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ABSTRACT

We describe the digraphs that are dual representations

of finite lattices satisfying conditions related to meet-

distributivity and modularity. This is done using the dual di-

graph representation of finite lattices by Craig, Gouveia and

Haviar (2015). These digraphs, known as TiRS digraphs,

have their origins in the dual representations of lattices by

Urquhart (1978) and Ploščica (1995). We describe two prop-

erties of finite lattices which are weakenings of (upper) semi-

modularity and lower semimodularity respectively, and then

show how these properties have a simple description in the

dual digraphs. Combined with previous work in this journal

on dual digraphs of semidistributive lattices (2022), it leads

to a dual representation of finite meet-distributive lattices.

This provides a natural link to finite convex geometries. In

addition, we present two sufficient conditions on a finite TiRS

digraph for its dual lattice to be modular. We close by posing

three open problems.
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RESUMEN

Describimos los digrafos que son representaciones duales de
reticulados finitos satisfaciendo condiciones relacionadas con
encuentro-distributividad y modularidad. Esto se obtiene
usando la representación digrafo dual de reticulados fini-
tos de Craig, Gouveia y Haviar (2015). Estos digrafos,
conocidos como digrafos TiRS, tienen sus orígenes en las
representaciones duales de reticulados de Urquhart (1978) y
Ploščica (1995). Describimos dos propiedades de reticulados
finitos que son debilitamientos de la semimodularidad (su-
perior) y semimodularidad inferior respectivamente, y luego
mostramos cómo estas propiedades tienen una descripción
simple en los digrafos duales. Combinado con trabajo pre-
vio sobre digrafos duales de reticulados semidistributivos
(2022) en esta revista, se tiene una representación dual de
reticulados encuentro-distributivos. Esto entrega una cone-
xión natural a geometrías convexas finitas. Adicionalmente,
presentamos dos condiciones suficientes en un digrafo TiRS
finito para que su reticulado dual sea modular. Concluimos
presentando tres problemas abiertos.

Keywords and Phrases: Semimodular lattice, lower semimodular lattice, modular lattice, TiRS digraph, meet-

distributive lattice, finite convex geometry.
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1 Introduction

The first dual representation of arbitrary bounded lattices was given by Urquhart in 1978 [15].

Since then, many different authors have attempted to provide dualities and dual representations

of classes of lattices that are not necessarily distributive (see the recent survey by the first author

[4]).

In this paper we examine representations for finite lattices that satisfy conditions related to meet-

distributivity and modularity. The dual structures of these finite lattices will be TiRS digraphs

satisfying some additional conditions. It was shown by Craig, Gouveia and Haviar [6] that there is

a one-to-one correspondence between the class of finite lattices and finite digraphs known as TiRS

digraphs (see Definition 2.4 and Theorem 2.6). We remark that this correspondence generalises

Birkhoff’s one-to-one correspondence between finite distributive lattices and finite posets from the

1930s.

A goal of any representation is to use simple, familiar structures to represent the objects of interest.

Finite TiRS digraphs provide a straightforward generalisation of finite posets. Moreover, digraphs

are a well-studied class of mathematical structures and hence are well suited to be used as dual

objects. In addition, the first-order description of TiRS digraphs can be used to study the finite

ones with computational tools such as Prover9/Mace4 [11].

We introduce and study lattice-theoretic conditions which generalise both lower semimodularity

and (upper) semimodularity for finite lattices and seem to be more natural and simpler than

the conditions from [8]. We are also able to provide equivalent conditions to them on the dual

TiRS digraph of a finite lattice. We can combine our lattice-theoretic conditions with our previous

results in this journal [5] to characterise the dual digraphs of finite meet-distributive lattices, which

correspond to finite convex geometries.

Currently, the only known dual characterisation of finite modular lattices is given by the theory of

Formal Concept Analysis [8]. A rather complicated condition is available for the standard context

dual to a finite semimodular lattice [8, Theorem 42]. We are able to provide conditions on the dual

digraph of a finite lattice, which are sufficient though not necessary for modularity of the lattice.

The paper is laid out as follows. In Section 2 we provide some background definitions and results

that will be needed later on in the paper. Section 3 defines two conditions which generalise, respec-

tively, (upper) semimodularity and lower semimodularity. We focus on the generalisation of lower

semimodularity—a condition we call (JM-LSM) (see Definition 3.6). We characterise the dual of

(JM-LSM) on the dual digraphs of finite lattices. For completeness we state corresponding condi-

tions and results related to upper semimodularity. In Section 4 we combine the results of Section

3 with results from a recent paper by Craig, Haviar and São João [5]. There, characterisations

were given of the digraphs dual to finite join- and meet-semidistributive lattices (and hence also
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finite semidistributive lattices). The combination of these dual characterisations gives us a charac-

terisation of the dual digraphs of finite meet-distributive lattices (also know as locally distributive

lattices). Furthermore, this allows us to describe a new class of structures that is in a one-to-one

correspondence with finite convex geometries. In Section 5 we give two sufficient conditions on a

finite TiRS digraph for the dual lattice to be modular. In Section 6 we list three open problems

and indicate why the task of describing digraphs dual to finite modular lattices is challenging.

2 Preliminaries

Central to the representation of a finite lattice that we will use is the notion of a maximal-disjoint

filter-ideal pair. This can, equivalently, be viewed as a maximal partial homomorphism from a

lattice L into the two-element lattice.

Definition 2.1 ([15, Section 3]). Let L be a lattice. Then ⟨F, I⟩ is a disjoint filter-ideal pair of L

if F is a filter of L and I is an ideal of L such that F ∩ I = ∅. A disjoint filter-ideal pair ⟨F, I⟩
is said to be a maximal disjoint filter-ideal pair (MDFIP) if there is no disjoint filter-ideal pair

⟨G, J⟩ ≠ ⟨F, I⟩ such that F ⊆ G and I ⊆ J .

The following fact was noted by Urquhart. It is needed for our characterisation of MDFIPs in

Theorem 3.2.

Proposition 2.2 ([15, p. 52]). Let L be a finite lattice. If ⟨F, I⟩ is an MDFIP of L then
∧
F is

join-irreducible and
∨
I is meet-irreducible.

The set of join-irreducible elements of L is denoted J(L) and the set of meet-irreducible elements

is denoted M(L).

Given a lattice L, we will add a set of arcs to the set of MDFIPs of L. The use of such digraphs for

lattice representation is due to Ploščica [12]. We point out that the original work using (topologised)

digraphs used so-called maximal partial homomorphisms (see [12, Section 1]). It is easy to show

that these are in a one-to-one correspondence with MDFIPs. For a lattice L, we now present its

dual digraph GL = (XL, E) where the vertices are the MDFIPs of L. Ploščica’s relation E, when

transferred to the set of MDFIPs, is defined below for two MDFIPs ⟨F, I⟩ and ⟨G, J⟩:

(E) ⟨F, I⟩E⟨G, J⟩ ⇐⇒ F ∩ J = ∅.

