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1 Introduction
In this paper we consider the fractional differential equation

(CD3+$> t)+qt)z(t) =0, n—1<~vy<n, n>3, (1.1)
where ¢ : R — R is continuous and ¢(t) # 0, together with the boundary conditions

tD(a)=0, z®B) =0, 0<i<n—1 and i+#k, (1.2)

where k is a natural number between 1 and n — 1.

Over the course of more than a century, numerous Lyapunov-type inequalities have been derived,
taking into account their applications in various areas, such as eigenvalue problems, stability
theory, oscillation theory, and the estimation of intervals of disconjugacy. The paper by Lyapunov
[14] in 1907 is considered to be the first work in this direction. In recent decades, especially
with the development of fractional differential equations, significant advancements and further
generalizations of Lyapunov inequalities have been obtained. To explore some of the research that
has provided some of the motivation for studying the problem (1.1)—(1.2), first note that Cabrera
et al. [7] derived Lyapunov-like inequalities and established a lower bound for the eigenvalues of

the fractional problem

(CDngx) t)+q@®)x(t) =0, a<t<db, ~ve€(m—1,n], n>4,

It can be observed that the boundary value problem discussed in [7] is a particular case of the
problem considered here, that is, of (1.1)—(1.2) with the parameter k taken to be 2. Additional
notable work for k¥ = 2 can found in [1,7,23,24]. Compared to the problems investigated in

[1,7,23,24], our boundary condition (1.2) is more comprehensive and inclusive.

In [6], Bohner et al. applied a Vallée-Poussin theorem to obtain explicit inequality criteria for the

solvability of the problem consisting of the Caputo fractional functional differential equation

m

(“DY ) (1) + ) _(Tia)(t) = f(t), t€ [a,b],
i=0
and the boundary condition (1.2), where the operator T; : €' — Lo, with C = C([a,b],R) can
include a delay or advanced argument, an integral operator, or various linear combinations of such
things. In another work, Domonshnitsky et al. [10] obtained such criteria for fractional functional

differential equations with Riemann-Liouville derivatives again based on the Vallée-Poussin theo-
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rem. Rong and Bai [21] obtained a Lyapunov inequality for the problem

(CDg+.’L') ) +qt)x(t) =0, a<t<d 1<vy<2

z(a) =0, (“Dfz) (b)) =0, 0<pB<1,

where 1 < v < 14 3. Extensive research has been conducted on Lyapunov inequalities using differ-
ent forms of fractional derivatives such as in [5,11,12,15,16,22|. For a comprehensive exploration of
Lyapunov inequalities, a detailed study can be found in the recent monograph by Agarwal, Bohner
and Ozbekler [2].

Using estimates of the Green’s function has been a common technique employed in the study of
Lyapunov type inequalities. In cases where the Green’s function possesses a fixed sign, estimating
it becomes relatively straightforward compared to cases where the sign is unknown. Nevertheless,
several researchers have successfully managed to find estimates and derive Lyapunov-type inequal-
ities even if the sign constancy of the Green’s function is not known; for example, see the recent

papers [21,22] and the book [2].

The present work is divided into six sections. Section 1 provides an introduction and background
information pertaining to the problem. Preliminaries concepts are introduced in Section 2. In
Section 3, we obtain a Lyapunov inequality that improves the results in [7]. In the process, we
are able to obtain a new Lyapunov inequality for a third-order linear differential equation (see
Corollary 3.6 below). In Section 4, we obtain a Lyapunov inequality under a restrictive condition
(see (4.1)). A Lyapunov inequality for a general k with 1 < k < n — 2 is discussed in Section 5.

We conclude this work in Section 6 with some applications and open problems.

2 Preliminaries

The monographs [13, 18] offer a thorough examination of the basics of fractional calculus. The
recent publication [22] contains the required fundamental definitions and lemmas utilized here in
this study. Next, we discuss the Green’s function and its sign in order to enhance our comprehension

of the primary outcomes.

