

Extremal functions and best approximate formulas for the Hankel-type Fock space

Fethi Soltani ^{1,2,⊠}

¹ Faculté des Sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, Tunis 2092, Tunisia.

fethi.soltani@fst.utm.tn

² Ecole Nationale d'Ingénieurs de Carthage, Université de Carthage, Tunis 2035, Tunisia.

ABSTRACT

In this paper we recall some properties for the Hankel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$. This space was introduced by Cholewinsky in 1984 and plays a background to our contribution. Especially, we examine the extremal functions for the difference operator D, and we deduce best approximate inversion formulas for the operator D on the the Hankel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$.

RESUMEN

En este artículo, resumimos algunas propiedades para el espacio de Fock the tipo Hankel $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$. Este espacio fue introducido por Cholewinsky en 1984 y es un antecedente para nuestra contribución. Especialmente examinamos las funciones extremales para el operador de diferencia D y deducimos fórmulas de inversión del mejor aproximante para el operador D en el espacio de Fock de tipo Hankel $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$.

Keywords and Phrases: Analytic functions, Hankel-type Fock space, extremal functions.

2020 AMS Mathematics Subject Classification: 30H20, 32A15.

Accepted: 18 June, 2024 Received: 28 November, 2023

Published: 30 July, 2024

1 Introduction

The classical Fock space $\mathcal{F}(\mathbb{C}^d)$ is the Hilbert space of entire functions f on \mathbb{C}^d such that

$$||f||_{\mathscr{F}(\mathbb{C}^d)}^2 := \frac{1}{\pi^d} \int_{\mathbb{C}^d} |f(z)|^2 e^{-|z|^2} dx dy < \infty, \quad z = x + iy,$$

where $|z|^2 = \sum_{k=1}^d (x_k^2 + y_k^2)$ and $dxdy = \prod_{k=1}^d dx_k dy_k$.

This space was introduced by Bargmann [3], is called also Segal-Bargmann space [5] and it was the aim of many works [4, 6, 22, 28]. Recently the author of the paper studied the extremal functions for the difference and primitive operators on the Fock space $\mathcal{F}(\mathbb{C}^d)$ (see [20, 21]).

Cholewinsky [7] defined the Hankel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ associated with the poly-axially operator. The space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ is the Hilbert space of entire functions f on \mathbb{C}^d , even with respect to the last variable, such that

$$||f||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} := \left[\int_{\mathbb{C}^d} |f(z)|^2 \mathrm{d}m_{\alpha}(z)\right]^{1/2} < \infty,$$

where m_{α} is the measure defined for $z = (z_1, \dots, z_d) \in \mathbb{C}^d$ by

$$dm_{\alpha}(z) := \frac{1}{\pi^d} \prod_{k=1}^d \frac{|z_k|^{2\alpha_k + 2} K_{\alpha_k}(|z_k|^2)}{2^{\alpha_k} \Gamma(\alpha_k + 1)} dz_k, \tag{1.1}$$

and K_{α_k} , $\alpha_k > -1/2$, is the Macdonald function [8].

The generalized Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ is equipped with the inner product

$$\langle f, g \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} := \int_{\mathbb{C}^d} f(w) \overline{g(w)} \mathrm{d} m_{\alpha}(w).$$

The Hankel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ is also studied in [24], when the author proved an uncertainty principle of Heisenberg type for this space.

Let D be the difference operator defined for $f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$, by

$$Df(z) := \sum_{\nu \in \mathbb{N}^d} a_{\nu+1} z^{2\nu}.$$

The main goal of the paper is to find the minimizer (denoted by $F_{\lambda,D}^*(h)$) for the extremal problem:

$$\inf_{f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \left\{ \lambda \|f\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 + \|Df - h\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 \right\},\,$$

where $h \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ and $\lambda > 0$. We prove that the extremal function $F_{\lambda,D}^*(h)$ is given by

$$F_{\lambda,D}^*(h)(z) = \langle h, \Psi_z \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)},$$

where $\Psi_z(w)$ is the kernel given later in Section 3.

Moreover, we establish best approximate inversion formulas for the difference operator D on the weighted Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$. A pointwise approximate inversion formula for the operator D are also discussed.

Recently, the analog results are also proved, for the Fock space $\mathscr{F}(\mathbb{C}^d)$ (see [20, 21]), and for the Bessel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C})$ (see [23, 25]).