For finite lattices every filter is the up-set of a unique element and every ideal is the down-set

of a unique element, so we can represent every disjoint filter-ideal pair ⟨F, I⟩ by an ordered pair

⟨↑a, ↓b⟩ where a =
∧
F and b =

∨
I. Hence for finite lattices we have ⟨↑a, ↓b⟩E⟨↑c, ↓d⟩ if and only

if a ⩽̸ d. For a digraph G = (V,E) we let xE = { y ∈ V | xEy } and Ex = { y ∈ V | yEx }. The

next lemma is easy to prove and it will be useful later on.
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Lemma 2.3. Let GL = (XL, E) be the dual digraph of a finite lattice L. If x = ⟨↑a, ↓b⟩ and

y = ⟨↑c, ↓d⟩, then

(i) xE ⊆ yE if and only if a ⩽ c;

(ii) Ex ⊆ Ey if and only if d ⩽ b.

Figure 1 shows three lattices and their dual digraphs. These three examples will be important

throughout this paper. To make the labelling more succinct, we have denoted by ab the MDFIP

⟨↑a, ↓b⟩. We have also left out the loop on each vertex to keep the display less cluttered. Observe

that the directed edge set is not a transitive relation. The labels L4 and L∂
4 (as well as L∂

3 which

appears later) come from the paper by Davey et al. [7].
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Figure 1: Finite lattices N5, L4, L∂
4 and their dual digraphs.

The digraphs coming from lattices were described by Craig, Gouveia and Haviar [6]. The name

“TiRS” comes from combining the conditions (Ti), (R), (S) below, where they are abbreviations

for “transitive interval”, “reduced” and “separated” respectively.

Definition 2.4 ([6, Definition 2.2]). A TiRS digraph G = (V,E) is a set V and a reflexive relation

E ⊆ V × V such that:

(S) If x, y ∈ V and x ̸= y then xE ̸= yE or Ex ̸= Ey.

(R) For all x, y ∈ V , if xE ⊂ yE then (x, y) /∈ E, and if Ey ⊂ Ex then (x, y) /∈ E.

(Ti) For all x, y ∈ V , if xEy then there exists z ∈ V such that zE ⊆ xE and Ez ⊆ Ey.

The result below gives a description of dual digraphs of lattices with least and greatest elements.
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Proposition 2.5 ([6, Proposition 2.3]). For any bounded lattice L, its dual digraph GL = (XL, E)

is a TiRS digraph.

We recall from [12] a fact concerning general graphs G = (X,E). Let 2∼ = ({0, 1},⩽) denote the

two-element graph. A partial map φ : X → 2∼ preserves the relation E if x, y ∈ domφ and xEy

imply φ(x) ⩽ φ(y). The set of maximal partial E-preserving maps (i.e. those that cannot be

properly extended) from G to 2∼ is denoted by Gmp(G, 2∼). We use the abbreviation MPEs for

such partial maps.

For a graph G = (X,E) and φ,ψ ∈ Gmp(G, 2∼), it was shown by Ploščica [12, Lemma 1.3] that

φ−1(1) ⊆ ψ−1(1) ⇐⇒ ψ−1(0) ⊆ φ−1(0). This implies that the reflexive and transitive binary

relation ⩽ defined on Gmp(G, 2∼) by φ ⩽ ψ ⇐⇒ φ−1(1) ⊆ ψ−1(1) is a partial order. In fact, this

is a lattice order [3, Theorem 2.3]. For a graph G = (X,E), denote by C(G) the (complete) lattice

of MPEs (Gmp(G, 2∼),⩽).

The theorem below gives a one-to-one correspondence between finite lattices and finite TiRS di-

graphs. This result is essential to the work done in the rest of the current paper.

Theorem 2.6 ([6, Theorem 1.7 and p. 87]). For any finite lattice L we have that L is isomorphic

to C(GL) and for any finite TiRS digraph G = (V,E) we have that G is isomorphic to GC(G).

3 Generalising lower and upper semimodularity

For lattice elements a and b we write a ≺ b to denote that a is covered by b. A lattice is upper

semimodular if whenever a ∧ b ≺ a then b ≺ a ∨ b. It is common to refer to such lattices as

semimodular. A lattice is lower semimodular if whenever a ≺ a ∨ b then a ∧ b ≺ b. We use (USM)

and (LSM) as abbreviations for these two conditions.

The lattices in Figure 1 provide useful examples: N5 satisfies neither (USM) nor (LSM), L4 satisfies

(USM) but not (LSM), and L∂
4 satisfies (LSM) but not (USM).

We will focus on lower semimodularity, rather than upper semimodularity, because of the connec-

tion between lower semimodularity and finite convex geometries (see Section 4). We note that

modularity implies both semimodularity and lower semimodularity. If a lattice L has finite length

and is semimodular and lower semimodular, then L is also modular (cf. [9, Corollary 376]). For

further reading we refer to the book by Stern [14].

Figure 2 presents a number of different generalisations of distributivity and modularity (including

those presented above) and the relationships between them. The ‘B’ denotes bounded in the sense

of bounded homomorphic image of a free lattice (cf. [9, p. 504]). Observe that the conditions in

the top left and top right, which are weakenings of (LSM) and (USM) respectively, are in fact
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conditions on the standard context dual to a finite lattice. For the necessary terms and notation,

we refer to the book from where Figure 2 is taken [8, p. 234].

distributive

modularB

SD

JSD MSD

g ↗ m, g ↙ n ⇒ g ↗↙ m g ↙ m,h ↗ m ⇒ g ↗↙ m
semi-convex

LSM USM

meet-
distributive

join-
distributive

Figure 2: Relationships between generalisations of distributivity.

We begin by proving some new results about MDFIPs. These will be needed in the proofs of later

results.

Lemma 3.1. Let L be a finite lattice.

(i) If b ∈ M(L) and b ≺ a ∨ b, then ↓b is maximal with respect to being disjoint from ↑a.

(ii) If a ∈ J(L) and a ∧ b ≺ a, then ↑a is maximal with respect to being disjoint from ↓b.

Proof. Assume that b ∈ M(L) and b ≺ a ∨ b. This implies b < a ∨ b and hence a ⩽̸ b and so

↑a ∩ ↓b = ∅. Suppose the ideal ↓b were to be extended to ↓c with b < c and ↑a ∩ ↓c = ∅. Since

b ∈ M(L), the element a ∨ b is the unique upper cover of b and so a ∨ b ∈ ↓c. This implies

a ∨ b ∈ ↑a ∩ ↓c, a contradiction, showing the maximality of ↓b with respect to being disjoint from

↑a.

