) H X

(
t
))

= t1−α lim
θ→0

θ−1
(
X (t+ θ) H X

(
t
))

= t1−αDgX(t).

Likewise,

Dα
gX(t) = lim

ε→0
ε−1

(
X
(
t
)
H X

(
t− εt1−α

))
= lim
θ→0

t1−αθ−1
(
X
(
t
)
H X (t− θ)

)
= t1−α lim

θ→0
θ−1

(
X
(
t
)
H X (t− θ)

)
= t1−αDgX(t).

It is similarly proved if the second, third or fourth conditions are fulfilled. The lemma is proved.

Remark 4.5. It follows from Lemma 4.4 that a necessary and sufficient condition for the existence

of a generalized conformable fractional derivative Dα
gX(t) is the existence of a generalized derivative

DgX(t).

Also, it is easy to see that if α = 1, then D1
gX(t) = DgX(t).
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Consider the following Cauchy problem for linear set-valued differential equation with a generalized

conformable fractional derivative of order α

Dα
gX(t) = AX(t), X(0) = B1(0), (4.1)

where X : R+ → conv(R2) is a set-valued mapping, A ∈ R2×2 is a nondegenerate matrix.

Definition 4.6. A set-valued mapping X : R+ → conv(R2) is called a solution of Cauchy problem

(4.1) if it is continuous and satisfies differential equation (4.1) for all t ≥ 0 and X(0) = B1(0).

Remark 4.7. It follows from Remark 4.3 that if the set-valued mapping X(t) is a solution of

equation (3.1), then it is a solution of equation (4.1).

Remark 4.8. In [25, 27, 28] a Cauchy problem for linear set-valued differential equation with a

generalized derivative

DgX(t) = AX(t), X(0) = B1(0) (4.2)

was considered and the following results were obtained:

1) Cauchy problem (4.2) has an infinite number of solutions, some (one or two) of which are

called basic (their diameter are monotone functions), and others are mixed (their diameter

are non-monotone functions). We also note that the first basic solution X1(·) is the solution

of Cauchy problem (4.2), that satisfies the condition that diam(X1(t)) is a nondecreasing

function and is also the solution of the corresponding differential equation with the Hukuhara

derivative. The second basic solution X2(·) is called the solution of Cauchy problem (4.2),

that satisfies the condition that diam(X2(t)) is a decreasing function;

2) if the singular numbers of the matrix A are such that σ1 = σ2 = σ, then Cauchy problem

(4.2) has two basic solutions X1(t) and X2(t), whose cross-sections at each moment of time

t are circles Beσt(0) and Be−σt(0), and if the singular numbers of the matrix A are such

that σ1 ̸= σ2, then Cauchy problem (4.2) has only the first basic solution X1(t), whose cross-

section at each moment of time t is an ellipse with semiaxes equal to eσ1t and eσ2t.

Next, we obtain the results similar to Theorems 3.2 and 3.4.

Theorem 4.9. If the matrix A satisfies the condition δ = 0, then Cauchy problem (4.1) has two

basic solutions X1(·) and X2(·) such that

X1(t) = e βt
α

B1(0) and X2(t) = e −βtαB1(0),

where t ≥ 0, β =

√
a2 + b 2

α
.
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Proof. From Theorem 3.2, we have that the set-valued mapping X1(t) is a solution of Cauchy

problem (3.1) and the function diam(X(t)) is non-decreasing. Then, taking into account Remark

4.3, X1(t) is the first basic solution of equation (4.1).

We will prove that X2(·) is a solution of Cauchy problem (4.1) by the direct substitution of the

set-valued mapping X2(t) = e −βtαB1(0) into differential equation (4.1) and by checking that the

identity is satisfied:

Dα
g

(
e −βtαB1(0)

)
≡ Ae −βtαB1(0).