Lemma 2.1. Assume that v € (n—1,n], 1 <k <n-—1, and f € L. Then the unique solution

of the fractional boundary value problem

(“DY a)(t)+ f(t) =0, a<t<b, 1)

2@ (a) = 2®(b) = 0, 0<i<n-—-1 and i#k,
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is given by \
() = / Gr(t, 5)f(s)ds, (2.2)

where Gi(t, s) is the Green’s function given by

(v =D(y=2) (v =Kt —a)"(b—s)T" = (t—5)T", a<s<t<b,

?s“»—

1

Gk(t, 8) = W

(Y =DOr=2)- (v =kt —a)(b—s)"", a<t<s<b

fall

Proof. Consider the equation
(“Dya)(t) = —f (D).

Then, using some fundamental concepts in the fractional calculus (see [13,18]), we see that

(134 (“DY2))(t) = —(L (1),

which, in turn, implies that there are constants b; € R, ¢ =0,1,...,n — 1, such that
1 t
z(t) =by+bi(t—a)+ byt —a)?+ -+ by_1(t —a)" "t — o) / (t —s)7"Lf(s)ds,

for t € [a,b]. From the boundary condition z(9)(a) = 0 for 0 < i < n — 1 and i # k, we obtain
bj=0for 0 <i<n-—1,i%#k. Since x(k)(a) # 0, we have by # 0. Therefore,

I -
z(t) = bp(t — a)* — W~/a (t— )7 f(s)ds, (2.4)

and so

") (b) = klby — (v =Dy ;(27))' ~(y=k) /b(b —5)7 L (s)ds.

Applying the boundary condition z*) (b) = 0 gives

_ _ — b
- 1)(vk!r2()7) (v ’f)/ (b= )% f(s)ds.

Using this value of by in (2.4), we obtain

J— — P — b t
a(t) = & ””k!ﬁ(l) O =K gy / (b— s)r—k-1 f(s)ds—ﬁ / (t— s~ f(s)ds, (2.5)
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or

o) = OO B0 [ o o

b
+/t (ta)k(bs)v’“f(s)ds] Fl/at(ts)vlf(s)ds. (2.6)
This proves the lemma. O

The following lemma provides some valuable information about the sign of the Green’s function.

Lemma 2.2. Ify€ (n—1,n] and v >k + 1, then Gi(t,s) > 0 for all t,s € [a,D].

Proof. Clearly,

Gi(t,s) = (Yy=D(y=2) - (v=k)(t—a)f®-s"""" >0,

1
L(vy)k!

fora<t<s<b Ifa<s<t<b, weobtain

Gult:5) = T (1= Dy =2) (1= Bt = ) (o= )™ = (e =97
> 0 = DO =2 (= Bl =) (= (=
= 0~ DD (=B = = e
- -0 [ - D6 -2 - -]
> ﬁ(p 5771 [;k(k — 1) (1) — 1} =0,

where we have used the facts that v > k+1,t—a>t—s,and b— s >t — s, so that (¢t —a)*(b —
s)Y7F=1 > (t — s)k(t — s)Y=F~1. This completes the proof. O

3 Main results: Lyapunov type inequalities—I

We begin this section with another lemma on the properties of Gy (t, ).

Lemma 3.1. Ify € (n—1,n] and v > k+1, then Green’s function Gi(t, s) given in (2.3) has the

property that 86’57(:’5) >0 for allt,s € [a,b]. Furthermore,

Gt ) < Gilb,s) = ﬁ L= =2) (= R - @)~ s (b 57!
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Proof. For a <t < s < b, we have

aGk(t78) o k
ot KID(y)

(=1 =2 (y = k)t~ ) b — s+ 20,

Fora<s<t<hb,

e = kzrkm (=D =2) (= R = @) o= )T s = ()
e R I ]
- (Z“(_v)l) _(k _1 (=2 (= k- )=t - S)W_Q]
(v—1) [(k=1D)! - _
) _(kfl)!_l (t—s) =0,

where we have used the fact that v > k4 1. Therefore, the function Gg(t, s) is nondecreasing with

respect to t, and this implies G (t, s) < Gg(b, s) for all ¢, s € [0,1]. This proves the lemma. O

The following theorem is the major result in this section.