The proof of (ii) follows by a dual argument.

The next theorem gives a characterisation of MDFIPs.
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Theorem 3.2. A disjoint filter-ideal pair ⟨↑a, ↓b⟩ is an MDFIP if and only if it satisfies the

following conditions:

(i) a ∈ J(L);

(ii) b ∈ M(L);

(iii) b ≺ a ∨ b;

(iv) a ∧ b ≺ a.

Proof. If ⟨↑a, ↓b⟩ is an MDFIP, by Proposition 2.2, a ∈ J(L) and b ∈ M(L). We also have b < a∨ b,
since b = a ∨ b would imply a ∈ ↓b. Suppose there exists c ∈ L such that b < c < a ∨ b. If a ⩽ c

then c would be an upper bound for {a, b} and then a ∨ b ⩽ c. Therefore a ⩽̸ c. This would make

⟨↑a, ↓c⟩ a disjoint filter-ideal pair with ↓b ⊊ ↓c, contradicting the maximality of the pair ⟨↑a, ↓b⟩.
A dual argument can be applied to show that a ∧ b ≺ a.

Assume ⟨↑a, ↓b⟩ satisfies (i) − (iv). Lemma 3.1 says ↓b is maximal with respect to being disjoint

from ↑a and vice versa. Hence ⟨↑a, ↓b⟩ is an MDFIP.

The lemmas below will be used in our later investigations.

Lemma 3.3. Let L be a finite lattice, a, b ∈ L. The following are equivalent:

(i) a ⩽̸ b;

(ii) there exists j ∈ J(L) such that j ⩽ a and j ⩽̸ b;

(iii) there exists m ∈ M(L) such that b ⩽ m and a ⩽̸ m.

Proof. It is well-known that in a finite lattice the set J(L) is join-dense. Hence a ⩽ b is equivalent

to the condition that for all j ∈ J(L), j ⩽ a implies j ⩽ b. This settles the equivalence of (i) and

(ii). The equivalence of (i) and (iii) follows similarly from the meet-density of M(L) in L.

For a, b ∈ L we define the set Tab := {m ∈ M(L) | b ⩽ m, a ⩽̸ m }. An important consequence of

Lemma 3.3 is that Tab is non-empty whenever a ⩽̸ b. This is needed for our next result.

Lemma 3.4. Let L be a finite lattice and a, b ∈ L, a ⩽̸ b. Let d be a maximal element of Tab.

Then d ≺ d ∨ a.

Proof. Firstly, we point out that Tab is a non-empty finite poset and hence has a maximal element.

Since a ⩽̸ d, we have a∨d ̸= d, and so d < d∨a. Suppose there exists c ∈ L such that d < c < d∨a.
As d ∨ a ⩽̸ c, by Lemma 3.3 there exists m ∈ M(L) such that c ⩽ m but d ∨ a ⩽̸ m. So d < m. If

a ⩽ m then d ∨ a ⩽ m. It follows a ⩽̸ m and b ⩽ d < m, so m ∈ Tab. Since d was maximal in Tab
and d < m, we get a contradiction. Hence d ≺ d ∨ a.
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From the previous lemmas one can derive the following result.

Proposition 3.5. Let L be a finite lattice with a ∈ J(L) and b ∈ M(L). Then

(i) there exists m ∈ M(L) such that ⟨↑a, ↓m⟩ is an MDFIP;

(ii) there exists j ∈ J(L) such that ⟨↑j, ↓b⟩ is an MDFIP.

Proof. We prove only (i), as then (ii) will follow by a dual argument. Since a ∈ J(L), it has a

unique lower cover c. Clearly a ⩽̸ c, so by Lemma 3.4, there exists a maximal element m ∈ Tac

such that m ≺ m ∨ a. From Lemma 3.1(i) we know that ↓m is maximal with respect to being

disjoint from ↑a. If it were possible to extend ↑a to ↑d with d < a, then since c is the unique lower

cover of a, we would get c ∈ ↑d ∩ ↓m. Hence ↑a is maximal with respect to being disjoint from

↓m. It follows that ⟨↑a, ↓m⟩ is an MDFIP.

We now define a new condition, (JM-LSM), which will be central to the results that follow. We

believe it is a more natural weakening of (LSM) than the condition given in the top left of Figure 2.

The name of the condition comes from the fact that it is almost identical to the condition (LSM),

but the elements involved are quantified over J(L) and M(L).

Definition 3.6. A finite lattice L satisfies (JM-LSM) if for any a ∈ J(L) and b ∈ M(L), if b ≺ a∨b
then a ∧ b ≺ a.

Example 3.7. Condition (JM-LSM) is a proper weakening of the condition (LSM). Indeed, the

lattice in Figure 3 satisfies (JM-LSM) but not (LSM). To see this, observe that c ≺ c ∨ d and

c ∧ d ⊀ d, yet d /∈ J(L).

We note that the lattice L4 in Figure 1 does not satisfy (LSM), and also does not satisfy (JM-LSM):

c ∈ J(L), a ∈ M(L) and a ≺ c ∨ a, yet c ∧ a ⊀ c.

0

a cb

d

1

ac bc

ab ba

cd

Figure 3: A finite lattice that satisfies (JM-LSM) but not (LSM). Its dual digraph (right) satisfies
(LTi).

Below is a condition that we will prove is equivalent to (JM-LSM). It will assist us in proving that

the digraph condition (LTi), given in Definition 3.11, can be used to characterise the dual digraphs

of finite (JM-LSM) lattices.
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Definition 3.8. Condition (L-abc): Let a ∈ J(L) and b ∈ M(L). If a ⩽̸ b then there exists c ⩾ b

such that ⟨↑a, ↓c⟩ is an MDFIP.

Notice that if ⟨↑a, ↓c⟩ is an MDFIP, then Proposition 2.2 (cf. also Theorem 3.2) implies that for

the element c in Definition 3.8 we have c ∈ M(L). Notice also that the finite lattice L4 in Figure 1

does not satisfy (L-abc): we have a ∈ J(L), c ∈ M(L) and a ⩽̸ c and there is no m ⩾ c such that

⟨↑a, ↓m⟩ is an MDFIP.

The following theorem shows that for finite lattices the central property (JM-LSM) can be char-

acterised exactly via the condition (L-abc).

Theorem 3.9. A finite lattice satisfies (JM-LSM) iff it satisfies (L-abc).

