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type Fock space Fa,.(C?). This space was introduced by
Cholewinsky in 1984 and plays a background to our con-
tribution. Especially, we examine the extremal functions
for the difference operator D, and we deduce best ap-

proximate inversion formulas for the operator D on the
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RESUMEN

En este articulo, resumimos algunas propiedades para el
espacio de Fock the tipo Hankel %, .(C%). Este espa-
cio fue introducido por Cholewinsky en 1984 y es un
antecedente para nuestra contribuciéon. Especialmente
examinamos las funciones extremales para el operador
de diferencia D y deducimos férmulas de inversion del
mejor aproximante para el operador D en el espacio de
Fock de tipo Hankel %, .(C%).
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1 Introduction

The classical Fock space % (C?) is the Hilbert space of entire functions f on C? such that
2 1 2 —|z|? ;
||fH£¢(Cd) = ﬁ i |f(2)‘ e dxdy <00, z=x+1y,

where |2]? = Zzzl(m‘i +y?) and dzdy = HZ:I dardyy.

This space was introduced by Bargmann [3], is called also Segal-Bargmann space [5] and it was the
aim of many works [4,6,22,28|. Recently the author of the paper studied the extremal functions
for the difference and primitive operators on the Fock space & (C?) (see [20,21]).

Cholewinsky [7] defined the Hankel-type Fock space %, .(C?) associated with the poly-axially
operator. The space %, .(C?) is the Hilbert space of entire functions f on C%, even with respect

to the last variable, such that

1/2
Il ey o= | [, 1F@Pamatz)] <o

where m,, is the measure defined for z = (21, ...,24) € C? by
d
1 2P P Ko, (J2k]?)
dme(z) == — H 2o T (o ) dz, (1.1)

and K,,, o > —1/2, is the Macdonald function [8].

The generalized Fock space &, ((Cd) is equipped with the inner product
o ot = [ FwlgGwdma )

The Hankel-type Fock space F, .(C?) is also studied in [24], when the author proved an uncertainty
principle of Heisenberg type for this space.

Let D be the difference operator defined for f € %, .(C?) with f(2) =, oy avz?, by

)= 3

veENd

The main goal of the paper is to find the minimizer (denoted by Fy 5 (h)) for the extremal problem:

s o DI, ooy + 1D =, e }
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where h € %,.(C?) and A > 0. We prove that the extremal function F3 p(h) is given by

F p(h)(2) = (h, ¥2) g, . (cays

where U, (w) is the kernel given later in Section 3.

Moreover, we establish best approximate inversion formulas for the difference operator D on the
weighted Fock space %, .(C?%). A pointwise approximate inversion formula for the operator D are

also discussed.

Recently, the analog results are also proved, for the Fock space % (C?) (see [20,21]), and for the
Bessel-type Fock space %, .(C) (see [23,25]).

The paper is organized as follows. In Section 2 we recall some properties for the Hankel-type Fock
space F,..(C?). In Section 3 we examine the extremal functions for the difference operator D.
Finally, in Section 4, we establish best approximate inversion formulas for the operator D on the

Hankel-type Fock space , .(C%).

Throughout this paper we shall use on C?% the multi-index notations.

e Forall v = (v1,...,vq) € NY and 2z = (21,...,24) € C%, 2V = szlz?‘.
e For any v € N?, the partial ordering > on N%, which is defined by

v>1 <<= v;>1, Vj=1,...,d withl=(1,...,1) €N

2 Hankel-type Fock space

In this section, we recall some properties for the Fock space %,*(Cd) associated with the poly-

axially operator.

Let « = (a1,...,a4), we denote by A,, the poly-axially operator [1,9,27] defined for z =
(21,...,2q4) € C? by

0 1o
022 2 Oz

AO{ = § Aak,zka Aak,zk :

d
k=1
This operator has important applications in both pure and applied mathematics and give rise to
a generalization of multi-variable analytic structures like the Hankel transform, and the Hankel

convolution [2,15-18]. For any w € C?, the system

0

— 2 — =
Aou() = Jufu(). u(@) =1, Fu)|
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admits a unique solution I, (w, z), given by

d
H Jau (1w 2k),

where j,, is the spherical Bessel function [26] given by

. B 00 (_1)n T\ 2n
Jon () :==T(ag + 1) nz::o nD(n+ay, + 1) (5) '

The Bessel kernel I, can be extended in a power series in the form

2v . 2v
Ioz(waz) = v P
veNd C,,(Ck)
where J
. 2<y Vk + o + 1
cp(a) =2 1:[ Tlor + 1) H ey, (). (2.1)
Here
F(l/k —+ ap + 1)
y =2yl —— ——
eu () T T (ak+ 1)
and

d d
vy = Zuk, vl = Hl/k!, v=(v1,...,1q) € N¢,
k=1 k=1
In the statement, and later in this work we use the following notations.
9,.(C%), is the space of entire functions on C? and even with respect to each variable.
e [2(CY), is the Hilbert space of measurable functions f on C%, such that
1/2
flzzcen = | [ 1@ Fma)] <o
C

where m,, being the measure on C? given by (1.1).