Theorem 3.2. Assume that v € (n— 1,n] and v > k+ 1. If a nontrivial continuous solution of

(1.1)~(1.2) exists, then

b
/ [kl!(W D0y =2) (=R =) (b= = (b= fg(s)lds > T(7).  (3.2)

Proof. Let x(t) be a nonzero solution of (1.1)—(1.2) and let X = C([a,b]) be a Banach space

endowed with the norm

]l = sup [(t)].
<b

aif

Then, for a solution x of (1.1)—(1.2), by Lemma 2.1,

b
x(t) = / Gr(t, s)q(s)x(s)ds.
Since ¢(t) cannot be zero,

1 /71 e _
lz(t)] SW/Q [k!(v—1)(7—2)-“(v—k)(b—a)’“(b—S)7 P (b= )77 fa(s)] | (s)lds,

which yields (3.2). This proves the theorem. O
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We have the following consequences of this result.

Corollary 3.3. Under the conditions of Theorem 3.2, if (1.1)~(1.2) has a nontrivial continuous

solution, then
b
ke kI (y — k)
_ g\ —k-1 > A )
= atsas = T (33)

Corollary 3.4. Under the conditions of Theorem 3.2, if (1.1)—(1.2) has a nontrivial continuous

/|q |ds>k'r( o ) (3.4)

If we set n = 3, then v € (2,3], and since v > k + 1, this means we take k = 1. The problem
(1.1)—(1.2) then reduces to

solution, then

(3.5)

Fractional BVPs of the form (3.5) were studied by Qin and Bai [19,20]. Applying Theorem 3.2,
Corollary 3.3, and Corollary 3.4 to (3.5), we obtain the following corollary.

Corollary 3.5. If (3.5) has a continuous nontrivial solution, then

b
[ |56 00- 005772 6- 97 lgelids = T 5.
’ y—2 F(;—Y B 1)
| o= atotas = =5, (37)
and , - ,
/ lq(s)|ds > W (3.8)

As discussed earlier, (3.6) implies (3.7), and (3.7) implies (3.8). In particular, applying inequality
(3.8) of Corollary 3.5 to the third-order boundary value problem

2" (t) + q(t)z(t) = 0,
z(a) = 2" (a) = 2'(b) = 0,

(3.9)

we obtain the following result.

Corollary 3.6. If (3.9) has a continuous nontrivial solution, then

b 1
[ laolds > = (3.10)
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As far as our knowledge is concerned, Corollary 3.6 is new in the literature. The boundary
conditions used in (3.9) are different from those of Aktag and Cakmak [3,4] and Parhi and Panigrahi
[17]. Our Corollary 3.6 can not be compared to the results in [5] because of the restrictive condition
x”(a) + 2”(b) = 0 (see the third condition of (1.7) in [5]) required there. Similarly, Corollary 3.5
can not be compared to Dhar and Kong [8,9].

Next, suppose that n > 4. Our parameter k considered in (1.2) varies from 1 to n — 1. In
particular, if K = 2, we obtain the results of Cabrera, Lopez, and Sadarangani [7]. Our Green’s

function Gi(t, s) extends the Green’s functions obtained in [1,23,24] for a =0, b =1, and k = 2.

4 Main results: Lyapunov type inequalities—II

In this section, we derive a new Lyapunov type inequality, different from the ones presented in the
previous section. We use the maximum of the Green’s function G/(t, s) given in (2.3) to find a new
inequality for (1.1)—(1.2) for a general k, 1 < k < n — 1, with the price being that the following

restrictive inequality is imposed:
El>(FH=-1)--(y=k)(H-k-1). (4.1)

As prescribed by our boundary condition (1.2), we consider the following cases:

(A1) z(0) =2"(0)=---=z"D(0) =0, 2/(1) =0

(Ag) z(0) = 2/(0) = 2™ (0) = --- = 2D (0) = 0, 2”(1) =0

(As3) z(0) = 2'(0) = 2”(0) = 2”"(0) = - -- = (=D (0) = 0, 2"/(1) =0
(A1) 2(0)=2'(0) =2"(0) =--- =2""2(0) =0, 2" V(1) =0

Remark 4.1. Observe that:

(B1) For k =1, that is, in the case (A1), we can take v = 2.5 € (2,3]. Then, condition (4.1) is
satified, i.e.,

1=k'>(n—=1)--(y=k)(y—k—1)= (25— 1)(2.5—2) = 0.75.