Proof. Assume (JM-LSM) and let a ∈ J(L), b ∈ M(L) and a ⩽̸ b. Let Tab = {m ∈ M(L) | b ⩽

m & a ⩽̸ m}. Then Tab is a non-empty finite poset. Hence it has a maximal element, say c. So

c ∈ M(L), b ⩽ c and ⟨↑a, ↓c⟩ is a disjoint filter-ideal pair. To show that ⟨↑a, ↓c⟩ is an MDFIP, by

Theorem 3.2 we need to show that c ∧ a ≺ a and c ≺ c ∨ a. By (JM-LSM) we only need to prove

c ≺ c ∨ a, which follows from Lemma 3.4. We have shown that (L-abc) holds.

Now assume (L-abc). To show (JM-LSM), let a ∈ J(L), b ∈ M(L) and b ≺ a∨ b. We need to prove

a ∧ b ≺ a. From b ≺ a ∨ b we have a ⩽̸ b. By (L-abc) there exists c ⩾ b such that ⟨↑a, ↓c⟩ is an

MDFIP. Hence c ∈ M(L) and by Theorem 3.2, c∧a ≺ a. We claim that c = b. Suppose that c > b.

Then, since b ∈ M(L), it has a unique upper cover b⋆. As b ≺ a ∨ b, we get b⋆ = a ∨ b. From c > b

we have c ⩾ b⋆ = a ∨ b ⩾ a. This contradicts the fact that ⟨↑a, ↓c⟩ is an MDFIP. Hence c = b.

This proves a ∧ b = c ∧ a ≺ a.

Remark 3.10. We notice that if a finite lattice L satisfies (L-abc), then in the situation a ⩽̸ b for

a ∈ J(L), b ∈ M(L), an arbitrary maximal element of Tab can be taken for the element c ⩾ b such

that ⟨↑a, ↓c⟩ is an MDFIP. Indeed, if c is any maximal element of Tab, then c ∈ M(L), a ⩽̸ c, b ⩽ c

and so by the assumed condition (L-abc) there is c′ ⩾ c such that ⟨↑a, ↓c′⟩ is an MDFIP. Hence

c′ ∈ M(L), a ⩽̸ c′, b ⩽ c′, thus c′ ∈ Tab. From the maximality of c in Tab we get c = c′ as required.

Now we present a digraph condition dual to (JM-LSM). The condition is a strengthening of the (Ti)

condition, and because of its connection to lower semimodularity, we have chosen the name (LTi).

Later, in Definition 3.16, (UTi) is used for the dual condition related to upper semimodularity.

Definition 3.11. Consider the condition below on a TiRS digraph G = (V,E):

(LTi) uEv =⇒ (∃w ∈ V )(wE = uE & Ew ⊆ Ev).

Note that (LTi) is not dual to (LSM) as Figure 3 shows. For each pair of E related vertices, there is

some vertex making the consequent true. For example, if u = ba and v = ac, we have baEac, and we
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can let w = bc, since baE = {bc, ba, ac} = bcE, and Ebc = {ab, ac, ba, bc} ⊆ {ab, ac, ba, bc} = Eac.

The next two results prove that it is (JM-LSM) that is dual to (LTi).

Proposition 3.12. A finite TiRS digraph satisfies (LTi) if and only if it is the dual digraph of a

lattice that satisfies (L-abc).

Proof. Assume a finite lattice L satisfies (L-abc). To show that the dual digraph GL satisfies (LTi),

let u = ⟨↑a, ↓m⟩, v = ⟨↑j, ↓b⟩ be vertices of the digraph G and let uEv, whence a ⩽̸ b. Then by

(L-abc) there exists c ∈ M(L) such that b ⩽ c and ⟨↑a, ↓c⟩ is an MDFIP. If we denote w = ⟨↑a, ↓c⟩
as a vertex of G, then by Lemma 2.3 we have wE = uE and Ew ⊆ Ev as required.

For the converse, assume that a finite TiRS digraph G satisfies (LTi). To show that its dual

lattice L satisfies (L-abc), let a ∈ J(L), b ∈ M(L) and a ⩽̸ b. Since a ∈ J(L) and L is finite,

by Proposition 3.5(i), there exists an element m ∈ M(L) such that u = ⟨↑a, ↓m⟩ is an MDFIP.

Similarly, since b ∈ M(L), by Proposition 3.5(ii) there exists j ∈ J(L) such that v = ⟨↑j, ↓b⟩ is

an MDFIP. Since a ⩽̸ b, we have uEv. Now, by (LTi), there is a vertex w = ⟨↑c, ↓d⟩ ∈ V (G)

satisfying wE = uE and Ew ⊆ Ev. Since wE = uE, we get ↑c = ↑a, so c = a. Since Ew ⊆ Ev,

Lemma 2.3(ii) tells us that d ⩾ b. This proves that d is the desired element such that ⟨↑a, ↓d⟩ is

an MDFIP.

The main theorem of this section follows directly from Theorem 3.9 and Proposition 3.12.

Theorem 3.13. A finite TiRS digraph is the dual digraph of a finite lattice satisfying (JM-LSM)

if and only if it satisfies (LTi).

For completeness, we now state the conditions and results related to finite upper semimodular

lattices and their dual digraphs.

Definition 3.14. Let L be a finite lattice. We say that L satisfies the condition (JM-LSM) if

whenever a ∈ J(L), b ∈ M(L), and a ∧ b ≺ a, then b ≺ a ∨ b. We say that L satisfies (U-abc) if

whenever a ∈ J(L) and b ∈ M(L) and a ⩽̸ b then there exists c ⩽ a such that ⟨↑c, ↓b⟩ is an MDFIP.

The proposition below connects the two conditions defined above.

Proposition 3.15. A finite lattice satisfies (U-abc) iff it satisfies (JM-USM).

Our last definition is the condition (UTi) which is, like (LTi), a strengthening of the (Ti) condition

from Definition 2.4.

Definition 3.16. Consider the condition below on a TiRS digraph G = (V,E):

(UTi) uEv =⇒ (∃w ∈ V )(wE ⊆ uE & Ev = Ew).
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Theorem 3.17. A finite TiRS digraph satisfies (UTi) if and only if it is the dual digraph of a

finite lattice that satisfies (JM-USM).

4 Dual digraphs of meet-distributive lattices

In this section we will combine the results from Section 3 with results about dual digraphs of finite

join- and meet-semidistributive lattices from [5]. The goal is to give a description of the dual

digraphs of finite meet-distributive lattices. This will give a description of a new class of structures

that are in a one-to-one correspondence with the class of finite convex geometries. First, we recall

some basic definitions.

A lattice L is join-semidistributive if it satisfies the following quasi-equation for all a, b, c ∈ L:

(JSD) a ∨ b ≈ a ∨ c −→ a ∨ b ≈ a ∨ (b ∧ c).

A lattice L is meet-semidistributive if it satisfies the following quasi-equation for all a, b, c ∈ L:

(MSD) a ∧ b ≈ a ∧ c −→ a ∧ b ≈ a ∧ (b ∨ c).