Since β > 0, then e−βtα is a decreasing function, and as

e−βtαB1(0) = Be−βtα (0),

then, accordingly, the function diam(X2(·)) is a decreasing function. Then according to Definition

4.1 ii) and that the ball B1(0) is a centrally symmetric body and (−1)B1(0) = B1(0), we have

lim
ε→0+

ε−1
(
X2

(
t
)
H X2

(
t+ εt1−α

))
= lim
ε→0+

ε−1
(
e −βtαB1(0)

H e −β(t+εt1−α)
α

B1(0)
)

= lim
ε→0+

ε−1
(
e −βtα − e −β(t+εt1−α)

α)
B1(0) = −αβe −βtαB1(0) = αβe −βtαB1(0)

and

lim
ε→0+

ε−1
(
X2

(
t− εt1−α

)
H X2

(
t
))

= lim
ε→0+

ε−1
(
e −β(t−εt1−α)

α

B1(0)
H e −βtαB1(0)

)
= lim
ε→0+

ε−1
(
e −β(t−εt1−α)

α

− e −βtα
)
B1(0) = αβe −βtαB1(0).

That is,

Dα
gX2(t) = Dα

(
e −βtαB1(0)

)
= αβe −βtαB1(0).

Since the matrix A satisfies the condition δ = 0, the singular decomposition of the matrix A

has the form A = UΣV T , where U, V are orthogonal matrices, Σ = σI, σ =
√
a2 + b 2. As

V TBr(0) = Br(0) and UBr(0) = Br(0) for all r > 0, then

Ae−βtαB1(0) = UΣV T e−βtαB1(0) = UσEV T e−βtαB1(0) = σUEV T e−βtαB1(0)

= σe−βtαUEV TB1(0) = σe−βtαB1(0).

Since αβ = σ, we have

Dα
gX2(t) = σe−βtαB1(0) ≡ σe−βtαB1(0) = AX2(t),

i.e. X2(·) is the second basic solution of Cauchy problem (4.1). Thus the theorem is proved.
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Example 4.10. Let A =

√
3 1

1 −
√
3

 . Then the singular numbers σ1 and σ2 of the matrix A

are equal: σ1 = σ2 = σ = 2.

Accordingly, Cauchy problem (4.1) has solutions X1(t) = e 2α−1tαB1(0) and X2(t) = e −2α−1tαB1(0).

Below are the solutions for cases α = 1 (Fig. 9, 10) and α = 0.5 (Fig. 11, 12).
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Figure 9: If α = 1, then X1(t) = e2tB1(0).
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Figure 10: If α = 1, then X2(t) =
e−2tB1(0).
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Figure 11: If α = 0.5, then X1(t) =

e4
√
tB1(0).
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Figure 12: If α = 0.5, then X2(t) =

e−4
√
tB1(0).

Theorem 4.11. If matrix A is symmetric and d ̸= −a, then Cauchy problem (4.1) has only the

first basic solution X1(·) such that

X1(t) = Ue α
−1tαΣB1(0), t ≥ 0,

where Σ =

σ1 0

0 σ2

 , σ1,2 = |λ1,2| =
∣∣∣∣a+d±√(a−d)2+4b2

2

∣∣∣∣ , U =

 b√
(λ1−a)2+b2

λ2−d√
(λ2−d)2+b2

λ1−a√
(λ1−a)2+b2

b√
(λ2−d)2+b2

 .

Proof. According to Remark 4.7, the first basic solution of Cauchy problem (4.1) is also a solution of
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equation (3.1). Then, according to Theorem 3.4, the set-valued mapping X1(t) = Ue α
−1tαΣB1(0)

is the first basic solution of Cauchy problem (4.1).

Now we will prove that the second basic solution X2(·) of Cauchy problem (4.1) does not exist.

We will prove it by contradiction. Let Cauchy problem (4.1) have the second basic solution X2(·).
Then X2(·) satisfies the following integral equation

X2(t) +A

t∫
0

sα−1X2(s)ds = B1(0).

Let us fix an arbitrary T > 0. Then X2(T ) +A

T∫
0

sα−1X2(s)ds = B1(0). From here,

B1(0)
HX2(T ) = A

T∫
0

sα−1X2(s)ds.

