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ABSTRACT

For a finite lattice L, let Gm(L) denote the least n such that L can
be generated by n elements. For integers r > 2 and k > 1, denote by
FD(r)k the k-th direct power of the free distributive lattice FD(r)
on r generators. We determine Gm(FD(r)k) for many pairs (r, k)

either exactly or with good accuracy by giving a lower estimate that
becomes an upper estimate if we increase it by 1. For example, for
(r, k) = (5, 25 000) and (r, k) = (20, 1.489 · 101789), Gm(FD(r)k)
is 22 and 6 000, respectively. To reach our goal, we give estimates
for the maximum number of pairwise unrelated copies of some spe-
cific posets (called full segment posets) in the subset lattice of an
n-element set. In addition to analogous earlier results in lattice
theory, a connection with cryptology is also mentioned among the
motivations.

RESUMEN

Para un reticulado finito L, se denota por Gm(L) el menor n tal
que L puede ser generado por n elementos. Para enteros r > 2

y k > 1, se denota por FD(r)k la k-ésima potencia directa del
reticulado distributivo libre FD(r) en r generadores. Determi-
namos Gm(FD(r)k) para muchos pares (r, k) ya sea exactamente
o con buena precisión, dando una estimación inferior que se con-
vierte en una estimación superior sumando 1. Por ejemplo, para
(r, k) = (5, 25 000) y (r, k) = (20, 1.489 · 101789), Gm(FD(r)k) es 22

y 6 000, respectivamente. Para alcanzar nuestro objetivo, damos es-
timaciones para el número máximo de copias no-relacionadas dos a
dos de algunos posets específicos (llamados posets de segmento com-
pleto) en el reticulado de subconjuntos de un conjunto de n elemen-
tos. Adicionalmente a resultados análogos anteriores en teoría de
reticulados, se menciona también entre las motivaciones una cone-
xión con criptología.
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1 Introduction

This work belongs mainly to lattice theory but it also belongs to extremal combinatorics. The paper

is more or less self-contained; those familiar with M.Sc. level mathematics and the concept of free

distributive lattices can read it easily. We are interested in the smallest positive integer n = n(k, r)

such that the k-th direct power of the r-generated free distributive lattice is n-generated. In many

cases, our estimates give a good approximation or even the exact value of n.

The search for small generating sets has belonged to lattice theory for long; for example, in chrono-

logical order, see Gelfand and Ponomarev [9], Strietz [17], Zádori [19, 20], Chajda and Czédli [2],

Takách [18], Kulin [13], Czédli and Oluoch [7], and Ahmed and Czédli [1]. See also the surveying

parts and the bibliographic sections in [1] and Czédli [5] for further references. If a large lattice

L can be generated by few elements, then this lattice has many small generating sets. Czédli [5]

and [3] have recently observed that these lattices can be used for cryptography; for a further note

on this topic, see Remark 5.3. This fact and the results on small generating sets of lattices in

the above-mentioned and some additional papers constitute the lattice theoretic motivation of the

paper.

There is a motivation coming from extremal combinatorics, too. The first result on the maximum

number Sp(U, n) of pairwise unrelated (in other words, incomparable) copies of a poset U in the

powerset lattice of an n-element finite set was published by Sperner [16] ninety-six years ago.

While U is the singleton poset in Sperner’s theorem, the Sperner theorem (that is, the Sperner

type theorem) in Griggs, Stahl, and Trotter [11] determines Sp(U, n) for any finite chain U . For

some other finite posets, similar results were obtained by Katona and Nagy [12] and Czédli [4]. In

general, the exact value of Sp(U, n) is rarely known. On the other hand, Katona and Nagy [12]

and, independently from them, Dove and Griggs [8] determined the asymptotic value of Sp(U, n).

Their celebrated result asserts that for any finite poset U ,

Sp(U, n) ∼ 1

|U |

(
n

⌊n/2⌋

)
, that is, lim

n→∞

1

|U |

(
n

⌊n/2⌋

)
· Sp(U, n)−1 = 1. (1.1)

By the main result of [4], the lattice theoretic motivation and the combinatorial one are strongly

connected; see (2.4) later, which we are going to quote from [4]. Here we only mention that in

order to get closer to what the title of the paper promises, we need to determine Sp(U, n) for some

rather special posets U .

The asymptotic result (1.1) may suggest that for our special posets U , we can obtain Sp(U, n) or

at least some of its estimates simply by copying what Dove and Griggs [8] or Katona and Nagy [12]

did. However, we have three reasons not to follow this plan. First, while several constructions and

considerations can lead to the asymptotically same result, we cannot expect a similar experience

when dealing with small values of n. Furthermore, concrete (non-asymptotic) calculations and
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considerations are often harder and their asymptotic counterparts do not offer too much help. For

example, while we know for any fixed a, b ∈ Z (the set of integers) that, with our vertical-space-

saving permanent notation fSp(n) :=
(

n
⌊n/2⌋

)
,

(
n+ a

⌊n/2⌋+ b

)
∼ 2a ·

(
n

⌊n/2⌋

)
= 2afSp(n) as n → ∞ (1.2)

and so we can simply work with 2afSp(n) in asymptotic considerations, we have to work with(
n+a

⌊n/2⌋+b

)
in concrete calculations, which is more difficult. (Note at this point that both Dove and

Griggs [8] and Katona and Nagy [12] use (1.2).) Second, even though a general construction could

be specialized to our particular posets U , we cannot expect to exploit the peculiarities of our U ’s

in this way. Third, an easy-to-read construction with a short and easy argument will hopefully be

interesting for the reader, partially because these details are necessary to explain and perform the

computations.

Hence, the construction we are going to give for lower estimates is different from those in Dove

and Griggs [8] and Katona and Nagy [12]. At some places in the proofs, we are going to point out

the difference from [8]; the difference from [12] is clearer. Note that our construction gives better

lower estimates for our particular posets U than any of the Dove-Griggs and the Katona-Nagy

construction would give, at least for small values of n. (For n → ∞, that is, asymptotically, all

the three constructions yield the same lower estimate.) On the other hand, let us emphasize the

similarities. While many calculations in this paper are new, most of the ideas in our construction

occur in Dove and Griggs [8] and Katona and Nagy [12]; more details will be mentioned right after

the proof of Proposition 3.2.

Even though our result allows a big gap between the lower estimate and the upper estimate of

Sp(U, n), this result will suffice to determine the least number n of elements that generate the

direct powers FD(3)k of FD(3) with quite a good accuracy, and we can give reasonable estimates

on n in case of FD(r)k.

x y z

FD(3)

FSgP(3, 0, 3)

A B C

X Y Z

a b c

Figure 1: FD(3) and the 3-crown W3 = FSgP(3, 0, 3) ∼= J(FD(3))
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2 Basic facts and notations

For s ∈ N+ := {1, 2, 3, . . . }, let N≥s stand for {s, s+1, s+2, . . . }. Except for N+, N0 := {0}∪N+,

N≥s, and their infinite subsets, all sets and structures in the paper will be assumed to be finite.