A lattice is semidistributive if it satisfies both (JSD) and (MSD).

Considering the lattices in Figure 1 one can see thatN5 is semidistributive, L4 is meet-semidistributive

but not join-semidistributive, and L∂
4 is join-semidistributive but not meet-semidistributive.

For a finite lattice L and a ∈ L, consider µ(a) =
∧
{ b ∈ L | b ≺ a }. A finite lattice is meet-

distributive (also called locally distributive) if for any a ∈ L, the interval [µ(a), a] is a distributive

lattice (cf. [1, Section 5 - 2]). The class of finite meet distributive lattices is an important class of

lattices because of their link to finite convex geometries. The following results therefore lead us to

a new characterisation of finite convex geometries, which we present in Theorem 4.13 (iv) and (v).

The following equivalence is extracted from [1, Theorem 5-2.1].

Theorem 4.1. Let L be a finite lattice. Then the following are equivalent:

(i) L is meet-distributive;

(ii) L satisfies (JSD) and (LSM).

The results below use Theorem 4.1 to provide an additional characterisation of meet-distributive

lattices using (JM-LSM), the condition that was central to Section 3. Later, we will use this to

characterise their dual digraphs.
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Theorem 4.2. If a finite lattice L satisfies (JM-LSM) and (JSD), then it is lower semimodular.

Proof. Let L be a finite lattice satisfying (JM-LSM) and (JSD). Let a, b ∈ L be arbitrary such

that a ≺ a ∨ b. We are going to show that a ∧ b ≺ b. We will proceed by contradiction.

Suppose that a ∧ b ⊀ b. Then there exists c ∈ L such that a ∧ b < c < b. Then b ⩽̸ c and by

Lemma 3.3 the set Scb = { j ∈ J(L) | j ⩽ b, j ⩽̸ c } is non-empty. Let p be a minimal element of

Scb.

Suppose p ⩽ a, then since p ⩽ b, we get p ⩽ a∧ b ⩽ c, which is a contradiction, so p ⩽̸ a. Then by

Lemma 3.3, the set Tpa = {m ∈ M(L) | a ⩽ m and p ⩽̸ m} is non-empty. Let m be a maximal

element of Tpa. By Lemma 3.4, m ≺ m∨p. Since m ∈M(L), p ∈ J(L), and L satisifies (JM-LSM),

we obtain m ∧ p ≺ p.

The join irreducible element p has a unique lower cover p∗; likewise the meet irreducible element

m has a unique upper cover m∗. Then p∗ ⩽ m as p∗ = m ∧ p. Now p ≰ c and p∗ ⩽ c imply

c∧ p = p∗. Analogously, p ≰ m and p ⩽ m∗ imply m∨ p = m∗. It follows that c ≰ m as otherwise

we get c ⩽ m ∧ (a ∨ b) = a, whence c ⩽ a ∧ b, which contradicts a ∧ b < c. But c ⩽ m∗ since

m∗ ⩾ a ∨ p = a ∨ b ⩾ b. Here we used that since p ⩽ b, we have a ⩽ a ∨ p ⩽ a ∨ b, and since

a ≺ a ∨ b, we have a = a ∨ p or a ∨ p = a ∨ b. But a ̸= a ∨ p since p ⩽̸ a, so a ∨ p = a ∨ b.

Hence m ∨ c = m∗. Combining the above,

m∗ = m ∨ p = m ∨ c = m ∨ (p ∧ c) = m ∨ p∗ = m

by (JSD), a contradiction. Hence c cannot exist showing that a ∧ b ≺ b.

Remark 4.3. Notice in the proof we actually use a weaker form of (JSD). We will say that a

lattice L is weakly join-semidistributive if it satisfies the following quasi-equation for all a ∈ M(L),

b ∈ J(L), c ∈ L:

(W-JSD) a ∨ b ≈ a ∨ c −→ a ∨ b ≈ a ∨ (b ∧ c).

Hence in Theorem 4.2 we actually showed that (JM-LSM) and (W-JSD) implies (LSM).

We notice the lattice in Figure 3 satisfies (JM-LSM) but not (W-JSD): indeed c ∈ M(L), b ∈ J(L)

and c ∨ b = c ∨ a but c ∨ (b ∧ a) ̸= c ∨ a.

The result below follows from Theorems 4.1 and 4.2.

Corollary 4.4. A finite lattice is meet-distributive if and only if it satisfies both (JM-LSM) and

(JSD).

The following theorem provides a characterisation of the dual digraphs of finite join- and meet-

semidistributive lattices. Its proof (see [5]) relies on the well-known κ map used in the charac-
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terisation of semidistributivity. Notice that each of the conditions (i), (ii) and (iii) below is a

strengthening of the (S) condition from the definition of TiRS digraphs (Definition 2.4).

Theorem 4.5 ([5, Theorem 3.6]). Let G = (V,E) be a finite TiRS digraph with u, v ∈ V . Then

(i) G is the dual digraph of a finite lattice satisfying (JSD) if and only if it satisfies the following

condition:

(dJSD) if u ̸= v then Eu ̸= Ev.

(ii) G is the dual digraph of a finite lattice satisfying (MSD) if and only if it satisfies the following

condition:

(dMSD) if u ̸= v then uE ̸= vE.

(iii) G is the dual digraph of a finite semidistributive lattice if and only if it satisfies the following

condition:

(dSD) if u ̸= v then Eu ̸= Ev and uE ̸= vE.

The next few results in this section link the properties discussed earlier to distributivity in lattices

and transitivity in dual digraphs.

Theorem 4.6. Let G = (V,E) be a finite TiRS digraph that satisfies both (dMSD) and (LTi).

Then E is transitive.

Proof. We first claim that if a finite TiRS digraph G = (V,E) satisfies both (dMSD) and (LTi),

then for any vertices u, v ∈ V , uEv implies Eu ⊆ Ev. Indeed, uEv by (LTi) implies the existence

of w ∈ V such that wE = uE and Ew ⊆ Ev. By the property (dMSD), wE = uE means w = u,

whence Eu ⊆ Ev as required.

Now to show the transitivity of E, if uEv and vEw for some vertices u, v, w ∈ V , then by the

above claim, Eu ⊆ Ev and Ev ⊆ Ew. Hence Eu ⊆ Ew, which means u ∈ Ew, whence uEw as

required.

Proposition 4.7. If G = (V,E) is TiRS digraph with transitive E, then G is a poset.

Proof. As in a TiRS digraph G = (V,E) the relation E is reflexive, it only remains to show the

antisymmetry of E.

Assume for x, y ∈ V that xEy and yEx. We firstly show that xE ⊆ yE: if z ∈ V and z ∈ xE,

then xEz and with yEx we get yEz by transitivity of E, hence z ∈ yE as required. Now xE ⊂ yE

by the condition (R) from Definition 2.4 would give (x, y) /∈ E, a contradiction. Hence xE = yE.