From Lemma 2.3, as B1(0) is a ball and Hukuhara difference B1(0)
HX2(T ) exists, then X2(T ) is

a ball, i.e. X2(T ) ≡ Br(T )(0), where 0 ≤ r(T ) ≤ 1. As T is arbitrary, then X2(t) ≡ Br(t)(0) for all

t ≥ 0. Hence,

T∫
0

sα−1X2(s)ds =

T∫
0

sα−1Br(s)(0)ds =

T∫
0

sα−1r(s)dsB1(0) = R(T )B1(0) = BR(T )(0),

where R(T ) =
T∫

0

sα−1r(s)ds.

That is, we have

Br(T )(0) +ABR(T )(0) = B1(0). (4.3)

Since the matrix A has two different singular numbers, then ABR(T )(0) is an ellipse. So, the set

Br(T )(0) +ABR(T )(0) is not a ball. That is, equality (4.3) is not fulfilled and we have obtained a

contradiction. The theorem is proved.
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Conclusion

In conclusion, we present some remarks.

Remark 4.12. If in Definition 2.6 we replace equality (2.1) by the equality

lim
ε→0

ε−1
(
X
(
t eεt

−α
)
H X

(
t
))

= lim
ε→0

ε−1
(
X
(
t
)
H X

(
t e−εt

−α
))

= Z, (4.4)

or

lim
ε→0

eε
−1
(
X
(
t+ e−ε

−1

t1−α
)
H X

(
t
))

= lim
ε→0

eε
−1
(
X
(
t
)
H X

(
t− e−ε

−1

t1−α
))

= Z, (4.5)

then we obtain a generalization of the conformable fractional derivative of order α of a single-valued

function [19] or [21] for set-valued mappings. Similarly, as it was done in [34], it is possible to prove

the validity of Lemmas 2.8–2.17, which makes it possible to introduce the corresponding generalized

conformable fractional derivative of order α, consider the corresponding differential equations, and

prove theorems similar to Theorems 3.2–4.11, and since in this case DαX(t) = t1−αDHX(t), then

the analytical formulas of the solutions will also be the same.

Remark 4.13. If in Definition 2.6 we replace equality (2.1) by the equality

lim
ε→0

ε−1
(
X
(
t+ εe(α−1)t

)
H X

(
t
))

= lim
ε→0

ε−1
(
X
(
t
)
H X

(
t− εe(α−1)t

))
= Z, (4.6)

then we obtain a generalization of the conformable fractional derivative of order α of a single-

valued function [18] for set-valued mappings. Similarly, as it was done in [34], it is possible to

prove the validity of Lemmas 2.8–2.17, which makes it possible to introduce the corresponding

generalized conformable fractional derivative of order α, consider the corresponding differential

equations, and prove theorems similar to Theorems 3.2–4.11. However, since in this case DαX(t) =

e(α−1)tDHX(t), then the analytical formulas of solutions will have the following form:

Theorem 3.2: X(t) = e
σ

1−α e
(1−α)t

B1(0);

Theorem 3.4: X(t) = Ue
1

1−α e
(1−α)tΣB1(0);

Theorem 4.9: X1(t) = e
σ

1−α e
(1−α)t

B1(0), X2(t) = e
σ

α−1 e
(1−α)t

B1(0);

Theorem 4.11: X1(t) = Ue
1

1−α e
(1−α)tΣB1(0).
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Remark 4.14. If in Definition 2.6 we replace equality (2.1) by the equality

lim
ε→0

ε−1

(
X

(
t+ ε

(
t+

1

Γ(α)

)1−α
)
H X

(
t
))
= lim
ε→0

ε−1

(
X
(
t
)
H X

(
t− ε

(
t+

1

Γ(α)

)1−α
))

=Z, (4.7)

where Γ(α) is gamma function, then we obtain a generalization of the conformable fractional deriva-

tive of order α of a single-valued function [4] for set-valued mappings. Similarly, as it was done in

[34], it is possible to prove the validity of Lemmas 2.8–2.17, which makes it possible to introduce

the corresponding generalized conformable fractional derivative of order α, consider the correspond-

ing differential equations, and prove theorems similar to Theorems 3.2–4.11. However, since in

this case DαX(t) =
(
t+ 1

Γ(α)