(Sometimes, we repeat this convention for those who read only a part of the paper.) For r ∈ N≥3,

the free distributive lattice on r generators is denoted by FD(r); for r = 3, it is drawn on the left

of Figure 1. A lattice element with exactly one lower cover is called join-irreducible. For a lattice

L, the poset (that is, the partially ordered set) of the join-irreducible elements of L is denoted by

J(L). For L = FD(3), J(L) consists of the black-filled elements and it is also drawn separately on

the right of the figure. For a set H, the powerset lattice of H is ({Y : Y ⊆ H};∪,∩); it (or its

support set) is denoted by Pow(H). For n ∈ N0, the set {1, 2, . . . , n} is denoted by [n]; note that

[0] = ∅. For x, y in a poset, in particular, for x, y ∈ Pow([n]), we write x ∥ y to denote that neither

x ≤ y nor y ≤ x holds; in Pow([n]), “≤” is “⊆”. For a poset U , a copy of U in Pow([n]) is a subset

of Pow([n]) that, equipped with “⊆”, is order isomorphic to U . Two copies of U in Pow([n]) are

unrelated if for all X in the first copy and all Y in the second copy, X ∥ Y . Let us repeat that for

n ∈ N0 and a poset U , we let

Sp(U, n) := max{k : there exist k pairwise unrelated copies of U in Pow([n])}. (2.1)

We often write C(n, k) instead of
(
n
k

)
; especially in text environment and if n or k is a complicated

or subscripted expression. The notation “Sp(−,−)” and “C(−,−)” come from Sperner and binomial

coefficient, respectively. As usual, ⌊ ⌋ and ⌈ ⌉ denote the lower and upper integer part functions;

for example, ⌊5/3⌋ = 1 and ⌈5/3⌉ = 2. With our notations, Sperner’s theorem [16] asserts that for

every n ∈ N0,

if U is the 1-element poset, then Sp(U, n) =
(

n

⌊n/2⌋

)
=: fSp(n). (2.2)

Recall that a subset X of a lattice L = (L;∨,∧) is a generating set of L if for every Y such that

X ⊆ Y ⊆ L and Y is closed with respect to ∨ and ∧, we have that Y = L. We denote the size of

a minimum-sized generating set of L by

Gm(L) := min{|X| : X is a generating set of L}. (2.3)

For k ∈ N+, the k-th direct power Lk of L consists of the k-tuples of elements of L and the lattice

operations are performed componentwise. With our notations, the main result of Czédli [4] asserts

that
for 2 ≤ k ∈ N+ and a finite distributive lattice L, Gm(Lk)

is the smallest n ∈ N+ such that k ≤ Sp(J(L), n).
(2.4)
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It is also clear from [4] that for each finite distributive lattice L, the functions k 7→ Gm(Lk) and

n 7→ Sp(J(L), n) mutually determine each other, but we do not need this fact in the present paper.

The following definition is crucial in the paper.

Definition 2.1. For 0 ≤ a < b ≤ r ∈ N0 such that a+ 2 ≤ b, the full segment poset FSgP(r, a, b)

is the poset U defined (up to isomorphism) by the conjunction of the following two rules.

(A) r is the smallest integer such that U is embeddable into Pow([r]);

(B) the subposet {X ∈ Pow([r]) : a < |X| < b} of Pow([r]) is order isomorphic to U .

Even though 0 ≤ a in Definition 2.1 could be replaced by −1 ≤ a, we do not do so since the

case a = −1 would need a different (in fact, easier) treatment; see [4]. Let U be a finite poset,

and let s ∈ N+. If f1, f2 : N≥s → N0 are functions such that f1(n) ≤ Sp(U, n) ≤ f2(n) for all

n ∈ N≥s, then (f1, f2) is a pair of estimates of the function Sp(U,−) on N≥s; in particular, f1 is a

lower estimate while f2 is an upper estimate of Sp(U,−). A reasonably good property of pairs of

estimates of Sp(U,−) is defined as follows:

for s ∈ N+, a pair (f1, f2) of estimates is separated

on N≥s if f2(n) ≤ f1(n+ 1) for all n ∈ N≥s.
(2.5)

The following fact is a trivial consequence of (2.4) and for k ≥ 2, it is implicit in Czédli [4]; see

around (4.23) and (4.24) in [4].

Observation 2.2. Let D be a finite distributive lattice. Denote the poset J(D) by U , and let

s ∈ N+. Let (f1, f2) be a separated pair of estimates of Sp(U,−) on N≥s such that f1 (the lower

estimate) is strictly increasing on N≥s. Then, for each k ∈ N+ such that f1(s) < k, (f1, f2)

determines Gm(Dk) “with accuracy 1/2” as follows: Letting n be the unique n ∈ N+ such that

f1(n) < k ≤ f1(n+1), either k ≤ f2(n) and Gm(Dk) ∈ {n, n+1} or f2(n) < k and Gm(Dk) = n+1.

The term “accuracy 1/2” comes from the fact that the distance between the never exact estimate

n+ 1/2 and Gm(Dk) is always 1/2.

3 Lower estimates

The easy proof of the following lemma raises the possibility that the lemma might belong to the

folklore even though the author has never met it.
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Lemma 3.1. For 2 ≤ r ∈ N+, J(FD(r)) is isomorphic to the poset FSgP(r, 0, r), which is defined

in Definition 2.1.

Proof. The smallest element and the largest element of FD(r) will be denoted by 0r and 1r,

respectively. Let S2 := {0r, 1r}; it is a two-element sublattice of FD(r). Denote by {x1, . . . , xr}
the set of free generators of FD(r). Let x⃗ := (x1, . . . , xr), and let ξ⃗ = (ξ1, . . . , ξr) be a vector of

variables. Call a subset J of [r] nontrivial if ∅ ̸= J ̸= [r], and let Pownt([r]) =
(
Pownt([r]);⊆

)
stand for the poset formed by the nontrivial subsets of [r]. For J ∈ Pownt([r]), let mJ stand for

the r-ary lattice term defined by mJ(ξ⃗) :=
∧

i∈J ξi. Let X := {mJ(x⃗) : J ∈ Pownt([r])}. As

X ⊆ FD(r), X = (X;≤) is a subposet of FD(r).

First, we show that the map φ : Pownt([r]) → X defined by J → mJ(x⃗) is a dual order isomorphism.

The tool we need is simple: Since FD(r) is free, it follows that whenever J,K ∈ Pownt([r]) and

mJ(x⃗) = mK(x⃗), then mJ(y⃗) = mK(y⃗) for all y⃗ = (y1, . . . , yr) ∈ Sr
2 , and similarly for “≥” instead

of “=”.

The implication J ⊆ K ⇒ mJ(x⃗) ≥ mK(x⃗) is obvious. For the sake of contradiction, suppose that

mJ(x⃗) ≥ mK(x⃗) for some J,K ∈ Pownt([r]) but J ⊈ K. Pick a j ∈ J \ K, and let y⃗ ∈ Sr
2 be

the vector for which yj = 0r but yi = 1r for all i ∈ [r] \ {j}. Then mK(y⃗) = 1r but mJ(y⃗) = 0r,

whereby mJ(y⃗) ≱ mK(y⃗). By the tool mentioned above, this contradicts mJ(x⃗) ≥ mK(x⃗) and

proves that “≥” in X and “⊆” in Pownt([r]) correspond to each other. In particular, φ is a bijective

map as the equality of two elements or subsets can be expressed by these relations. Thus, φ is a

dual order isomorphism. The composite of φ and the selfdual automorphism of Pownt([r]) defined

by J 7→ [r] \ J is an order isomorphism. Hence, X ∼= Pownt([r]). Since Pownt([r]) ∼= FSgP(r, 0, r),

we have shown that X ∼= FSgP(r, 0, r).