Analogously one can show that Ey ⊆ Ex and since Ey ⊂ Ex would by (R) give (x, y) /∈ E, we

have Ey = Ex. Using that G satisfies the separation property (S) from Definition 2.4, it follows

that x = y as required.
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The result below follows from Theorem 4.6, Proposition 4.7 and Birkhoff’s one-to-one correspon-

dence between finite distributive lattices and finite posets, which was in [6] generalised into a

one-to-one correspondence between the class of finite lattices and finite TiRS digraphs (cf. Theo-

rem 2.6 here).

Corollary 4.8. If a finite lattice L satisfies (MSD) and (JM-LSM), then L is distributive.

We now return to focus on finite meet-distributive lattices, with the goal of describing a class of

digraphs connected to finite convex geometries.

Using the TiRS conditions, our conditions for the dual digraphs of (JM-LSM) and (JSD), respec-

tively, and Corollary 4.4, we get the following dual condition for meet-distributivity. Notice how

(dJSD) is a strengthening of the (S) condition, and (LTi) is a strengthening of the (Ti) condition.

Theorem 4.9. A finite digraph G = (V,E) with a reflexive relation E is the dual digraph of some

finite meet-distributive lattice if and only if G satisfies the following conditions:

(dJSD) If x, y ∈ V and x ̸= y then Ex ̸= Ey.

(R) For all x, y ∈ V , if xE ⊂ yE then (x, y) /∈ E, and if Ey ⊂ Ex then (x, y) /∈ E.

(LTi) For all x, y ∈ V , if xEy then there exists z ∈ V such that zE = xE and Ez ⊆ Ey.

Proof. Let G be the dual digraph of some finite meet-distributive lattice L. Then by Theorem 2.6

the digraph G will satisfy (R). By Corollary 4.4, L satisfies (JSD) and (JM-LSM). Hence by

Theorem 4.5(i), G satisfies (dJSD). Lastly, by Theorem 3.13, G will satisfy (LTi).

Conversely, assume G satisfies (dJSD), (R) and (LTi). Clearly G is a TiRS digraph, hence the

dual of a finite lattice L. Theorem 4.5(i) shows that L satisfies (JSD) and Theorem 3.13 implies

that L satisfies (JM-LSM). Hence by Corollary 4.4, L is meet-distributive.

The theorem above establishes a one-to-one correspondence between finite meet-distributive lat-

tices and finite digraphs satisfying the conditions (dJSD), (R) and (LTi). It is a restriction of

Theorem 2.6, while still generalising Birkhoff’s one-to-one correspondence between finite distribu-

tive lattices and finite posets.

Definition 4.10 ([9, Definition 30]). Let X be a set and ϕ : ℘(X) → ℘(X). Then ϕ is a closure

operator on X if for all Y,Z ∈ ℘(X)

(i) Y ⊆ ϕ(Y );

(ii) Y ⊆ Z implies ϕ(Y ) ⊆ ϕ(Z);

(iii) ϕ(ϕ(Y )) = ϕ(Y ).
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If X is a set and ϕ a closure operator on X then the pair ⟨X,ϕ⟩ is called a closure system. For

Y ⊆ X we say that Y is closed if ϕ(Y ) = Y . The closed sets of a closure operator ϕ on X form a

complete lattice, denoted by Cld(X,ϕ). A zero-closure system is a closure system ⟨X,ϕ⟩ such that

ϕ(∅) = ∅.

Now we turn our attention to convex geometries. The presentation here follows that of the book

chapter by Adaricheva and Nation [1].

Definition 4.11 ([1, Definition 5-1.1]). A closure system ⟨X,ϕ⟩ satisfies the anti-exchange prop-

erty if for all x ̸= y and all closed sets A ⊆ X,

(AEP) x ∈ ϕ(A ∪ {y}) and x /∈ A imply that y /∈ ϕ(A ∪ {x}).

Definition 4.12 ([2, Definition 1.6]). A zero-closure system that satisfies the anti-exchange prop-

erty is called a convex geometry.

We now combine Theorem 4.9 with known equivalences to obtain the following characterisation of

finite convex geometries. There are other equivalent conditions [1, Theorem 5-2.1] that we have

not included here.

Theorem 4.13. Let L be a finite lattice. Then the following are equivalent:

(i) L is the closure lattice Cld(X,ϕ) of a closure space ⟨X,ϕ⟩ with the (AEP).

(ii) L is a meet-distributive lattice.

(iii) L satisfies (JSD) and (LSM).

(iv) L satisfies (JSD) and (JM-LSM).

(v) L is the lattice C(G) of a reflexive digraph G satisfying (dJSD), (R) and (LTi).

Proof. The equivalences of (i), (ii) and (iii) are known [1, Theorem 5-2.1]. The equivalence of

(iii) and (iv) is the result of Corollary 4.4, and the equivalence of (iv) and (v) is Theorem 4.9.

5 Dual digraphs of finite modular lattices

In this section we provide two sufficient conditions for a finite TiRS digraph to be the dual digraph

of a finite modular lattice.

For i = 0, 1, 2, let us denote by Gi = (Vi, Ei) an induced subgraph of GN5
(see Figure 1) with

Vi = {x, y, z} and with i of the arcs xEy and yEz missing compared to GN5 . (For i = 1 we can,
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w.l.o.g., consider the arc yEz missing.) Hence G0 = GN5 , G1 has one arc and an isolated vertex,

and G2 has no arc and consists of two isolated vertices. All three digraphs are reflexive, hence

they have loops at each vertex.

We introduce the following condition for the dual digraph GL of a finite lattice L in terms of

“Forbidden Induced Subgraphs”:

(FIS) GL has neither G0 = GN5 nor G1 as an induced subgraph.

The next lemma and two propositions lead to showing that the condition (FIS) is sufficient for

modularity of a finite lattice L. Note that by Lemma 3.3, for a, b ∈ L with a ⩽̸ b, there always

exist elements a ⩽ a and b ⩾ b such that ⟨↑a, ↓b⟩ is an MDFIP. Below we write a||b to indicate

that a ⩽̸ b and b ⩽̸ a.

Lemma 5.1. Let a, b, c, 0, 1 be any elements of the lattice that form a sublattice isomorphic to

N5 (where 0 < a, b, c < 1, c < b and a||b, a||c). (See the left side of Figure 4.) Let x = ⟨↑a, ↓b⟩,
y = ⟨↑b, ↓c⟩ and z = ⟨↑c, ↓a⟩ be any maximal disjoint extensions of ⟨↑a, ↓b⟩, ⟨↑b, ↓c⟩ and ⟨↑c, ↓a⟩,
respectively. Then the induced subgraph {x, y, z} of GL is isomorphic either to G0 = GN5

, G1, or

G2.