)1−α
DHX(t), then the analytical formulas of solutions will have the

following form:

Theorem 3.2: X(t) = e
σ
α (t+

1
Γ(α) )

α

B1(0);

Theorem 3.4: X(t) = Ue
1
α (t+

1
Γ(α) )

α
ΣB1(0);

Theorem 4.9: X1(t) = e
σ
α (t+

1
Γ(α) )

α

B1(0), X2(t) = e− σ
α (t+

1
Γ(α) )

α

B1(0);

Theorem 4.11: X1(t) = Ue
1
α (t+

1
Γ(α) )

α
ΣB1(0).

Remark 4.15. If in Definition 2.6 we replace equality (2.1) by the equality

lim
ε→0

ε−1
(
X
(
t+ εk(t)1−α

)
H X

(
t
))

= lim
ε→0

ε−1
(
X
(
t
)
H X

(
t− εk(t)1−α

))
= Z, (4.8)

where k(t) is a continuous positive function for all t ≥ 0, then we obtain a generalization of

the conformable fractional derivative of order α of a single-valued function [2, 15] for set-valued

mappings. Similarly, as it was done in [34], it is possible to prove the validity of Lemmas 2.8–

2.17, which makes it possible to introduce the corresponding generalized conformable fractional

derivative of order α, consider the corresponding differential equations, and prove theorems similar

to Theorems 3.2–4.11. However, since in this case DαX(t) = k(t)1−αDHX(t), then the analytical

formulas of solutions will have the following form:

Theorem 3.2: X(t) = e
σ

t∫
0

(k(s))α−1ds
B1(0);

Theorem 3.4: X(t) = Ue

t∫
0

(k(s))α−1dsΣ
B1(0)

Theorem 4.9: X1(t) = e
σ

t∫
0

(k(s))α−1ds
B1(0), X2(t) = e

−σ
t∫
0

(k(s))α−1ds
B1(0);

Theorem 4.11: X1(t) = Ue

t∫
0

(k(s))α−1dsΣ
B1(0).
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Remark 4.16. If in Definition 2.6 we replace equality (2.1) by the equality

lim
ε→0

ε−1

(
X

(
t+k(t)− k(t)e

ε
k(t)−α

|k′(t)|

)
HX

(
t
))

= lim
ε→0

ε−1

(
X
(
t
)
H X

(
t+k(t)−k(t)e−ε

k(t)−α

|k′(t)|

))
= Z,

(4.9)

where k(t) is a differentiable function for all t ≥ 0 such that k(t) > 0 and k′(t) ̸= 0 for all t ≥ 0,

then we obtain a generalization of the conformable fractional derivative of order α of a single-

valued function [1] for set-valued mappings. Similarly, as it was done in [34], it is possible to

prove the validity of Lemmas 2.8–2.17, which makes it possible to also introduce the corresponding

generalized conformable fractional derivative of order α, consider the corresponding differential

equations, and prove theorems similar to Theorems 3.2–4.11. However, since in this case DαX(t) =
k(t)1−α

k′(t) DHX(t), then the analytical formulas of solutions will have the following form:

Theorem 3.2: X(t) = eσα
−1(k(t)α−k(0)α)B1(0);

Theorem 3.4: X(t) = Ueα
−1(k(t)α−k(0)α)ΣB1(0);

Theorem 4.9: X1(t) = eσα
−1(k(t)α−k(0)α)B1(0), X2(t) = eσα

−1(k(0)α−k(t)α)B1(0);

Theorem 4.11: X1(t) = Ueσα
−1(k(t)α−k(0)α)ΣB1(0).