Cholewinsky [7] defined the Hilbert space %, .(C?%) as
Forx(Ch) := H,.(CHy N LA (CY.
The space %, ((Cd) is equipped with the inner product

<fa For,w (CD) = / f dma( )
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The space F, «(C?) has the reproducing kernel

FHo(w, 2) = Io(w,Z), w,zeC

If f,9 € Fau(CY) with f(z) =3, cne av2® and g(z) = 3, cya buz?”, then

(1,97 .cty = > avbyey(a), (2.2)

veENd

where ¢, (a) are the constants given by (2.1).

2

Then, the set { - } forms a Hilbertian basis for the space %, .(C%); and each f €
veNd

Ve (o)

Fa.»(C?) can be written as

2v
fo)= 3 et

veNd Cv (a)

and

(f 250 o)
||fH3<7/7a*((Cd) — Z | y Fa, ((Cd)| )

veNd (a)

Bargmann [3] introduced the classical Fock space & (C?). Let f € Fq,.(C?) with f(2) = >, cpe a2,

From [3], we have

||fH?¢(<cd) = Z |ay|21/!.

veN?

Using the inequality v! < ¢, (a), we obtain

1£1Z oy < D lawlPen(@) = [ £l1Z, o
veNd

Therefore
Fox(CH C F(Ch).

3 Difference operator

In this section, building on the ideas of Saitoh [12-14] we examine the extremal function associated

with the difference operator D. The results that are written here are a special case of [14].

Let D be the difference operator defined for f € Fo .(C?) with f(2) =, cna avz?, by

Df(z) =Y ayi12*. (3.1)

veNd
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In particular, for f € %, .(C), the difference operator [23,25] is given

SUE) = F0), =0,
Df(z) :=

1 " _

We also define, the operators E and H for f € %, .(C%) with f(z) = Y, cna auz?”, by

Ef(z)= Y. C”C*I(O‘) ay_12%, (3.2)

and

veNd p>1

where ¢, (a) are the constants given by (2.1).
Lemma 3.1. (i) The operator D maps continuously from F .(C%) into Fp (C?), and

1

S S—FT T
2d Hk:l(ak + 1)

(ii) If D* : Fo . (CY) — F, . (CY) is the adjoint operator of D, then

IDfll#,.. e < f € Fo(CY.

E=D" and H=D"D.
Proof. (i) Let f € Fq,.(CY) with f(z) = Y, cye av2®”. From (3.1), we have

HDfH?}a,*((Cd) = Z |av e, (@) = Z |ayPe -1 ().

veNd veNd p>1

Using the fact that ¢, (a) = [22d HZ:l v (v + ak)] ¢y—1(a), we deduce that

1 1
IDSIZ. e < —— la|?e, (@) = —— IFIZ, co-
SO g2 [T (g +1) % 20 [[1_ (g +1) )

(ii) If f, 9 € Fa,»(C?) with f(2) =, cne awz® and g(2) = 3, cya by2?”, then by (2.2) and (3.1)

we obtain

<Df7 9>%,*(Cd) = Z aVJrlECV(a) = Z aubuflcufl(a)-

veNd veNd v>1

On the other hand, from (2.2) and (3.2) we have

(£EQ)g. cy= Y. aby_1c,1(a).

veNd p>1
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Then (Df,g)%

o
a,*

) = (f, £9)%, .(c) and consequently £/ = D*.

Finally, by relations (3.1), (3.2) and (3.3) we deduce that

D*Df(z) = EDf(z) = Y C”*lé“)ayzzv = Hf(2).

veNd p>1
The lemma is proved. O

Theorem 3.2. For any h € %X’*((Cd) and for any A > 0, the Tikhonov regularization problem

. 2 2
e o VIS, oy +1DF = Bl o }

has a unique extremal function denoted F/’\“)D(h) and is given by
FS p(h)(2) = (h, ¥2) g, . (cays

where
(E)Q(V—‘—I) w2V

U, (w) =

, weCh
< N a() 1 ()

Proof. First, from [12, Theorem 2.5, Section 2|, the Tikhonov regularization problem

. 2 2
™ e LIS ey 1DF = M3, e}
has a unique extremal function denoted F' X, p(h) and is given by

F5 p(h)(z) = (A\I + D*D)'D*h(z), z€C% (3.4)

where T is the unit operator. We put h(z) = 3, cna h2®” and F5 (h)(2) = 3, cna dv2®”. From
Lemma 3.1 (ii) and (3.4) we have

(M + H)FY p(h)(2) = Eh(z).
By relations (3.2) and (3.3) we deduce that

d, =0, if3v, =0,

cy—1(a)hy,—1 y>1

dl/ = 5 =
Aey (@) + cp_1(a)

Thus

)

o) = Y oo (35)
veNd p>1 v v—1
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Then by (2.2) and (3.5) we obtain

cy(a)hy 2(v+1
Fip(h)(z) = T = (h, V) 3.6
A,D( )(Z) V; /\Cy+1(0() —|—C,/(Oé)z < ’ >JQ,*((C‘1)7 ( )
where (V+1>w2u
Z , weCY
vENd )\CVJFI ) +evla)
The theorem is proved. O

4 Approximate inversion formulas

In this section we establish the estimate properties of the extremal function Fy p(h)(2), and we
deduce approximate inversion formulas for the difference operator D. These formulas are the anal-
ogous of Calderon’s reproducing formulas for the Fourier type transforms [10,11,19]. A pointwise

approximate inversion formulas for the operator D are also discussed.