To complete the proof, it suffices to show that J(FD(r)) = X. Using the tool mentioned earlier

and S2, we obtain that 1r = x1∨· · ·∨xr /∈ J(FD(r)) and for every J ∈ Pownt([r]), mJ(x⃗) /∈ S2. By

distributivity, each element of FD(r)\S2 is the join of meets of some generators or, in other words,

a disjunctive normal form of the generators. Clearly, neither the empty meet, nor the empty join,

nor the meet of all generators is needed here, whereby there is at least one joinand and each of the

joinands is of the form mJ(x⃗) with J ∈ Pownt([r]). As one joinand is sufficient for the elements of

J(FD(r)), we obtain that J(FD(r)) ⊆ X.

To show the converse inclusion by way of contradiction, suppose that mJ(x⃗) ∈ X \J(FD(r)). Then

mJ(x⃗) is the join of some elements of J(FD(r)) that are smaller than mJ(x⃗). These elements

are of the form mIj (x⃗) as J(FD(r)) ⊆ X. This fact and the dual isomorphism proved in the

previous paragraph imply that there are I1, . . . , It ∈ Pownt([r]) such that J ⊂ I1, . . . , J ⊂ It and

mJ(x⃗) = mI1(x⃗)∨· · ·∨mIt(x⃗). As this equality holds for the free generators, it holds as an identity

in S2. However, if we define y⃗ ∈ Sr
2 by ys := 1r if s ∈ J and ys = 0r otherwise, then mJ(y⃗) = 1r
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but each of the joinands and so the join are 0r. This contradiction completes the proof of Lemma

3.1.

For 1 ≤ a < b ≤ r ∈ N+ such that a+2 ≤ b and n ∈ N≥r, v⃗ will denote a vector (v0, . . . , va; vb, . . . , vr),

so there is gap in the index set of the components. Let p ∈ {−r,−r + 1, . . . , r} be a parameter,

and note that a binomial coefficient C(x1, x2) is 0 unless x1, x2 ∈ N0 and 0 ≤ x2 ≤ x1. Define

f
(p)
r,a,b(n) :=

⌊n/r⌋−1∑
i=0

∑
v⃗∈{0,...,i}r+a−b+2

v0+···+va+vb+···+vr=i

i!

v0! · · · va! · vb! · · · vr!
×

×
(

n− (i+ 1)r

p+ ⌊(n− r)/2⌋ − 0v0 − 1v1 − · · · − ava − bvb − · · · − rvr

)
×

×
(
r

0

)v0
. . .

(
r

a

)va
·
(
r

b

)vb

. . .

(
r

r

)vr
, and

(3.1)

f
(max)
r,a,b (n) := max

{
f
(p)
r,a,b(n) : p ∈ {−r,−r + 1, . . . , r − 1, r}

}
. (3.2)

Proposition 3.2. For r ∈ N≥3 and 0 ≤ a < b ≤ r ∈ N+ such that a+ 2 ≤ b, f (max)
r,a,b (n) is a lower

estimate of Sp(FSgP(r, a, b), n) on N≥r.

The proof below shows that Proposition 3.2 would still hold if we replaced {−r,−r+1, . . . , r−1, r}
in (3.2) with Z but we do not have any example where Z, which would make practical computations

longer, is better than {−r,−r + 1, . . . , r − 1, r}.

Proof. It suffices to show that for any p ∈ Z, f (p)
r,a,b(n) ≤ Sp(FSgP(r, a, b), n). Take an n-element

set M , and denote the quotient ⌊n/r⌋ by q. Fix q pairwise disjoint r-element subsets M0, . . . ,Mq−1

of M , we call them blocks, and define Mq := M \ (M0 ∪ · · · ∪ Mq−1). Let h := p + ⌊(n − r)/2⌋.
For j ∈ {0, . . . , q − 1}, a subset X of the block Mj is called small if |X| ≤ a. Similarly, if

|X| ≥ b, then X is large while in the remainder case when a < |X| < b, we say that X is medium-

sized. By an extremal subset of Mj we mean a subset that is large or small; so “extremal” is the

opposite of “medium-sized”. For a subset B of M , B ∩ Mi is often denoted by Bi. We say that

(i, B) ∈ {0, . . . , q − 1} × Pow(M) is a fundamental pair if

(F1) |B| = h, and

(F2) Bi = ∅ and for each j ∈ {0, . . . , i− 1}, Bj is extremal (that is, small or large).

Four examples are given in Figure 2, where n = 54, r = 8, a = 3, b = 6, p = 3, q = 6, and h = 26.

In each of the four parts of this figure, the green-filled solid ovals1 represent extremal subsets of

the appropriate Mj ’s, j ∈ {0, . . . , i− 1}, the red dotted oval is a medium-sized subset of Mi, and

1Note for a grayscale version: the green-filled ovals contain black numbers in their interiors while the ovals with
white numbers are magenta-filled.



224 G. Czédli CUBO
26, 2 (2024)

(F2) imposes no condition on the subsets represented by magenta-filled solid ovals. Hence, in each

of the four examples, the set component (that is, the second component, which was denoted by B)

of the fundamental pair is the union of the color-filled solid ovals. The index component (that is,

the first component) is indicated at the top of the figure. Each color-filled solid oval contains the

number of elements of the subset Bj that this oval represents. Note, however, that a red dotted

oval (regardless the number it contains) in the picture of (i, B) means that Bi = ∅. (The red

dotted ovals will be explained right after (3.3).) Note also that, witnessed by i = 5 and i = 4 in

the figure, the set component does not determine the index component.

M0

M1

M2

M3

M4

M5

Mq

2

8

1

4

7

6

2
i = 3

7

5

0

4

8

4

3
i = 1

3

7

2

8

0

4

6
i = 5

3

7

2

8

5

0

6
i = 4

Figure 2: Illustrating the proof of Proposition 3.2 with FSgP(8, 3, 6); h = 26, n = 54; in each
fundamental pair, the set component is the union of the color-filled solid ovals.

For a fundamental pair (i, B), let

U(i, B) := {B ∪X : X ⊆ Mi and a < |X| < b}. (3.3)

Clearly, U(i, B) is a copy of FSgP(r, a, b). The role of a red dotted oval in Figure 2 is to represent

one of the sets X in (3.3). Now that we have defined our construction, we have to prove that

the number of fundamental pairs is f (p)
r,a,b(n) and for different fundamental pairs (i, B) and (i′, B′),

U(i, B) and U(i′, B′) are unrelated.