The paper is organized as follows. In Section 2 we recall some properties for the Hankel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$. In Section 3 we examine the extremal functions for the difference operator D. Finally, in Section 4, we establish best approximate inversion formulas for the operator D on the Hankel-type Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$.

Throughout this paper we shall use on \mathbb{C}^d the multi-index notations.

- For all $\nu = (\nu_1, \dots, \nu_d) \in \mathbb{N}^d$ and $z = (z_1, \dots, z_d) \in \mathbb{C}^d$, $z^{\nu} = \prod_{k=1}^d z_k^{\nu_k}$.
- For any $\nu \in \mathbb{N}^d$, the partial ordering \geq on \mathbb{N}^d , which is defined by

$$\nu \geq \mathbf{1} \iff \nu_i \geq 1, \quad \forall j = 1, \dots, d, \quad \text{with } \mathbf{1} = (1, \dots, 1) \in \mathbb{N}^d.$$

2 Hankel-type Fock space

In this section, we recall some properties for the Fock space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ associated with the polyaxially operator.

Let $\alpha = (\alpha_1, \dots, \alpha_d)$, we denote by Δ_{α} , the poly-axially operator [1, 9, 27] defined for $z = (z_1, \dots, z_d) \in \mathbb{C}^d$ by

$$\Delta_{\alpha} := \sum_{k=1}^d \Delta_{\alpha_k, z_k}, \quad \Delta_{\alpha_k, z_k} := \frac{\partial^2}{\partial z_k^2} + \frac{2\alpha_k + 1}{z_k} \frac{\partial}{\partial z_k}.$$

This operator has important applications in both pure and applied mathematics and give rise to a generalization of multi-variable analytic structures like the Hankel transform, and the Hankel convolution [2, 15–18]. For any $w \in \mathbb{C}^d$, the system

$$\Delta_{\alpha}u(z) = |w|^2 u(z), \quad u(0) = 1, \quad \frac{\partial}{\partial z_h}u(z)\Big|_{z_h=0} = 0, \quad k = 1, \dots, d,$$

admits a unique solution $I_{\alpha}(w,z)$, given by

$$I_{\alpha}(w,z) := \prod_{k=1}^{d} j_{\alpha_{k}}(iw_{k}z_{k}),$$

where j_{α_k} is the spherical Bessel function [26] given by

$$j_{\alpha_k}(x) := \Gamma(\alpha_k + 1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n + \alpha_k + 1)} \left(\frac{x}{2}\right)^{2n}.$$

The Bessel kernel I_{α} can be extended in a power series in the form

$$I_{\alpha}(w,z) = \sum_{\nu \in \mathbb{N}^d} \frac{w^{2\nu} z^{2\nu}}{c_{\nu}(\alpha)},$$

where

$$c_{\nu}(\alpha) = 2^{2\langle \nu \rangle} \nu! \prod_{k=1}^{d} \frac{\Gamma(\nu_k + \alpha_k + 1)}{\Gamma(\alpha_k + 1)} = \prod_{k=1}^{d} c_{\nu_k}(\alpha_k).$$
 (2.1)

Here

$$c_{\nu_k}(\alpha_k) = 2^{2\nu_k} \nu_k! \frac{\Gamma(\nu_k + \alpha_k + 1)}{\Gamma(\alpha_k + 1)}$$

and

$$\langle \nu \rangle = \sum_{k=1}^{d} \nu_k, \quad \nu! = \prod_{k=1}^{d} \nu_k!, \quad \nu = (\nu_1, \dots, \nu_d) \in \mathbb{N}^d.$$

In the statement, and later in this work we use the following notations.

- $\mathcal{H}_*(\mathbb{C}^d)$, is the space of entire functions on \mathbb{C}^d and even with respect to each variable.
- $L^2_{\alpha}(\mathbb{C}^d)$, is the Hilbert space of measurable functions f on \mathbb{C}^d , such that

$$||f||_{L^2_{\alpha}(\mathbb{C}^d)} := \left[\int_{\mathbb{C}^d} |f(z)|^2 \mathrm{d} m_{\alpha}(z) \right]^{1/2} < \infty,$$

where m_{α} being the measure on \mathbb{C}^d given by (1.1).