(B2) For k = 2, that is, in the case (Az), we can take v = 3.5 € (3,4], so that condition (4.1)

becomes

2=kl>(y—1)--(y—k)(y—k—1) = (3.5 —1)(3.5 — 2)(3.5 — 3) = 1.875.
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(Bs) For k =3, that is, in the case (As), we can take v = 4.4 € (4,5], and (4.1) becomes

6=k'>(y—1)-(y—k)(y—k—1) = (4.4 —1)(4.4 — 2)(4.4 — 3)(4.4 — 4) = 4.5696.

The following lemma gives an upper bound on G/(t, s).

Lemma 4.2. Let vy > k+ 1 and assume that (4.1) is satisfied. Then

1 k(b—a) ' ((v=2)(y—3) (v —k)(y—k—1)\ *
Gty A (2209 0Bk 0YE
Proof. By Lemma 3.1, we have Gi(t,s) < G(b, s). Set
Fs) = (v = Dy = 2)- (v = K)(b— ) (b — )™+ — (b— s~ (43)

R

then G, (b, s) = = F(s). To obtain the maximum of F(s), set F’(s) equal to zero to obtain

F/(S) — _('7_ 1)(7_2).-.15!7—15)('7_]@_ 1) (b_a)k(b_s)'y—k—Q_'_(,y_ 1)(b_s)fy—2 =0,

which is true if and only if

Clearly, s* < b. Also, if s* < a, then

El<(y=2)(v=k)(y—k-1),

which contradicts (4.1). Hence, s* > a.

Now,

F'(s) = (v -DOr=2)--- (=K —k-1y-k-2) (b— S)'y—kfi’)(b_ a)k

k!
—(v =Dy =2)(b—s)""
_ (7—1)(7—2)(17—8)7_16_3 (’7_3)(V_k)(,}];'_k_1)(7_k_2)(b_a)k_(b_s)k: )

If we set

o(s) = (7—3)~--(7—k)(7k!—k—1)(v—k—2)(b_a)k_(b_s)k’
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then
g@ﬂ:(7—$-~h—kﬂzrk—1X7—k—2Nb_®k_(7—®-~h—kﬂv—k—1%b_®k

_ (773)”.(7;!]{:)(7711:71)(bfa)k(’}/*k*2*’7+2)

kw—@~«v—mw—k—n
k!

= (b—a)* <0.

Therefore, F(s) attains its maximum at s = s*, and the maximum of F(s) is given by

F(s) <max F(s) = F(s*) =

S CRICEEINCERIIN EEs st D GG

— (v =Ky —k—1 o .
_(W ) Wklﬂv )> (b— a)

:@_®%4<W—®~KWLHW—R—D>kVW—UM—;%~W—@

_m—m~wv—mw—k—n]

k!

:w_wwlcv—m~«v;mw—k—m> " W—@;ﬁv—mw_l_w+k+”
_ i (=2 (=R k=D T (7=2)- (k) k1)
=kb-a) ( k! ) Ky —k—1)
:kw—@%ﬂ(W—m~«v—mw—k—n)%1

(y—k-1) k!

Consequently, (4.2) holds, and this completes the proof of the lemma. O

Next, based on the above lemma, we present our main inequality in this section.

Theorem 4.3. If v > k+1, (4.1) is satisfied, and a nontrivial continuous solution of (1.1)—(1.2)

exists, then

y—1

) k=) i e
/'q'“> R —a) <w—m~«v—mm—k—w) ' (45)

As before, we obtain the following corollaries.

Corollary 4.4. Let v € (2,3) and (v — 1)(y — 2) < 1. If a nontrivial continuous solution of the

fractional boundary value problem (3.5) exists, then

’ L(v) 1
. e i T
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Proof. This can be proved by letting k =1 in (4.1) and (4.5). O

Corollary 4.5. Let v € (3,4) and (v —1)(y — 2)(y — 3) < 2!. If a nontrivial continuous solution

of the fractional boundary value problem

(c D(Lx) (t) + q(t)z(t) = 0, 3< <4, W)
w(a) = 2'(a) = 2" (a) = 2" (b) = 0
exists, then o
[z 52058 (G=pe=y)
Proof. This can be proved by letting k = 2 in (4.1) and (4.5). O