To obtain a fundamental pair (i, B), first we choose i ∈ {0, . . . , q − 1}; this explains the outer

summation sign in (3.1). Then for each j ∈ {0, . . . , a, b, . . . , r} we choose the number vj of the j-

element green-filled solid ovals. As there are i green-filled solid ovals, the choice of the vector formed

from these vj ’s is not quite arbitrary; this explains the subscript of the inner summation sign in

(3.1). For example, on the right (that is, in the i = 4 part) of Figure 2, v⃗ = (v0, . . . , v3; v6, v7, v8) =

(0, 0, 1, 1; 0, 1, 1). The fraction in (3.1) is the multinomial coefficient showing how many ways v0

zeros, v1 1’s, . . . , va a’s, vb b’s, . . . , vr r’s can be ordered. On the right of the figure, this is

how many ways the numbers 3, 7, 2, 8 can be written below the red dotted oval (the figure shows

only one of these ways). As there is no stipulation on the magenta-filled solid ovals, the binomial
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coefficient in the middle of (3.1) gives the number of possible unions of the magenta-filled solid

ovals, that is, it shows how many ways the system of these ovals can be chosen.

For j ∈ {0, . . . , a, b, . . . , r}, a j-element subset (green-filled solid oval) of an r-element block Mt

can be chosen in C(r, j) ways. As there are vj such subsets and there are several values of j, the

product in the last row of (3.1) is the number how many ways the systems of the green-filled solid

ovals can be chosen. Therefore, f (p)
r,a,b(n) is the number of fundamental pairs as required.

Next, let (i, B) ̸= (i′, B′) be distinct fundamental pairs, Y = B∪X ∈ U(i, B), and Y ′ = B′∪X ′ ∈
U(i′, B′). For the sake of contradiction, suppose that Y ⊆ Y ′. If we had that i = i′, then

B = (M \Mi) ∩ Y ⊆ (M \Mi) ∩ Y ′ = (M \Mi′) ∩ Y ′ = B′, which together with |B| = h = |B′|
would give that B = B′ and so (i, B) = (i′, B′), a contradiction. Hence, i ̸= i′. Observe that

Y ⊆ Y ′ gives that Mj ∩ Y ⊆ Mj ∩ Y ′ for all j ∈ {0, . . . , q}. Furthermore, Mj ∩ Y = Bj for j ̸= i

while Mi ∩ Y = X. Similarly, Mj ∩ Y ′ = B′
j for j ̸= i′ while Mi′ ∩ Y ′ = X ′. Hence, Bj ⊆ B′

j and

so |Bj | ≤ |B′
j | for j ∈ {0, . . . , q} \ {i, i′}, implying that

z :=
∑

j∈{0,...,q}\{i,i′}

|Bj | ≤
∑

j∈{0,...,q}\{i,i′}

|B′
j | =: z′. (3.4)

As X is medium-sized, B′
i is extremal, and X = Mi ∩ Y ⊆ Mi ∩ Y ′ = B′

i, we have that B′
i is large,

that is, b ≤ |B′
i|. Hence, (3.4) gives that z′ + b ≤ z′ + |B′

i| = |B′|. Similarly, X ′ is medium-sized,

Bi′ is extremal, and Bi′ = Mi′ ∩ Y ⊆ Mi′ ∩ Y ′ = X ′, whence Bi′ is small, that is, |Bi′ | ≤ a. Thus,

|B| = z + |Bi′ | ≤ z + a. Combining the inequalities a < b, |B| ≤ z + a, z′ + b ≤ |B′|, and (3.4), we

obtain that

|B| ≤ z + a < z + b ≤ z′ + b ≤ |B′|.

This strict inequality contradicts (F1), completing the proof of Proposition 3.2.

Several ideas and ingredients of the proof above, like the way of partitioning the base set into

blocks, are contained in Dove and Griggs [8] and Katona and Nagy [12]. However, even if the

construction given in [8] were tailored to our particular posets U , (F1) would fail. The following

assertion says that the lower estimate given in Proposition 3.2 is asymptotically as good as possible.

Proposition 3.3. For r ∈ N≥3 and 0 ≤ a < b ≤ r ∈ N+ such that a + 2 ≤ b, f (max)
r,a,b (n) and, for

any fixed p ∈ Z, f (p)
r,a,b(n) are asymptotically Sp(FSgP(r, a, b), n) as n → ∞.

Proof. With s := |FSgP(r, a, b)|, s = 2r −
(
r
0

)
− · · · −

(
r
a

)
−
(
r
b

)
− · · · −

(
r
r

)
. Let κ be a real number

such that κ < 1 but 1− κ is very little. As we have that
∑∞

i=0((2
r − s)/2r)i = 2r/s, we can pick

an n0 ∈ N+ such that

κ · 2r/s ≤
⌊n/r⌋−1∑

i=0

((2r − s)/2r)i ≤ 1

κ
2r/s for all n such that n ≥ n0. (3.5)
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It suffices to deal with f
(p)
r,a,b for a fixed p ∈ Z. Using (1.2), we can pick an n1 ≥ n0 such that

κ · fSp(n) · 2−(i+1)r ≤
(

n− (i+ 1)r

p+ ⌊(n− r)/2⌋ − 0v0 − 1v1 − · · · − ava − bvb − · · · − rvr

)
≤ 1

κ
· fSp(n) · 2−(i+1)r

(3.6)

for all n ≥ n1. Let us define an auxiliary function for n ≥ n1 and apply the multinomial theorem

to it as follows.

faux(n) :=

⌊n/r⌋−1∑
i=0

∑
v⃗∈{0,...,i}r+a−b+2

v0+···+va+vb+···+vr=i

i!

v0! · · · va! · vb! · · · vr!
×

× fSp(n) · 2−(i+1)r

(
r

0

)v0

. . .

(
r

a

)va
·
(
r

b

)vb
. . .

(
r

r

)vr
(3.7)

=
fSp(n)

2r

⌊n/r⌋−1∑
i=0

(2r)−i

((
r

0

)
+ · · ·+

(
r

a

)
+

(
r

b

)
+ · · ·+

(
r

r

))i

=
fSp(n)

2r

⌊n/r⌋−1∑
i=0

(
2r − s

2r

)i

. (3.8)

Comparing (3.1), (3.6), and (3.7), we obtain that κfaux(n) ≤ f
(p)
r,a,b(n) ≤ κ−1faux(n) holds for all

n ≥ n1. Applying (3.5) to the sum in (3.8), it follows that κfSp(n)/s ≤ faux(n) ≤ 1
κfSp(n)/s.

Substituting this pair of inequalities into the previous one, we have that κ2fSp(n)/s ≤ f
(p)
r,a,b(n) ≤

κ−2fSp(n)/s for all n ≥ n0. Letting κ → 1, it follows that f
(p)
r,a,b(n) is asymptotically fSp(n)/s.

So is Sp(FSgP(r, a, b), n) by Dove and Griggs [8] and Katona and Nagy [12]. By transitivity, we

obtain the required asymptotic equality. The proof of Proposition 3.3 is complete.