Remark 4.17. We also note that if in Definition 2.6 we replace equality (2.1) by the equality

lim
ε→0

((t+ ε)α − tα)−1
(
X (t+ ε) H X

(
t
))

= lim
ε→0

(tα − (t− ε)α)−1
(
X
(
t
)
H X (t− ε)

)
= Z, (4.10)

then we obtain a generalization of the Chen-Hausdorff fractal derivative of order α of

a single-valued function [9, 10] for set-valued mappings. Similarly, as it was done in [34], it

is possible to prove the validity of Lemmas 2.8–2.17, which makes it possible to introduce the

corresponding generalized Chen-Hausdorff fractal derivative of order α, consider the corresponding

differential equations, and prove theorems similar to Theorems 3.2–4.11. However, since in this

case DαX(t) = α−1t1−αDHX(t), then the analytical formulas of solutions will have the following

form:

Theorem 3.2: X(t) = eσt
α

B1(0);

Theorem 3.4: X(t) = Ue t
αΣB1(0);

Theorem 4.9: X1(t) = eσt
α

B1(0), X2(t) = e−σtαB1(0);

Theorem 4.11: X1(t) = Ue t
αΣB1(0).



CUBO
26, 2 (2024)

Some properties of solutions of a linear set-valued... 211

References

[1] A. Akkurt, M. E. Yıldırım, and H. Yıldırım, “A new generalized fractional derivative and

integral,” Konuralp J. Math., vol. 5, no. 2, pp. 248–259, 2017.

[2] R. Almeida, M. Guzowska, and T. Odzijewicz, “A remark on local fractional calculus and

ordinary derivatives,” Open Math., vol. 14, no. 1, pp. 1122–1124, 2016, doi: 10.1515/math-

2016-0104.

[3] Ş. E. Amrahov, A. Khastan, N. Gasilov, and A. G. Fatullayev, “Relationship between Bede-

Gal differentiable set-valued functions and their associated support functions,” Fuzzy Sets and

Systems, vol. 295, pp. 57–71, 2016, doi: 10.1016/j.fss.2015.12.002.

[4] A. Atangana and E. F. Doungmo Goufo, “Extension of matched asymptotic method to

fractional boundary layers problems,” Math. Probl. Eng., 2014, Art. ID 107535, doi:

10.1155/2014/107535.

[5] H. T. Banks and M. Q. Jacobs, “A differential calculus for multifunctions,” J. Math. Anal.

Appl., vol. 29, pp. 246–272, 1970, doi: 10.1016/0022-247X(70)90078-8.

[6] T. F. Bridgland, Jr., “Trajectory integrals of set valued functions,” Pacific J. Math., vol. 33,

pp. 43–68, 1970.

[7] S. Chakraverty, S. Tapaswini, and D. Behera, Fuzzy differential equations and applications for

engineers and scientists. CRC Press, Boca Raton, FL, 2017.

[8] Y. Chalco-Cano, H. Román-Flores, and M. D. Jiménez-Gamero, “Generalized derivative and

π-derivative for set-valued functions,” Inform. Sci., vol. 181, no. 11, pp. 2177–2188, 2011, doi:

10.1016/j.ins.2011.01.023.

[9] W. Chen, “Time–space fabric underlying anomalous diffusion,” Chaos, Solitons & Fractals,

vol. 28, no. 4, pp. 923–929, 2006, doi: 10.1016/j.chaos.2005.08.199.

[10] W. Chen, H. Sun, X. Zhang, and D. Korošak, “Anomalous diffusion modeling by fractal

and fractional derivatives,” Comput. Math. Appl., vol. 59, no. 5, pp. 1754–1758, 2010, doi:

10.1016/j.camwa.2009.08.020.

[11] F. S. de Blasi, V. Lakshmikantham, and T. G. Bhaskar, “An existence theorem for set differ-

ential inclusions in a semilinear metric space,” Control Cybernet., vol. 36, no. 3, pp. 571–582,

2007.

[12] F. De Blasi and F. Iervolino, “Equazioni differenziali con soluzioni a valore compatto convesso,”

Boll. Unione Mat. Ital, vol. 2, no. 4-5, pp. 491–501, 1969.

https://doi.org/10.1515/math-2016-0104
https://doi.org/10.1515/math-2016-0104
https://doi.org/10.1016/j.fss.2015.12.002
https://doi.org/10.1155/2014/107535
https://doi.org/10.1016/0022-247X(70)90078-8
https://doi.org/10.1016/j.ins.2011.01.023
https://doi.org/10.1016/j.chaos.2005.08.199
https://doi.org/10.1016/j.camwa.2009.08.020


212 T. A. Komleva, A. V. Plotnikov & N. V. Skripnik CUBO
26, 2 (2024)

[13] E. C. de Oliveira and J. A. Tenreiro Machado, “A review of definitions for fractional derivatives

and integral,” Math. Probl. Eng., 2014, Art. ID 238459, doi: 10.1155/2014/238459.