Corollary 4.6. Let v € (4,5) and (v — 1)(y — 2)(y — 3)(y — 4) < 3!. If a nontrivial continuous

solution of the fractional boundary value problem

(D7) () +ahy() =0, 1<y <5, W)
2(a) = o'(a) = 2" (a) = 2" (a) = 2" (b) = 0

exists, then -
I (e e

Proof. This can be proved by letting k = 3 in (4.1) and (4.5). O

5 Main results: Lyapunov type inequalities—III

In Sections 3 and 4, we obtained two different Lyapunov-type inequalities. In this section, we
obtain one more such inequality that is also different from the previous ones. Here we will have
the same integrand that appeared in (3.2) in Section 3, whereas we only had ¢ as the integrand
in (4.5) in Section 4. Although the condition v > k + 1 is required in both of these sections, the
inequality (4.1) prevents us from considering many types of boundary conditions. For example,

from the observations (Bg)—(Bs) and condition (4.1), we see that we cannot ask that k <n — 2.

In this section, we avoid condition (4.1) and find a general Lyapunov-type inequality for (1.1)

together with the boundary condition (1.2), which is valid for the case 1 <k <n — 2.
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Set
1 Ef(b—a)y = (y -k —1)77F1
M= wax{ L= D=2 - ) b 7
kb=~ (=23 (—k-D\'T -
(v—k-1) k! ’ ’
(b—a)y-!

Lemma 5.1. Let v > k+ 1. The inequality

1
Gp(t < —M 5.2
t,?é?(fb] k( 78) = F(’Y) ) ( )

holds, where M is defined in (5.1).

Proof. We have I'(7)Gy(t,s) = H(y—1)(y—=2) - (v — k)t —a)*(b—s)F 1 fora <t < s <b.
Now,
oG, k

NZr =70~ D=2 (r=k)(t—a)" (b -5 >0

implies that G (t, s) is non decreasing with respect to t. Hence, I'(7)Gg(t, s) < Gi(s, s)I'(7). Set
T'(v)Gr(s,s) = g1(s). Then,

g1(s) = %(’Y —D(y=2)---(y=k)(s—a)¥(b—s)"F1,

d
and 2L = 0 if and only if
S

Clearly, a < s* < b, and

2
TI =1 =2 (1= Kbk~ (s — )20 — 57"
—k(y—k—=1)(s— a)k_l(b - 5)7_’“_2 —k(y—k—=1)(s— a)k—l(b _ S)“r—k—2
+(y—k=1)(y—k—=2)(s—a)"(b—s)7""7

i(v =1 (y = k) (s = a)* 2 (b= )T P k(K — 1)(b— 5)?

T K
— 2=k =D =)= s)+ (7= k=l =k =2)(s ~a)’] (53)
Now, 5™ —a = k(bi:la) and
<b—8*)=(b—a)—k(b_a) _(=al—k-1)

(v—1) (v—1)
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Thus, from (5.3), we have

g _ (=D =2)---(v—k) KE=2(b — a) V3 (y — k — 1)7—k~2 -

Pl k! (y— 1)+

which shows that g;(s) attains its maximum at s = s*. Hence,

k(b —a)Y "t (y -k —1)77F1
(y—1)pt '

max  G(t,s) =

e T)H (y-D(y=2)---(v—k) (5.4)

Next, suppose that a < s <t < b. Since v > k + 1, Gg(¢, s) is nondecreasing with respect to ¢.
Thus, for a < s <t < b, we have

1

max ka(t7s) = Gi(b,s) = e

a<s<t<

F(s), (5.5)

where F(s) is given in (4.3). Clearly F'(s) = 0 if and only if s = s*, where s* is given in (4.4).
Moreover, s* < b, F(s) is nondecreasing for s < s*, nonincreasing for s > s*, and attains its
extreme (maximum) value at s = s*.