4 Pairs of estimates

For n ∈ N≥3, take the following “discrete 4-dimensional simplex”

H4(n) := {(t, x1, x2, x3) ∈ N4
0 : x1 > 0, x2 > 0, x3 > 0, t+ x1 + x2 + x3 ≤ n}. (4.1)

Remembering that [3] := {1, 2, 3}, define the function f3,4 : H4(n) → N0 by

f3,4(t, x1, x2, x3) =
∑
j∈[3]

(t+ xj)! · (n− t− xj)! +
∑

{j,u}⊆[3], j ̸=u

(t+ xj + xu)! · (n− t− xj − xu)!

−
∑

(j,u)∈[3]×[3], j ̸=u

(t+ xj)! · xu! · (n− t− xj − xu)! , (4.2)
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and let

Mn := min{f3,4(t, x1, x2, x3) : (t, x1, x2, x3) ∈ H4(n)}. (4.3)

We also define the following three functions:

gr(n) :=

⌊
1

2
fSp(n+ 2− r)

⌋
, (4.4)

g∗3(n) := ⌊n!/Mn⌋, where Mn is given in (4.3), and (4.5)

g∗∗3 (n) :=
⌊
n! ·

(
3 · ⌊n/2⌋! · ⌈n/2⌉! + 3 · ⌊(n+ 2)/2⌋! · ⌈(n− 2)/2⌉!

−6 · ⌊n/2⌋! · ⌈(n− 2)/2⌉!
)−1⌋

.
(4.6)

Next, based on the notations and concepts given in (2.1), (2.5), Definition 2.1, (4.4), (4.5), and

(4.6), we can formulate the main result of the paper.

Theorem 4.1. For 3 ≤ r ≤ n ∈ N+ and p ∈ {−r,−r+1, . . . , r− 1, r}, gr(n) is an upper estimate

while

f
(p)
r,0,r(n) :=

⌊n/r⌋−1∑
i=0

i∑
j=0

(
i

j

)(
n− (i+ 1)r

p+ ⌊(n− r)/2⌋ − jr

)
and, in particular, (4.7)

f▲
r,0,r(n) := f

(0)
r,0,r(n) (4.8)

are lower estimates of Sp(FSgP(r, 0, r), n) = Sp(J(FD(r)), n) on N≥r. In particular,

for all n ∈ N≥r, f▲
r,0,r(n) ≤ f

(max)
r,0,r (n) ≤ Sp(J(FD(r)), n) ≤ gr(n). (4.9)

For r = 3, in addition to the satisfaction of (4.9), g∗3(n) is also an upper estimate of Sp(J(FD(3)), n)

on N≥3. For n ∈ {3, 4, . . . , 300}, g∗3(n) = g∗∗3 (n) ≤ g3(n); in fact, g∗∗3 (n) < g3(n) for n ∈
{5, 6, . . . , 300}. The pair (f▲

3,0,3, g3) is separated for n ∈ N≥3, and so are the pairs (f▲
3,0,3, g

∗∗
3 ) and

(f▲
3,0,3, g

∗
3) for n ∈ {3, 4, . . . , 300}. Finally, for r ∈ {3, 4, . . . , 100}, the pair (f▲

r,0,r, gr) is separated

on the set {r, r + 1, . . . , 300}.

It took 952 seconds ≈ 16 minutes for a computer, see Footnote 2 later, to show that for r ∈
{3, . . . , 200} and n ∈ {r, . . . , 300}, f▲

r,0,r(n) is the same as f
(max)
r,0,r (n); the latter is defined in (3.2).

Since f▲
r,0,r(n) is easier to define and much easier to compute than f

(max)
r,0,r (n), it is the former that

occurs in Theorem 4.1. However, it will be clear from the proof that the theorem holds with f
(max)
r,0,r

in place of f▲
r,0,r.

Conjecture 4.2. We guess that g∗3(n) = g∗∗3 (n) for all n ∈ N≥3 and g∗∗3 (n) < g3(n) for all N≥5.

Example 5.4 in Section 5 will show that, combining Theorem 4.1 with Observation 2.2, we can de-

termine Gm(FD(3)k) exactly in many cases and we can give a good approximation for Gm(FD(r)k)
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quite often.

Proof of Theorem 4.1. Substituting (i− j, j) for (v0, vr) and observing that the multinomial coef-

ficient becomes a binomial one, it is clear that f
(p)
r,0,r in (4.7) is a particular case of (3.1). Hence,

Lemma 3.1, (3.2), Proposition 3.2, and (4.8) yield the first inequality in (4.9).

Clearly, FSgP(r, 0, r) ∼= Pownt([r]). Combining this with Lemma 3.1, we obtain that J(FD(r)) ∼=
Pownt([r]). Take a maximal chain in each of the intervals [{1}, {1, 3, 4, . . . , r}] and [{2},
{2, 3, 4, . . . , r}] of Pownt([r]). These two chains are unrelated and each of them consists of r − 1

elements. Let n ∈ N≥r. With k := Sp(Pownt([r]), n) = Sp(J(FD(r)), n), we can take k pairwise

unrelated copies of Pownt([r]) in Pow([n]). Therefore, there 2k pairwise unrelated (r − 1)-element

chains in Pow([n]). By Griggs, Stahl, and Trotter [11], the maximum number of chains with this

property is fSp(n+ 2− r). Hence, 2k ≤ fSp(n+ 2− r), implying the second inequality in (4.9).

In the rest of the proof, r := 3. Let Sym(n) stand for the set of all permutations of [n]. For σ⃗ =

(σ1, . . . , σn) ∈ Sym(n) and i ∈ {0, 1 . . . , n}, the i’s initial segment of σ⃗ is Is(σ⃗, i) := {σj : j ≤ i}. For

X ∈ Pow([n]), the permutation set associated with X is Ps(X) := {σ⃗ ∈ Sym(n) : X = Is(σ⃗, |X|)}.
The trivial fact that

if X,Y ∈ Pow([n]) are incomparable (in notation, X ∥ Y ), then Ps(X) ∩ Ps(Y ) = ∅ (4.10)

was used first by Lubell [14], and then by Griggs, Stahl, and Trotter [11] and some other pa-

pers listed in the bibliographic section. To ease the notation, let W3 := FSgP(3, 0, 3) and

denote its elements by A,B,C,X, Y, Z according to Figure 1. Let k := Sp(W3, n), and let

W
(1)
3 , . . . ,W

(k)
3 be pairwise unrelated copies of W3 in Pow([n]). For W

(i)
3 , we use the notation

W
(i)
3 = {Ai, Bi, Ci, Xi, Yi, Zi} in harmony with Figure 1; for example, Ai ⊂ Xi and Ai ∥ Zi, etc.