Cholewinsky [7] defined the Hilbert space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ as

$$\mathscr{F}_{\alpha,*}(\mathbb{C}^d) := \mathscr{H}_*(\mathbb{C}^d) \cap L^2_{\alpha}(\mathbb{C}^d).$$

The space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ is equipped with the inner product

$$\langle f, g \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} := \int_{\mathbb{C}^d} f(z) \overline{g(z)} dm_{\alpha}(z).$$

The space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ has the reproducing kernel

$$\mathscr{K}_{\alpha}(w,z) = I_{\alpha}(w,\overline{z}), \quad w,z \in \mathbb{C}^d.$$

If $f, g \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$ and $g(z) = \sum_{\nu \in \mathbb{N}^d} b_{\nu} z^{2\nu}$, then

$$\langle f, g \rangle_{\mathscr{F}_{\alpha, *}(\mathbb{C}^d)} = \sum_{\nu \in \mathbb{N}^d} a_{\nu} \overline{b_{\nu}} c_{\nu}(\alpha),$$
 (2.2)

where $c_{\nu}(\alpha)$ are the constants given by (2.1).

Then, the set $\left\{\frac{z^{2\nu}}{\sqrt{c_{\nu}(\alpha)}}\right\}_{\nu\in\mathbb{N}^d}$ forms a Hilbertian basis for the space $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$; and each $f\in\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ can be written as

$$f(z) = \sum_{\nu \in \mathbb{N}^d} \frac{\langle f, z^{2\nu} \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}}{c_{\nu}(\alpha)} z^{2\nu},$$

and

$$||f||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d} \frac{\left| \langle f, z^{2\nu} \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \right|^2}{c_{\nu}(\alpha)}.$$

Bargmann [3] introduced the classical Fock space $\mathscr{F}(\mathbb{C}^d)$. Let $f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$. From [3], we have

$$||f||_{\mathscr{F}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d} |a_{\nu}|^2 \nu!.$$

Using the inequality $\nu! \leq c_{\nu}(\alpha)$, we obtain

$$||f||_{\mathscr{F}(\mathbb{C}^d)}^2 \le \sum_{\nu \in \mathbb{N}^d} |a_{\nu}|^2 c_{\nu}(\alpha) = ||f||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2.$$

Therefore

$$\mathscr{F}_{\alpha,*}(\mathbb{C}^d)\subset\mathscr{F}(\mathbb{C}^d).$$

3 Difference operator

In this section, building on the ideas of Saitoh [12–14] we examine the extremal function associated with the difference operator D. The results that are written here are a special case of [14].

Let D be the difference operator defined for $f \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$, by

$$Df(z) := \sum_{\nu \in \mathbb{N}^d} a_{\nu+1} z^{2\nu}.$$
 (3.1)

In particular, for $f \in \mathcal{F}_{\alpha,*}(\mathbb{C})$, the difference operator [23, 25] is given

$$Df(z) := \begin{cases} \frac{1}{z^2} (f(z) - f(0)), & z \neq 0, \\ \frac{1}{2} f''(0), & z = 0. \end{cases}$$

We also define, the operators E and H for $f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$, by

$$Ef(z) := \sum_{\nu \in \mathbb{N}^d \ \nu > 1} \frac{c_{\nu - 1}(\alpha)}{c_{\nu}(\alpha)} a_{\nu - 1} z^{2\nu}, \tag{3.2}$$

and

$$Hf(z) := \sum_{\nu \in \mathbb{N}^d, \nu > 1} \frac{c_{\nu-1}(\alpha)}{c_{\nu}(\alpha)} a_{\nu} z^{2\nu}, \tag{3.3}$$

where $c_{\nu}(\alpha)$ are the constants given by (2.1).

Lemma 3.1. (i) The operator D maps continuously from $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ into $\mathscr{F}_{\alpha,*}(\mathbb{C}^d)$, and

$$||Df||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \le \frac{1}{2^d \sqrt{\prod_{k=1}^d (\alpha_k + 1)}} ||f||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}, \quad f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d).$$

(ii) If $D^*: \mathscr{F}_{\alpha,*}(\mathbb{C}^d) \longrightarrow \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ is the adjoint operator of D, then

$$E = D^*$$
 and $H = D^*D$.