[14] G. E. Forsythe and C. B. Moler, Computer solution of linear algebraic systems. Prentice-Hall,

Inc., Englewood Cliffs, NJ, 1967.

[15] P. M. Guzmán, G. Langton, L. M. Lugo Motta Bittencurt, J. Medina, and J. E.

Nápoles Valdes, “A new definition of a fractional derivative of local type,” J. Math. Anal.,

vol. 9, no. 2, pp. 88–98, 2018.

[16] R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed. Cambridge University Press,

Cambridge, 2013.

[17] M. Hukuhara, “Conformable fractional derivatives and it is applications for solving fractional

differential equations,” IOSR Journal of Mathematics, vol. 13, no. 2, pp. 81–87, 2017, doi:

10.9790/5728-1302028187.

[18] A. Kajouni, A. Chafiki, K. Hilal, and M. Oukessou, “A new conformable fractional derivative

and applications,” Int. J. Differ. Equ., 2021, Art. ID 6245435, doi: 10.1155/2021/6245435.

[19] R. M. Kamble and S. S. Zampalwad, “New generalized definition of conformable fractional

derivative,” International Journal of Modern Developments in Engineering and Science, vol. 1,

no. 2, pp. 1–5, 2022.

[20] A. M. Kareem, “Intégration des applications mesurables dont la valeur est un compact con-

vexe,” Funkcial. Ekvac., vol. 10, pp. 205–223, 1967.

[21] U. N. Katugampola, “A new fractional derivative with classical properties,” 2014,

arXiv:1410.6535.

[22] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional deriva-

tive,” J. Comput. Appl. Math., vol. 264, pp. 65–70, 2014, doi: 10.1016/j.cam.2014.01.002.

[23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differ-

ential equations, ser. North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam,

2006, vol. 204.

[24] T. A. Komleva and A. V. Plotnikov, “Differential inclusions with the Hukuhara derivative,”

Nel̄ın̄ı̆ın̄ı Koliv., vol. 10, no. 2, pp. 229–246, 2007, doi: 10.1007/s11072-007-0017-x.

[25] T. A. Komleva, A. V. Plotnikov, L. I. Plotnikova, and N. V. Skripnik, “Conditions for the

existence of basic solutions of linear multivalued differential equations,” Ukrainian Math. J.,

vol. 73, no. 5, pp. 758–783, 2021.

https://doi.org/10.1155/2014/238459
https://doi.org/10.9790/5728-1302028187
https://doi.org/10.1155/2021/6245435
http://arxiv.org/abs/1410.6535
https://doi.org/10.1016/j.cam.2014.01.002
https://doi.org/10.1007/s11072-007-0017-x


CUBO
26, 2 (2024)

Some properties of solutions of a linear set-valued... 213

[26] T. A. Komleva, A. V. Plotnikov, and N. V. Skripnik, “Differential equations with multivalued

solutions,” Ukraïn. Mat. Zh., vol. 60, no. 10, pp. 1326–1337, 2008, doi: 10.1007/s11253-009-

0150-z.

[27] T. O. Komleva, A. V. Plotnikov, and N. V. Skripnik, “Existence of solutions of linear set-

valued integral equations and their properties,” J. Math. Sci. (N.Y.), vol. 277, no. 2, pp.

268–280, 2023, doi: 10.1007/s10958-023-06831-1.

[28] T. A. Komleva, L. I. Plotnikova, N. V. Skripnik, and A. V. Plotnikov, “Some remarks on linear

set-valued differential equations,” Stud. Univ. Babeş-Bolyai Math., vol. 65, no. 3, pp. 411–427,

2020, doi: 10.24193/subbmath.2020.3.09.