We claim that W
(1)
3 , . . . ,W

(k)
3 can be chosen so that, for all i ∈ [k],

Xi = Ai ∪Bi, Yi = Ai ∪ Ci, Zi = Bi ∪ Ci, (4.11)

Ai = Xi ∩ Yi, Bi = Xi ∩ Zi, Ci = Yi ∩ Zi. (4.12)

Assume that the first equality in (4.11) fails. Let X ′
i := Ai∪Bi and define W

(i)
3

′ := (W
(i)
3 \{Xi})∪

{X ′
i}. If we had that X ′

i ⊆ Yi, then Bi ⊆ X ′
i ⊆ Yi would be a contradiction. As Yi ⊆ X ′

i would

lead to Yi ⊆ Xi since X ′
i ⊆ Xi, we conclude that X ′

i ∥ Yi. We obtain similarly that X ′
i ∥ Zi. So

{X ′
i, Yi, Zi} is an antichain, and now it follows easily that W

(i)
3

′ is a copy of W3. For j ∈ [k] \ {i}
and E ∈ W

(j)
3 , E ⊆ X ′

i would lead to E ⊆ Xi while X ′
i ⊆ E to Ai ⊆ E. So E ∦ X ′

i would lead to

contradiction. Hence, W (i)
3

′ and W
(j)
3 are unrelated, showing that we can change W

(i)
3 to W

(i)
3

′.

As there is an analogous treatment for Yi and Zi, and we can take i = 1, i = 2, . . . , i = k one by

one, (4.11) can be assumed.
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Recall that Grätzer [10, Lemma 73], which is a well known easy statement, asserts that whenever

a, b, c are elements of a lattice such that {a ∨ b, a ∨ c, b ∨ c} is a 3-element antichain, then this

antichain generates an 8-element Boolean sublattice in which {a ∨ b, a ∨ c, b ∨ c} is the set of

coatoms. Therefore, if we apply the dual of the procedure above (that is, if we replace Ai by

Xi ∩ Yi, etc.), then we reach (4.12) without destroying the validity of (4.11). We have shown that

both (4.11) and (4.12) can be assumed; so we assume them in the rest of the proof.

Let Ti := Xi ∩ Yi ∩ Zi. By (4.12), Ti is also the intersection of any two of Ai, Bi, and Ci. Hence,

letting A•
i := Ai\Ti, B•

i := Bi\Ti, and C•
i := Ci\Ti, it follows from (4.11), (4.12), and W

(i)
3

∼= W3

that A•
i , B•

i , and C•
i are pairwise disjoint subsets of [n], none of them is empty, they are disjoint

from Ti, and

Ai = Ti ∪A•
i , Bi = Ti ∪B•

i , Ci = Ti ∪ C•
i ,

Xi = Ti ∪A•
i ∪B•

i , Yi = Ti ∪A•
i ∪ C•

i , Zi = Ti ∪B•
i ∪ C•

i .
(4.13)

For i ∈ [k], we let

Gi := Ps(Ai) ∪ Ps(Bi) ∪ Ps(Ci) ∪ Ps(Xi) ∪ Ps(Yi) ∪ Ps(Zi). (4.14)

As each of Ai, . . . , Zi is incomparable with each of Aj , . . . , Zj provided that i ̸= j, (4.10) together

with (4.14) imply that

for i, j ∈ [k], if i ̸= j then Gi ∩Gj = ∅. (4.15)

It follows from (4.15), G1 ∪ · · · ∪Gk ⊆ Sym(n), and |Sym(n)| = n! that

∑
i∈[k]

|Gi| ≤ n! . (4.16)

Next, for i ∈ [k], we focus on |Gi|. Denote |Ti|, |A•
i |, |B•

i |, and |C•
i | by ti, ai, bi, and ci, respectively.

By (4.13), |Ai| = ti+ai, |Bi| = ti+bi, |Ci| = ti+ci, |Xi| = ti+ai+bi, |Yi| = ti+ai+ci, and |Zi| =
ti+bi+ci. For any σ⃗ = (σ1, . . . , σn) ∈ Ps(Ai), Ai is the set of the first |Ai| = ti+ai components of

σ⃗; we can choose these components in (ti+ai)! ways. To obtain the rest of the components, we can

arrange the elements of [n] \Ai in (n− (ti + ai))! ways. Hence, |Ps(Ai)| = (ti + ai)! · (n− ti − ai)!.

We obtain similarly that |Ps(Bi)| = (ti + bi)! · (n − ti − bi)!, |Ps(Ci)| = (ti + ci)! · (n − ti − ci)!,

|Ps(Xi)| = (ti + ai + bi)! · (n − ti − ai − bi)!, |Ps(Yi)| = (ti + ai + ci)! · (n − ti − ai − ci)!, and

|Ps(Zi)| = (ti + bi + ci)! · (n− ti − bi − ci)!. It follows from (4.10) that the intersection of any three

of the six permutation sets considered above is empty since there is no 3-element chain in W
(i)
3 .

By (4.10) again, we need to take care of the intersections of two permutation sets associated with

comparable members of W (i)
3 ; there are six such intersections as the diagram of W3 has exactly

six edges; see Figure 1. One of the just-mentioned six intersections is Ps(Ai) ∩ Ps(Xi). For a
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permutation σ⃗ ∈ Ps(Ai) ∩ Ps(Xi), (4.13) yields that there are |Ai|! = (ti + ai)! possibilities to

arrange the elements of Ai in the first |Ai| places, bi! many possibilities to arrange the elements

of Xi \ Ai = B•
i in the next bi places, and (n− ti − ai − bi)! possibilities for the rest of entries of

σ⃗. Hence, |Ps(Ai) ∩ Ps(Xi)| = (ti + ai)! · bi! · (n− ti − ai − bi)!, and analogously for the other five

intersections of two permutation sets.

The considerations above imply that for i ∈ [k], |Gi| = f3,4(ti, ai, bi, ci); the function f3,4 is defined

(4.2). As (ti, ai, bi, ci) is clearly in H4(n), (4.3) yields that Mn ≤ |Gi|. This fact and (4.16) imply

that kMn ≤
∑

i∈[k] |Gi| ≤ n!. Dividing by Mn and taking into account that k ∈ N+, we obtain

that Sp(W3, n) = k ≤ ⌊n!/Mn⌋ = g∗3(n), as required.

We only guess but could not prove that for all n ∈ N≥3, f3,4 takes its minimum on H4(n) at

(⌊(n−2)/2⌋, 1, 1, 1); see also Conjecture 4.2. However, we can reduce the computational difficulties

by considering the auxiliary function

f3,3(t, x, y) = (t+ x)! · (n− t− x)! + (t+ y)! · (n− t− y)! + 2(t+ x+ y)! · (n− t− x− y)!