Proof. First we must confirm that x, y, z are distinct MDFIPs. If x = y then ↑a = ↑b which implies

↑a∩ ↓b ̸= ∅, i.e. x would not be an MDFIP. If x = z then ↑a = ↑c which means z would not be an

MDFIP. Lastly, if y = z then ↓c = ↓a and z would not be an MDFIP.

We claim that in the induced subgraph {x, y, z} of GL, the arcs xEy and yEz are possible, but

the induced subgraph {x, y, z} has none of the other four possible arcs between distinct vertices:

indeed, the arcs yEx, zEy, xEz and zEx are not present in GL because clearly b ∈ ↑b ∩ ↓b,
c ∈ ↑c ∩ ↓c, a ∈ ↑a ∩ ↓a and c ∈ ↑c ∩ ↓b, respectively.

Hence {x, y, z} is isomorphic to Gi in case i of the arcs xEy and yEz are missing in the induced

subgraph {x, y, z} for i = 0, 1, 2.

Proposition 5.2. Let L be a finite lattice and assume that its dual digraph GL = (V,E) satisfies

(FIS). Then L is lower semimodular.

Proof. Suppose to the contrary that L does not satisfy (LSM). Then there exist elements a, b ∈ L

such that a ≺ a ∨ b but a ∧ b ⊀ b. Then there exists an element c ∈ L such that a ∧ b < c < b.

Hence a ∨ c ⩽ a ∨ b. Since a ≺ a ∨ b, and a ⩽ a ∨ c ⩽ a ∨ b, we get a ∨ c = a or a ∨ c = a ∨ b.
If a ∨ c = a, then c ⩽ a, so c ⩽ a ∧ b, which contradicts a ∧ b < c. It follows that a ∨ c = a ∨ b.
From c < b we get a ∧ c ⩽ a ∧ b. Further, since a ∧ b < c we get a ∧ (a ∧ b) = a ∧ b ⩽ a ∧ c. Thus

a ∧ c = a ∧ b.
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Hence a, c, b, a ∧ b, a ∨ b forms a sublattice isomorphic to N5 (see Figure 4). Let x = ⟨↑a, ↓b⟩,
y = ⟨↑b, ↓c⟩ and z = ⟨↑c, ↓a⟩, be arbitrary maximal disjoint extensions of ⟨↑a, ↓b⟩, ⟨↑b, ↓c⟩ and

⟨↑c, ↓a⟩, respectively. Then by Lemma 5.1, the induced subgraph {x, y, z} of GL is isomorphic to

G0 = GN5
, G1, or G2. Using the assumption (FIS), {x, y, z} must be isomorphic to G2.

In particular, it follows that GL does not have the arc yEz. Therefore b ⩽ a. Suppose a = a.

Then b ⩽ a, so b ⩽ a ∧ b. This gives b ⩽ c ⩽ c, which contradicts the fact that y = ⟨↑b, ↓c⟩ is a

disjoint filter-ideal pair. Hence a < a. Now either a < a ∨ b or a||a ∨ b, since if a ⩾ a ∨ b > c ⩾ c

then z = ⟨↑c, ↓a⟩ could not be a disjoint filter-ideal pair.

If a < a < a ∨ b, this contradicts a ≺ a ∨ b, so a||a ∨ b. If b > a then b > b > a, which contradicts

a||b. If b ⩽ a, then b ⩽ a ∧ b ⩽ c ⩽ c, which contradicts that y = ⟨↑b, ↓c⟩ is a disjoint filter-ideal

pair. This proves that b||a. Since b ⩽ b, a ∨ b ⩽ a ∨ b. If a ∨ b = a ∨ b, then since a < a and

b ⩽ a, we get a ⩾ a ∨ b = a ∨ b, which contradicts a||a ∨ b. This establishes that a ∨ b < a ∨ b and

a < a ∨ b (since b||a), which contradicts a ≺ a ∨ b. Hence, our assumption that L does not satisfy

(LSM) leads to a contradiction.

a ∧ c = a ∧ b

a
b

c

a ∨ c = a ∨ b

b ∧ a = b ∧ d

b
d

a

b ∨ a = b ∨ d

Figure 4: The isomorphic copies of N5 constructed in Proposition 5.2 (left) and Proposition 5.3
(right).

Below we give the result dual to Proposition 5.2. The proof is similar to the above argument, so

we omit some of the details.

Proposition 5.3. Let L be a finite lattice and assume that its dual digraph GL = (V,E) satisfies

(FIS). Then L is upper semimodular.

Proof. Suppose L does not satisfy (USM). Then there are elements a, b ∈ L such that a∧ b ≺ b but

a ⊀ a∨ b, i.e. there is d ∈ L such that a < d < a∨ b. Analogous to the proof of Proposition 5.2, it

can be shown that the elements b, a, d, a∧b, a∨b form a sublattice isomorphic to N5 (see Figure 4).

Then by Lemma 5.1, arbitrary maximal disjoint extensions of ⟨↑b, ↓d⟩, ⟨↑d, ↓a⟩ and ⟨↑a, ↓b⟩, denoted

by x = ⟨↑b, ↓d⟩, y = ⟨↑d, ↓a⟩ and z = ⟨↑a, ↓b⟩, respectively, form an induced subgraph {x, y, z} of

GL that is isomorphic either to G0 = GN5
, G1, or G2. Using (FIS), {x, y, z} is isomorphic to G2.

In particular, it follows that GL does not have the arc xEy. Hence, b ⩽ a. We can then get b < b

(as we got a < a in Proposition 5.2—see the left lattice in Figure 4). Now either a ∧ b < b or
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a ∧ b||b.

If a ∧ b < b < b, this contradicts a ∧ b ≺ b, so b||a ∧ b. We can also show b||a (as we showed b||a in

Proposition 5.2).

Since a ⩽ a, we get a ∧ b ⩽ a ∧ b. We can again establish that a ∧ b < a ∧ b and a ∧ b < b (since

b||a), which contradicts a ∧ b ≺ b. Hence, our assumption that L does not satisfy (USM) leads to

a contradiction.

Now we can deduce that the condition (FIS) is a sufficient condition for modularity of a finite

lattice.

Theorem 5.4. (Sufficient condition for modularity) Let L be a finite lattice with dual TiRS

digraph GL. If GL satisfies (FIS) then L is modular.

Proof. If follows by Propositions 5.2 and 5.3 that L satisfies both (LSM) and (USM). Since L is

finite, we have that L is modular [9, Corollary 376].