[29] V. Lakshmikantham, T. G. Bhaskar, and J. Vasundhara Devi, Theory of set differential equa-

tions in metric spaces. Cambridge Scientific Publishers, Cambridge, 2006.

[30] V. Lakshmikantham and R. N. Mohapatra, Theory of fuzzy differential equations and in-

clusions, ser. Series in Mathematical Analysis and Applications. Taylor & Francis Group,

London, 2003, vol. 6, doi: 10.1201/9780203011386.

[31] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of fractional dynamic systems.

Cambridge Scientific Publ., 2009.

[32] A. Lasota and A. Strauss, “Asymptotic behavior for differential equations which cannot be

locally linearized,” J. Differential Equations, vol. 10, pp. 152–172, 1971, doi: 10.1016/0022-

0396(71)90103-3.

[33] M. Martelli and A. Vignoli, “On differentiabiliy of multi-valued maps,” Boll. Un. Mat. Ital.

(4), vol. 10, pp. 701–712, 1974.

[34] A. A. Martynyuk, “A fractional-like Hukuhara derivative and its properties,” Dopov. Nats.

Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, no. 4, pp. 10–16, 2019, doi: 10.15407/dopo-

vidi2019.04.010.

[35] A. A. Martynyuk, G. T. Stamov, and I. M. Stamova, “Fractional-like Hukuhara derivatives

in the theory of set-valued differential equations,” Chaos, Solitons & Fractals, vol. 131, 2020,

Art. ID 109487, doi: 10.1016/j.chaos.2019.109487.

[36] A. A. Martynyuk, Qualitative analysis of set-valued differential equations.

Birkhäuser/Springer, Cham, 2019, doi: 10.1007/978-3-030-07644-3.

[37] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential equations

with impulse effects, ser. De Gruyter Studies in Mathematics. Walter de Gruyter & Co.,

Berlin, 2011, vol. 40, multivalued right-hand sides with discontinuities.

https://doi.org/10.1007/s11253-009-0150-z
https://doi.org/10.1007/s11253-009-0150-z
https://doi.org/10.1007/s10958-023-06831-1
https://doi.org/10.24193/subbmath.2020.3.09
https://doi.org/10.1201/9780203011386
https://doi.org/10.1016/0022-0396(71)90103-3
https://doi.org/10.1016/0022-0396(71)90103-3
https://doi.org/10.15407/dopovidi2019.04.010
https://doi.org/10.15407/dopovidi2019.04.010
https://doi.org/10.1016/j.chaos.2019.109487
https://doi.org/10.1007/978-3-030-07644-3


214 T. A. Komleva, A. V. Plotnikov & N. V. Skripnik CUBO
26, 2 (2024)

[38] M. Piszczek, “On a multivalued second order differential problem with Hukuhara derivative,”

Opuscula Math., vol. 28, no. 2, pp. 151–161, 2008.

[39] A. V. Plotnikov, “Differentiation of multivalued mappings. The T -derivative,” Ukraïn. Mat.

Zh., vol. 52, no. 8, pp. 1119–1126, 2000, doi: 10.1023/A:1010361206391.

[40] A. V. Plotnikov and N. V. Skripnik, “Conditions for the existence of local solutions of set-

valued differential equations with generalized derivative,” Ukrainian Math. J., vol. 65, no. 10,

pp. 1498–1513, 2014, doi: 10.1007/s11253-014-0875-1.

[41] A. V. Plotnikov and A. V. Tumbrukaki, “Integrodifferential equations with multivalued solu-

tions,” Ukraïn. Mat. Zh., vol. 52, no. 3, pp. 359–367, 2000, doi: 10.1007/BF02513136.

[42] A. V. Plotnikov, T. A. Komleva, and I. V. Molchanyuk, “Existence and uniqueness theorem

for set-valued Volterra-Hammerstein integral equations,” Asian-Eur. J. Math., vol. 11, no. 3,

2018, Art. ID 1850036, doi: 10.1142/S1793557118500365.