The extremal function FY (k) given by (3.6) satisfies the following properties.

Lemma 4.1. If A\ >0 and h € F, .(C?%), then

‘ -

@) |1F5 p(h) ()| < ——=a(2,2)?[|h]l5, . co),

S

2

(i) |DF} p(h)(2)] < L

201\ ATz (0 + 1)

U 1
(iii) IF5 p(M)llz, .(ca) < ﬁ“hna,*(cdy

(Ia(2,2)?[hll, . ca),

Proof. Let A > 0 and h € %, .(C?) with h(z) =3, cya hu2?”. From (3.6) we have

[EX,p(M)(2)] < [Vl .ol .-

Using the fact that (z + y)? > 4zy we obtain

\2(v+1) 1 |(2)2U‘2 1
0|12 _ (%) , < = —TI.(2,%).
=17, . ca) ng @) o] “Y = o) a(2%)
This gives (i).
On the other hand, from (3.1) and (3.5) we have
cv(a)hy,
DF P 4.1
A D(h)(z) Z )\Cu+l(a) ¥ CV(CY) <h‘ > o *(Cd)D ( )
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where
21/ 21/
%d >‘Cu+1 )+ e )
Then
|IDF3 p(R)(2)| < |25, . co)llhll#, . (ca),
and )
=\ 2v 1 2V|2
®.% on = ) =
” HJQ,*(Cd) Z )\Cl,+1(0z) ¥+ c,,(a) AN Z ot

veNd €Nd

By using the fact that ¢, 11(a) = [22d HZ:1(V7€ + 1)(vg + ap + 1)} ¢y (), we deduce that

2 1 ()*]? Ia(2,%)
12:15..c) < @y = — - .
' 2 AMI=i (e +1) cv(@) 22Dy (g + 1)

This gives (ii).

Finally, from (3.5) we have

* Cy— Oé) hV*
IF o o= 3 cy<a)[ 1(a)|hy 1|

veNd p>1 )\C”(a) + Cy_l(a)

Then we obtain

. 1 1
1E o (M5, . (cay < 75\ > (@)l = ﬁ”h\@a,*(cd)’

veNd v>1

which gives (iii) and completes the proof of the lemma. O

We establish approximate inversion formulas for the difference operator D.

Theorem 4.2. If A\ >0 and h € F, .(C9), then
D lim |[DF? (k) — hl» —0,
6) tim IDF,p(A) ~ hlls, oo
(ii) A1i>1%1+\|F;f,D(Dh) hollg, . (cay = 0, where ho(2) =3 cna, 1w 22 if h(z) =3, ena hwz®

Proof. Let A > 0 and h € %, ,(C?) with h(z) =, oy huz?”. From (4.1) we have

—Acpt1(a)h, y
DF; p(h)(= =2 5 “+ e (4.2)
vene "0 v

Therefore

||DF;,D(h) - hH?%,*(cd) = Z Cy(Oé)

veENd

[ )‘Cv+1(0¢)|hu| 2
Acyri(a) +ep(a)]|
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Again, by dominated convergence theorem and the fact that

ot [ a (el

i Cyl&x 2
T Fem) S

we deduce (i).

Finally, from (3.1) and (3.5) we have

Fp(Dh)(z) —ho(2) = >+ (_Cfff?h”(a)z?”- (4.3)
veNd p>1 v v—1

So, one has
Acy (@) |hy | ?

* _ 2 —
1o (Dh) = hollz....co 2. ) {)\cy(a) +cr-1(a)

veNd p>1

Using the dominated convergence theorem and the fact that

Aey(@)lhy| 1 ,
) L\cy(a) +cy_1(a)] < c(@)|h [,

we deduce (ii). O

We deduce also pointwise approximate inversion formulas for the operator D.

Theorem 4.3. If A\ > 0 and h € F, .(C9), then

() Jim DF; p(h)() = h(),

(i) lim F5 p(DR)(2) = ho2).

Proof. Let h € Fq . (C?) with h(z) = Y, cya hez?”. From (4.2) and (4.3), by using the dominated

convergence theorem and the fact that

Acyi1 ()| |
Acyt1(a) + e (@)

Acy (@) |hy |

2v
; Ay (@) + cp—1(@)

|22 < [ho||27],

|z

we obtain (i) and (ii). O
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