Proof. (i) Let $f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$. From (3.1), we have

$$||Df||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d} |a_{\nu+1}|^2 c_{\nu}(\alpha) = \sum_{\nu \in \mathbb{N}^d, \ \nu > 1} |a_{\nu}|^2 c_{\nu-1}(\alpha).$$

Using the fact that $c_{\nu}(\alpha) = \left[2^{2d} \prod_{k=1}^{d} \nu_k(\nu_k + \alpha_k)\right] c_{\nu-1}(\alpha)$, we deduce that

$$||Df||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 \le \frac{1}{2^{2d} \prod_{k=1}^d (\alpha_k + 1)} \sum_{\nu \in \mathbb{N}^d} |a_{\nu}|^2 c_{\nu}(\alpha) = \frac{1}{2^{2d} \prod_{k=1}^d (\alpha_k + 1)} ||f||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2.$$

(ii) If $f, g \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)$ with $f(z) = \sum_{\nu \in \mathbb{N}^d} a_{\nu} z^{2\nu}$ and $g(z) = \sum_{\nu \in \mathbb{N}^d} b_{\nu} z^{2\nu}$, then by (2.2) and (3.1) we obtain

$$\langle Df,g\rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}=\sum_{\nu\in\mathbb{N}^d}a_{\nu+1}\overline{b_{\nu}}c_{\nu}(\alpha)=\sum_{\nu\in\mathbb{N}^d,\;\nu\geq\mathbf{1}}a_{\nu}\overline{b_{\nu-1}}c_{\nu-\mathbf{1}}(\alpha).$$

On the other hand, from (2.2) and (3.2) we have

$$\langle f, Eg \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} = \sum_{\nu \in \mathbb{N}^d, \ \nu \geq \mathbf{1}} a_{\nu} \overline{b_{\nu-1}} c_{\nu-1}(\alpha).$$

Then $\langle Df, g \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} = \langle f, Eg \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}$ and consequently $E = D^*$.

Finally, by relations (3.1), (3.2) and (3.3) we deduce that

$$D^*Df(z) = EDf(z) = \sum_{\nu \in \mathbb{N}^d, \nu > 1} \frac{c_{\nu - 1}(\alpha)}{c_{\nu}(\alpha)} a_{\nu} z^{2\nu} = Hf(z).$$

The lemma is proved.

Theorem 3.2. For any $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$ and for any $\lambda > 0$, the Tikhonov regularization problem

$$\inf_{f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \left\{ \lambda \|f\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 + \|Df - h\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 \right\}$$

has a unique extremal function denoted $F_{\lambda,D}^*(h)$ and is given by

$$F_{\lambda,D}^*(h)(z) = \langle h, \Psi_z \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)},$$

where

$$\Psi_z(w) = \sum_{\nu \in \mathbb{N}^d} \frac{(\overline{z})^{2(\nu+1)} w^{2\nu}}{k c_{\nu+1}(\alpha) + c_{\nu}(\alpha)}, \quad w \in \mathbb{C}^d.$$

Proof. First, from [12, Theorem 2.5, Section 2], the Tikhonov regularization problem

$$\inf_{f \in \mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \left\{ \lambda \|f\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 + \|Df - h\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 \right\}$$

has a unique extremal function denoted $F_{\lambda,D}^*(h)$ and is given by

$$F_{\lambda,D}^*(h)(z) = (\lambda I + D^*D)^{-1}D^*h(z), \quad z \in \mathbb{C}^d,$$
 (3.4)

where I is the unit operator. We put $h(z) = \sum_{\nu \in \mathbb{N}^d} h_{\nu} z^{2\nu}$ and $F_{\lambda,D}^*(h)(z) = \sum_{\nu \in \mathbb{N}^d} d_{\nu} z^{2\nu}$. From Lemma 3.1 (ii) and (3.4) we have

$$(\lambda I + H)F_{\lambda D}^*(h)(z) = Eh(z).$$

By relations (3.2) and (3.3) we deduce that

$$d_{\nu}=0$$
, if $\exists \nu_k=0$,

$$d_{\nu} = \frac{c_{\nu-1}(\alpha)h_{\nu-1}}{\lambda c_{\nu}(\alpha) + c_{\nu-1}(\alpha)}, \quad \nu \ge 1.$$