[43] A. V. Plotnikov, T. A. Komleva, and L. I. Plotnikova, “Averaging of a system of set-valued

differential equations with the hukuhara derivative,” Journal of Uncertain Systems, vol. 13,

no. 1, pp. 3–13, 2019.

[44] A. V. Plotnikov and N. Skripnik, “An existence and uniqueness theorem to the Cauchy problem

for generalised set differential equations,” Dyn. Contin. Discrete Impuls. Syst. Ser. A Math.

Anal., vol. 20, no. 4, pp. 433–445, 2013.

[45] A. V. Plotnikov and N. V. Skripnik, “Set-valued differential equations with generalized deriva-

tive,” J. Adv. Res. Pure Math., vol. 3, no. 1, pp. 144–160, 2011, doi: 10.5373/jarpm.475.062210.

[46] A. Plotnikov and N. Skripnik, Differential equations with clear and fuzzy multivalued right-

hand sides. Asymptotics Methods. AstroPrint, Odessa, 2009.

[47] A. Plotnikov and N. Skripnik, “Existence and uniqueness theorems for generalized set differ-

ential equations,” Int. J. Control Sc. Eng, vol. 2, no. 1, pp. 1–6, 2012.

[48] V. Plotnikov, A. Plotnikov, and A. Vityuk, Differential equations with a multivalued right-hand

side: Asymptotic methods. Odessa: AstroPrint, 1999.

[49] N. V. Plotnikova, “Systems of linear differential equations with\pi-derivative and linear dif-

ferential inclusions,” Sbornik: Mathematics, vol. 196, no. 11, pp. 1677–1691, 2005, doi:

10.1070/SM2005v196n11ABEH003726.

[50] I. Podlubny, Fractional differential equations, ser. Mathematics in Science and Engineering.

Academic Press, Inc., San Diego, CA, 1999, vol. 198.

https://doi.org/10.1023/A:1010361206391
https://doi.org/10.1007/s11253-014-0875-1
https://doi.org/10.1007/BF02513136
https://doi.org/10.1142/S1793557118500365
https://doi.org/10.5373/jarpm.475.062210
https://doi.org/10.1070/SM2005v196n11ABEH003726


CUBO
26, 2 (2024)

Some properties of solutions of a linear set-valued... 215

[51] E. S. Polovinkin, Set-valued analysis and differential inclusions. Moscow: Fizmatlit, 2014,

vol. 524.

[52] H. Rådström, “An embedding theorem for spaces of convex sets,” Proc. Amer. Math. Soc.,

vol. 3, pp. 165–169, 1952, doi: 10.2307/2032477.

[53] A. Tolstonogov, Differential inclusions in a Banach space, ser. Mathematics and its Appli-

cations. Kluwer Academic Publishers, Dordrecht, 2000, vol. 524, doi: 10.1007/978-94-015-

9490-5.

[54] Y. N. Tyurin, “Mathematical formulation of a simplified production planning model,” Economy

and mat. methods, no. 3, pp. 391–409, 1965.

[55] A. N. Vityuk, “Fractional differentiation of multivalued mappings,” Dopov. Nats. Akad. Nauk

Ukr. Mat. Prirodozn. Tekh. Nauki, no. 10, pp. 75–79, 2003.

[56] A. Vityuk, “Differential equations of fractional order with set-valued solutions,” Visn. Odes.

Derzh. Univ., Ser. Fiz.-Mat. Nauky, vol. 8, no. 2, pp. 108–112, 2003.

[57] P. Wang and J. Bi, “The stability of set-valued differential equations with different initial

time in the sense of fractional-like Hukuhara derivatives,” Fractal and Fractional, vol. 7, no. 1,

p. 20, 2022, doi: 10.3390/fractalfract7010020.

https://doi.org/10.2307/2032477
https://doi.org/10.1007/978-94-015-9490-5
https://doi.org/10.1007/978-94-015-9490-5
https://doi.org/10.3390/fractalfract7010020

	Introduction
	Preliminaries
	A linear set-valued differential equation with a Hukuhara conformable fractional derivative.
	A linear set-valued differential equation with a generalized conformable fractional derivative.