− 2(t+ x)! · y! · (n− t− x− y)!− 2(t+ y)! · x! · (n− t− y − x)! . (4.17)

The definition of H4(n), given in (4.1), and

2f3,4(t, x1, x2, x3) = f3,3(t, x1, x2) + f3,3(t, x2, x3) + f3,3(t, x1, x3) , (4.18)

explain that we are interested in f3,3 on the first one of the following two sets,

H3(n) := {(t, x, y) ∈ N3
0 : x > 0, y > 0, t+ x+ y ≤ n− 1} and (4.19)

H ′
3(n) := {(t, x, y) ∈ N3

0 : x > 0, y ≥ x, t+ x+ y ≤ n− 1}. (4.20)

In (4.19), the sum is only at most n− 1 since the fourth variable of f3,4, which does not occur in

f3,3, is at least 1. The progress is that H3(n) has significantly fewer elements than H4(n), and

H ′
3(n) has even fewer; this is why we could reach 300 in Theorem 4.1. (Note that a priori, it was

not clear that when 2f3,4(t, x1, x2, x3) takes its minimum value, then so do all of its summands in

(4.18).) Observe that since f3,3 is symmetric in its last two variables,

min{f3,3(t, x, y) : (t, x, y) ∈ H3(n)} = min{f3,3(t, x, y) : (t, x, y) ∈ H ′
3(n)}. (4.21)
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A straightforward Maple program2, which benefits from (4.21), shows that

for 3 ≤ n ≤ 300, f3,3 takes its minimum on the discrete

tetrahedron H3(n) at (t, x, y) = (⌊(n− 2)/2⌋, 1, 1).
(4.22)

(Note that f3,3 takes its minimum at two triples if n is even but only at a unique triple if n is

odd.) If n ∈ {3, 4, . . . , 300} and (⌊(n− 2)/2⌋, 1, 1, 1) is substituted for (t, x, y, z), then each of the

three summands in (4.18) takes its minimal value by (4.22). This allows us to conclude that at

(t, x, y, z) = (⌊(n − 2)/2⌋, 1, 1, 1), f3,4 takes its minimum on H4(n). Thus, for n ∈ {3, 4, . . . , 300}
and for Mn from (4.3),

Mn = f3,4(⌊(n− 2)/2⌋, 1, 1, 1)

= 3 · ⌊n/2⌋! · ⌈n/2⌉! + 3 · ⌊(n+ 2)/2⌋! · ⌈(n− 2)/2⌉!− 6 · ⌊n/2⌋! · ⌈(n− 2)/2⌉! .
(4.23)

Combining (4.5), (4.23), and (4.6), we obtain that g∗3(n) = g∗∗3 (n) for n belonging to the set

{3, 4, . . . , 300}, as required.

Next, to show that the pair (f▲
3,0,3, g3) = (f

(0)
3,0,3, g3) is separating, we need to show that f

(0)
3,0,3(n+

1) − g3(n) ≥ 0 for all n ∈ N≥3. Depending on the parity of n, there are two cases. If n is of the

form n = 2m+ 2 then, reducing the sum in (4.7) to its summands corresponding to (i, j) = (0, 0)

and (i, j) = (1, 0),

2f
(0)
3,0,3(n+ 1)− 2g3(n) ≥ 2

(
2m

m

)
+ 2

(
2m− 3

m

)
−

(
2m+ 1

m

)
(4.24)

=
2 · (2m)!

m! ·m!
+

2 · (2m− 3)!

m!(m− 3)!
− (2m+ 1)!

m!(m+ 1)!

=
(2m− 3)!

m!(m+ 1)!
· α, where

α = 2(m+ 1)2m(2m− 1)(2m− 2) + 2(m+ 1)m(m− 1)(m− 2)

− (2m+ 1)2m(2m− 1)(2m− 2)

= 2m4 + 4m3 − 14m2 + 8m = 2m(m+ 4)(m− 1)2. (4.25)

Hence, both α and the fraction multiplied by α are non-negative for m ∈ N+. Thus, f (0)
3,0,3(n +

1)− g3(n) ≥ 0 for n ≥ 4 even. Similarly, for n = 2m+ 1 odd,

2f
(0)
3,0,3(n+ 1)− 2g3(n) ≥ 2

(
2m− 1

m− 1

)
+ 2

(
2m− 4

m− 1

)
−
(
2m

m

)
=

(2m− 4)!

m!m!
· 2m2(m− 1)(m− 2).

2Maple V Release 5 (1997); this computer algebraic program ran on a desktop computer (AMD Ryzen 7 2700X
Eight-Core Processor 3.70 GHz) in Windows XP environment simulated by Oracle VM VirtualBox 6.0 (2019) under
Windows 10 Pro. The whole computation for (4.21) and the data in Section 5 took 7 hours and 16 minutes;
(4.21) in itself needed about 7 hours. The program is available from the (Appendix) Section 6 of the extended
arXiv:2309.13783 version of the paper and, at the time of writing, from the author’s website.

https://arxiv.org/abs/2309.13783
http://www.math.u-szeged.hu/~czedli
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Therefore, f
(0)
3,0,3(n + 1) − g3(n) ≥ 0 for 2 ≤ m ∈ N+, that is, for n ≥ 5 odd. For n = 3,

f
(0)
3,0,3(n+ 1)− g3(n) ≥ 0 is trivial; see also 5.2. We have shown that (f▲

3,0,3, g3) is separated.

The already mentioned Maple program has computed g3(n), g∗3(n), and g∗∗3 (n) for all n ∈ {3, 4, . . . ,
300}. This computation proves that g∗∗3 (n) = g∗3(n) ≤ g3(n) for all these n and g∗∗3 (n) = g∗3(n) <

g3(n) for n ∈ {5, 6, . . . , 300}. These inequalities and that (f▲
3,0,3, g3) is separated imply that

(f▲
3,0,3, g

∗
3) and (f▲

3,0,3, g
∗∗
3 ) are separated on {3, 4, . . . , 300}. The same Maple program has com-

puted all the relevant f▲
r,0,r(n+ 1) and gr(n), from which we conclude that for r ∈ {3, 4, . . . , 100},

the pair (f▲
r,0,r, gr) is separated on the set {r, r + 1, . . . , 300}. The proof of Theorem 4.1 is com-

plete.

Some comments on this proof are appropriate here. While we could use quite a rough estimation

in (4.24) when proving that (f▲
3,0,3, g3) is separating on the set N≥3, there is no similar possibility

for (f▲
r,0,r, gr). Indeed, since f▲

r,0,r(n+ 1) = gr(n) for, say, (r, n) = (20, 56) when f▲
20,0,20(56 + 1) =

17 672 631 900 = g20(56), no estimation would be possible. As gr(n) is far from being asymptotically

good, it is not worth putting more work into its investigation. While we could use Grätzer [10,

Lemma 73] to reach a pleasant situation for r = 3, see (4.11) and (4.12), we have no similar tool

for r > 3; this explains that Theorem 4.1 does not tell too much about upper estimates in case of

r > 3. Finally, note that even though f3,3 in (4.17) is simpler than f3,4 in (4.2), the three-variate

function f3,3 is still too complicated. In particular, we know from computer-assisted calculations

that f3,3 has several “local minima” on the discrete tetrahedron H3(n) defined in (4.19); this is our

excuse that we could verify Conjecture 4.2 only for n ≤ 300 and only with a computer.

5 Odds and ends, including some computational results

Theorem 4.1 pays no attention to the case r = 2, which is trivial by the following remark. As in

(4.4), g2(n) := ⌊fSp(n)/2⌋ = ⌊C(n, ⌊n/2⌋)/2⌋.

Remark 5.1. For n ∈ N≥2, Sp(J(FD(2)), n) = g2(n).

Proof. By Lemma 3.1 or trivially, J(FD(2)) is the two-element antichain. Hence, Remark 5.1

follows from Sperner’s theorem, which we quoted in (2.2).

Corollary 5.2. For r ∈ N≥3 and k ∈ N≥2, let n ∈ N+ be the smallest integer such that k ≤
f▲
r,0,r(n); see (4.8). Then for every distributive lattice D generated by r elements, the direct power

Dk has an at most n-element generating set.