First, suppose that a < s*. Then F(s) attains its maximum at s = s*, and the maximum value of

G (t, s) is given by

~y—1

_ o L kb—a)t ((y=2)(y=3) (v -k -1\
i Gult,s) = Gi(h,5%) = O ( - (59)
Finally, suppose that s* < a. Then,
max  Gi(t,s) < max Gg(b,s) < Gg(b,a)
a<s<t<b a<s<b
(b—a)!
Y (D) (=2 (v — k) — k). .
(= D=2 (= F) = kY (5.7
Therefore, in view of (5.4), (5.6), and (5.7), the lemma is proved. O
Theorem 5.2. Let v > k+ 1. If z(t) is a nonzero solution of (1.1)-(1.2), then
b
I'(v)
L|¢mﬁ> ), (5.8)

6 Discussion and conclusions

In this section, we obtain Lyapunov-type inequalities for fractional differential equations of various
orders and with different boundary conditions. We also compare our results with some existing

ones in the literature.
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6.1 The case v € (2, 3]

Let v € (2,3]. Since v > k+ 1 and v > 2, we have k = 1. In this case,

y—2
M, — max {(b oy (”‘2> b—a) =2 (b —a) 2)} .6

v—1

where My = M|,—; and M is given in (5.1). Now 2 < v < 3 implies (y —2)""2 > v — 2, so
_ y-1 (V=2 T =1 -2
M, =4 (b—a) P s (b=a) (v =2) : (6.2)
We then have the following corollary.

Corollary 6.1. Let v € (2,3]. If z(t) is a nonzero solution of

(6.3)
z(a) = 2" (a) = 2'(b) =0,
then . .
/ lg(t)] dt > % (6.4)

Since (b —a)’72 > (7711)7,2 holds if and only if b > a + ﬁ, we obtain the following corollary

from Corollary 6.1.

Corollary 6.2. Let v € (2,3] and b > a + ——. If 2(t) is a nonzero solution of (6.3), then
gl 71

b
/a al0)]dt > 7 a)v_Fl((Vv) I (6.5)

Now we consider the problem (3.9). Here n = 3, v = 3, and k = 1. In this case, Corollary 3.6
shows that if (3.9) has a nontrivial solution, then (3.10) holds. Corollary 4.4 cannot be applied
because (v — 1)(y —2) = 2 > 1 and so (4.1) fails. By Corollary 6.1, if = is a nonzero solution of
the problem (3.9), then

’ 2
/a e > (6.6)

holds. If b > I + a, then max{(bga) ,(b—a)?} = (b—a)?. Consequently, (6.6) yields (3.10). On,

the other hand, if b < 3 + a, then max{@, (b—a)?} = (b;—a) In this case, (6.6) yields

b 4
/ (0l dt > 2 (6.7)
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6.2 The case v € (3,4]

Let v € (3,4]. Since v > k+ 1 and k # 0, we consider the following two cases: k =1 and k = 2.
First, suppose that k = 1; then Theorem 5.2 yields the following corollary.

Corollary 6.3. Let vy € (3,4]. If z(t) is a nonzero solution of

(“Dz.2) () +aW() =0,

(6.8)
z(a) = 2"(a) = 2" (a) = 2/ (b) =0,
then .
[ awlan> 22 (6.9)

where My is given in (6.2).

Corollary 6.4. Lety € (3,4] and b > a + ﬁ If x(t) is a nonzero solution of (6.8), then (6.5)
holds.

Finally, suppose that k = 2. Then Theorem 5.2 reduces to the following corollary.

Corollary 6.5. Let vy € (3,4]. If z(t) is a nonzero solution of

(°Dz.) () + a0 =0,

(6.10)
z(a) = 2'(a) = 2’ (a) = 2" (b) = 0,

then .

/ lq(t)] dt > % (6.11)
where

{200 =2 =37 2-a) ! ((1=2)(=3)\ T Ay —3)b—a)!
MQ_{ (v =12 Cov-3 ( 2 ) ’ 2
(6.12)

In this paper, we obtained Lyapunov-type inequalities for higher-order fractional differential equa-
tions of Caputo-type with general two point boundary conditions. The assumption that v > k+1
helped us to analyze the signs of the Green’s function G(t,s) and its derivatives with the price
that k # n — 1. Similarly, by our assumption, we have k # 0. Therefore, it would be interesting to

discover a Lyapunov-type inequality for problem (1.1) for either of the boundary conditions

tD(a) =2 D)=0, 0<i<n—2



274 S. N. Srivastava, S. Pati, J. R. Graef, A. Domoshnitsky & S. Padhi

or

tD(a)=z() =0, 0<i<n-—1.

This is left to the reader.
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