We notice that the dual digraph of the modular lattice M3 has neither G0 = GN5
nor G1 as an

induced subgraph (see Figure 5), hence it satisfies (FIS). The following example shows that the

digraphs G0 and G1 cannot be dropped as forbidden induced subgraphs in the condition (FIS) for

the dual digraph GL, which guarantees the modularity of a finite lattice L.

a b c

0

1
ab ac

ba

bc

ca

cb

Figure 5: M3 and its dual digraph.

Example 5.5. The dual digraph of L∂
3 in Figure 3 contains G0 as an induced subgraph, but not

G1. Hence the lattice L∂
3 (in addition to N5) witnesses that the digraph G0 cannot be dropped from

the condition (FIS).

The dual digraphs of the lattices L4 and L∂
4 in Figure 1 do not contain G0 as an induced subgraph

but they both contain G1 as an induced subgraph. Hence these two examples witness that the digraph

G1 cannot be dropped from the condition (FIS).

Now we are going to show that the condition (FIS) is not necessary for modularity. Indeed, it is

not the case that every lattice whose dual digraph has G0 = GN5
as an induced subgraph is a



298 A. Craig, M. Haviar & K. Marais CUBO
26, 2 (2024)

non-modular lattice. The next example gives a modular lattice whose dual digraph has G0 as an

induced subgraph (but does not have G1 as an induced subgraph).

Example 5.6. (Condition (FIS) not necessary for modularity) Figure 6 shows a modular

lattice K on the left, and its dual digraph on the right. The induced subgraph isomorphic to G0 is

shown with the dotted arrows (dcEcb and cbEed).

0

a cb

d e

1

cacb

db

dc bc

ba ed

Figure 6: A finite modular lattice K whose dual digraph contains G0 = GN5
as an induced

subgraph.

The fact that the dual TiRS digraph GL = (V,E) of a finite modular lattice L does not contain

G0 = GN5 as an induced subgraph can be understood as some form of a “weak transitivity”

condition for GL. We cannot have the arcs xEy and yEz in GL without having also the arc xEz

or at least the arc zEx (provided there are no “opposite” arcs yEx and zEy in GL):

(wT0) for all vertices x, y, z ∈ V , if xEy and yEz, but (y, x) /∈ E and

(z, y) /∈ E, then xEz or zEx.

Similarly, the fact that the dual TiRS digraph GL = (V,E) of a finite modular lattice L does

not contain the digraph G1 as an induced subgraph can be understood as some form of a “weak

transitivity” condition for GL:

(wT1) for all vertices x, y, z ∈ V , if xEy but (y, x) /∈ E and (y, z) /∈ E

and (z, y) /∈ E then xEz or zEx.

Example 5.7. It is easy to see that the dual digraph of the lattice M3 (Figure 5) satisfies the weak

transitivity conditions (wT0) and (wT1). The lattices L4 and L∂
4 in Figure 1, and L∂

3 in Figure 3

are non-modular lattices. The weak transitivity condition (wT0) is not satisfied in the dual digraph

of L∂
3 . In the dual digraphs of the lattices L4 and L∂

4 we see the failures of (wT1).

We notice that the weak transitivity conditions (wT0) and (wT1) are essentially expressing on the

digraph side that the digraph GL does not contain respectively the graphs G0 and G1 as induced

subgraphs.
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Hence the sufficiency of the quasi-equations (wT0) and (wT1) on the dual TiRS digraphs GL for

the modularity of L comes as no surprise:

Corollary 5.8 (Sufficient condition for modularity by “weak transitivity”). Let L be a finite lattice

with dual TiRS digraph GL = (V,E). If GL satisfies the weak transitivity conditions (wT0) and

(wT1), then L is modular.

Proof. Let the weak transitivity conditions (wT0) and (wT1) be satisfied in GL. Suppose for

contradiction that the lattice L is not modular. Then by Theorem 5.4, for some i ∈ {0, 1} the

digraph GL contains the digraph Gi as an induced subgraph on certain vertices x, y, z ∈ V . It

follows that the weak transitivity condition (wTi) is not satisfied.

6 Conclusions and future work

In Section 3 we defined two lattice conditions which generalise lower semimodularity and (upper)

semimodularity respectively. We were motivated by Figure 2, taken from Ganter and Wille’s

book [8] (see also the PhD thesis of Reppe [13, Chapter 3.7]). There, weakenings of (LSM)

and (USM) are given using complicated conditions on standard contexts. Our lattice-theoretic

conditions on finite lattices that are weakenings of (LSM) and (USM), which we call (JM-LSM)

and (JM-USM), seem to be simpler than the mentioned conditions in Figure 2 and they are easily

seen to be generalisations of (LSM) and (USM). The top left and top right conditions in Figure 2

were shown to be equivalent to (JM-LSM) and (JM-USM) by Kadima [10, Theorem 4.9].

In Section 4 we used the results of Section 3 to obtain a new characterisation of meet-distributive

lattices in Theorem 4.1. Combining this with previous results [5], we obtained a characterisation of

the dual digraphs of finite meet-distributive lattices. Theorem 4.13 shows that we have identified

a new class of structures that is in a one-to-one correspondence with finite convex geometries.

In Remark 4.3 we gave a condition, (W-JSD), which is a weakening of join-semidistributivity. The

lattice M3 satisfies (LSM) but not (W-JSD) and hence shows that (LSM) is not equivalent to

(JM-LSM) and (W-JSD). This leads us to ask the following question.

Problem 6.1. Is there another weakening of (JSD) such that when it is combined with (JM-LSM),

this will be equivalent to (LSM)?

Theorem 4.9 gave three conditions ((dJSD), (R) and (LTi)) on reflexive digraphs, which charac-

terise the dual digraphs of finite meet-distributive lattices. This leads to the posing of the following

open problem.

Problem 6.2. Can the conditions (dJSD), (R) and (LTi) be combined to give fewer, and possibly

simpler, conditions?
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In Section 5 we introduced the condition (FIS) on dual digraphs and showed that it implies both

lower and upper semimodularity of a finite lattice. Hence (FIS) was shown to be a sufficient

condition for modularity of a finite lattice (Theorem 5.4). We also formulated a sufficient condition

for modularity in different terms in Corollary 5.8. The condition (FIS) was shown not to be

necessary for modularity of a finite lattice and hence we raise the following open question.

Problem 6.3. Is it possible to find forbidden induced subgraphs that characterise the dual digraphs

of finite modular lattices in an analogous way to how N5 characterises modularity?

The task of representing structures (in our case digraphs) dual to finite modular lattices has proved

to be very challenging. We note that in the setting of formal contexts dual to finite lattices, a

condition dual to semimodularity has been obtained (cf. item (4) of [8, Theorem 42]). We have

attempted to translate this condition to TiRS digraphs and the result was a complicated and

opaque condition. We do not believe that the translation of this condition and its dual will yield

a useful characterisation of the TiRS digraphs dual to finite modular lattices.
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