Proof. Let k, D, and n be as in the corollary. Since k ≤ f▲
r,0,r(n) is included in the assumption and

f▲
r,0,r(n) ≤ Sp(J(FD(r)), n) by Theorem 4.1, it follows from (2.4) that FD(r)k can be generated by
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an at most n element subset Y . Using that FD(r) is the free r-generated distributive lattice, we can

pick a surjective (in other words, onto) homomorphism φ : FD(r) → D. Then φk : FD(r)k → Dk,

defined by (x1, . . . , xk) 7→ (φ(x1), . . . , φ(xk)), is also a surjective homomorphism. Thus, φk(Y )

generates Dk and |φk(Y )| ≤ |Y | ≤ n proves Corollary 5.2.

The just-proved corollary and the abundance of large lattices that are easy to describe and easy

to work with motivate the following extension of the cryptographic “protocol” outlined in Czédli

[5] and, mainly, in [3]. The purpose of the quotation marks here is to warn the reader : none of our

protocols is fully elaborated and, thus, it does not meet the requirements of nowadays’ cryptology.

In particular, neither a concrete method of choosing the master key according to some probabilistic

distribution is given nor we have proved that the average case withstands attacks; we do not even

say that we are close to meeting these requirements. On the other hand, no rigorous average case

analysis supports some widely used and, according to experience, safe cryptographic protocols like

RSA and AES and, furthermore, many others rely ultimately on the conjecture that the complexity

class P is different from NP. This is our excuse to tell a bit more about one of our motivations in

Remark 5.3 below. For a lattice L and h⃗ = (h1, . . . , hk) ∈ Lk, h⃗ is a (k-dimensional) generating

vector of L if {h1, . . . , hk} is a generating set of L.

Remark 5.3. In the session key exchange protocol given in Czédli [3]3, the secret master key

known only by the communicating parties was a k-dimensional generating vector h⃗ of the 2n-

element Boolean lattice Bn. The point was that Gm(Bn), defined in (2.3), is small, and so there

are very many k-dimensional generating vectors h⃗ if k is a few times, say, seven times larger than

Gm(Bn). Here we suggest to add (A) or (B) to the protocol outlined in [3] and to work in a lattice

different from Bn.

(A) Choose a medium-sized finite random poset U and an exponent n ∈ N+; for example, a 20-

element random poset U and n = 500 are sufficient. (There are very many 20-element posets;

see A000112 in Sloan [15]; the direct link is https: // oeis. org/ A000112 .) By the well-known

structure theorem of finite distributive lattices, see Grätzer [10, Theorem 107], U determines a

finite distributive lattice D. Then replace Bn with Dn in the [3]-protocol so that, in addition to h⃗,

U and n also belong to the secret master key.

(B) Choose a random poset U of size 100 or so. As in [6], this U determines the huge lattice

(Quo≤(U);⊆) of quasiorders extending ≤U ; this lattice can be generated by few elements. Use

this lattice instead of Bn. The poset U and a k-dimensional generating vector of (Quo≤(U);⊆)

constitute the secret master key; otherwise the protocol is the same as in [3].

3At the time of writing, see (4.3) in https://arxiv.org/abs/2303.10790v3 .

https://oeis.org/A000112
https://arxiv.org/abs/2303.10790v3
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Next, we present some computational data, see Footnote 2; at the “≈” rows, the last decimals are

correctly rounded.

n 298 299 300

f▲
3,0,3(n) ≈ 3.919 720 · 1087 7.839 440 · 1087 1.562 662 · 1088

g∗∗3 (n) ≈ 3.932 918 · 1087 7.865 747 · 1087 1.567 888 · 1088
g∗∗
3 (n)

f▲
3,0,3(n)

≈ 1.003 367 003 1.003 355 705 1.003 344 482

(5.1)

n = 3 4 5 6 7 8

f▲
3,0,3(n) 1 1 2 3 6 11

g∗3(n) = g∗∗3 (n) 1 1 2 4 7 13

g3(n) 1 1 3 5 10 17

n = 9 10 11 12 13 14

f▲
3,0,3(n) 24 42 84 153 306 570

g∗3(n) = g∗∗3 (n) 26 46 92 168 333 616

g3(n) 35 63 126 231 462 858

n = 15 16 17 18 19 20

f▲
3,0,3(n) 1146 2145 4290 8100 16200 30786

g∗3(n) = g∗∗3 (n) 1225 2288 4558 8580 17107 32413

g3(n) 1716 3217 6435 12155 24310 46189

(5.2)

n = 4 5 6 7 8 9 10 11 12

f▲
4,0,4(n) 1 1 2 3 6 10 20 36 74

g4(n) 1 1 3 5 10 17 35 63 126

n = 13 14 15 16 17 18 19 20 21

f▲
4,0,4(n) 134 268 496 992 1856 3712 7004 14014 26598

g4(n) 231 462 858 1716 3217 6435 12155 24310 46189

(5.3)

n = 5 6 7 8 9 10 11 12 13

f▲
5,0,5(n) 1 1 2 3 6 10 20 35 70

g5(n) 1 1 3 5 10 17 35 63 126

n = 14 15 16 17 18 19 20 21 22

f▲
5,0,5(n) 127 256 471 942 1758 3516 6620 13240 25095

g5(n) 231 462 858 1716 3217 6435 12155 24310 46189

(5.4)
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The computation for the following table took 306 seconds.

n 5 999 6 000

f▲
20,0,20(n) ≈ 7.445 882 708 069 · 101797 1.489 176 541 614 · 101798

g20(n) ≈ 1.488 924 847 889 · 101798 2.977 849 695 779 · 101798
(5.5)

Next, we give some examples; each of them is based on (2.4), Observation 2.2, and one of the

computational tables that will be specified.

Example 5.4. (A) By (5.2), Gm(FD(3)30 000) = 20. That is, the direct power FD(3)30 000 can be

generated by 20 elements but not by 19.

(B) By (5.3), Gm(FD(4)20 000) is either 20 or 21 but we do not know which one.

(C) By (5.4), Gm(FD(5)25 000) = 22.

(D) By (5.1), Gm(FD(3)10
88

) = 300 (the exponent in the direct power is 1088).

(E) By (5.5), Gm(FD(20)1.489·10
1798

) = 6 000 (the exponent is 1.489 · 101 798).

At the time of writing, we know from Sloan [15] (https://oeis.org/A000372) that in spite of

lots of work by many contributors, the largest integer r for which |FD(r)| is known is r = 9. We

mention the following well-known folkloric lower estimate:

21024 = 22
10

≤ |FD(20)|. (5.6)

Indeed, the free Boolean lattice FB(10) on 10 generators consists of 22
10

elements and it is lattice-

generated by the free generators of FB(10) and their complements. So FB(10) as a distributive

lattice is generated by 20 elements, implying (5.6).

Based on (5.6) and the paragraph above, the direct power in part (E) of Example 5.4 consists of an

unknown but very large number of elements. However, only 306 seconds were needed to determine

the least possible size of its generating sets.

https://oeis.org/A000372
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