Thus,

$$F_{\lambda,D}^{*}(h)(z) = \sum_{\nu \in \mathbb{N}^{d}, \ \nu \ge 1} \frac{c_{\nu-1}(\alpha)h_{\nu-1}}{\lambda c_{\nu}(\alpha) + c_{\nu-1}(\alpha)} z^{2\nu}.$$
 (3.5)

310 F. Soltani

Then by (2.2) and (3.5) we obtain

$$F_{\lambda,D}^*(h)(z) = \sum_{\nu \in \mathbb{N}^d} \frac{c_{\nu}(\alpha)h_{\nu}}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} z^{2(\nu+1)} = \langle h, \Psi_z \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}, \tag{3.6}$$

where

$$\Psi_z(w) = \sum_{\nu \in \mathbb{N}^d} \frac{(\overline{z})^{2(\nu+1)} w^{2\nu}}{k c_{\nu+1}(\alpha) + c_{\nu}(\alpha)}, \quad w \in \mathbb{C}^d.$$

The theorem is proved.

4 Approximate inversion formulas

In this section we establish the estimate properties of the extremal function $F_{\lambda,D}^*(h)(z)$, and we deduce approximate inversion formulas for the difference operator D. These formulas are the analogous of Calderón's reproducing formulas for the Fourier type transforms [10,11,19]. A pointwise approximate inversion formulas for the operator D are also discussed.

The extremal function $F_{\lambda,D}^*(h)$ given by (3.6) satisfies the following properties.

Lemma 4.1. If $\lambda > 0$ and $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$, then

(i)
$$|F_{\lambda,D}^*(h)(z)| \le \frac{1}{2\sqrt{\lambda}} (I_{\alpha}(z,\overline{z}))^{1/2} ||h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)},$$

(ii)
$$|DF_{\lambda,D}^*(h)(z)| \le \frac{1}{2^{d+1}\sqrt{\lambda \prod_{k=1}^d (\alpha_k + 1)}} (I_{\alpha}(z,\overline{z}))^{1/2} ||h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)},$$

(iii)
$$||F_{\lambda,D}^*(h)||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \leq \frac{1}{2\sqrt{\lambda}}||h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}.$$

Proof. Let $\lambda > 0$ and $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$ with $h(z) = \sum_{\nu \in \mathbb{N}^d} h_{\nu} z^{2\nu}$. From (3.6) we have

$$|F_{\lambda,D}^*(h)(z)| \le \|\Psi_z\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} \|h\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}.$$

Using the fact that $(x+y)^2 \ge 4xy$ we obtain

$$\|\Psi_z\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d} \left| \frac{(\overline{z})^{2(\nu+1)}}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} \right|^2 c_{\nu}(\alpha) \le \frac{1}{4\lambda} \sum_{\nu \in \mathbb{N}^d} \frac{|(\overline{z})^{2\nu}|^2}{c_{\nu}(\alpha)} = \frac{1}{4\lambda} I_{\alpha}(z, \overline{z}).$$

This gives (i).

On the other hand, from (3.1) and (3.5) we have

$$DF_{\lambda,D}^*(h)(z) = \sum_{\nu \in \mathbb{N}^d} \frac{c_{\nu}(\alpha)h_{\nu}}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} z^{2\nu} = \langle h, \Phi_z \rangle_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}, \tag{4.1}$$

where

$$\Phi_z(w) = \sum_{\nu \in \mathbb{N}^d} \frac{(\overline{z})^{2\nu} w^{2\nu}}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)}.$$

Then

$$|DF_{\lambda,D}^*(h)(z)| \le ||\Phi_z||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} ||h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)},$$

and

$$\|\Phi_z\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d} \left| \frac{(\overline{z})^{2\nu}}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} \right|^2 c_{\nu}(\alpha) \le \frac{1}{4\lambda} \sum_{\nu \in \mathbb{N}^d} \frac{|(\overline{z})^{2\nu}|^2}{c_{\nu+1}(\alpha)}.$$

By using the fact that $c_{\nu+1}(\alpha) = \left[2^{2d} \prod_{k=1}^{d} (\nu_k + 1)(\nu_k + \alpha_k + 1)\right] c_{\nu}(\alpha)$, we deduce that

$$\|\Phi_z\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 \le \frac{1}{2^{2(d+1)}\lambda \prod_{k=1}^d (\alpha_k+1)} \sum_{\nu \in \mathbb{N}^d} \frac{|(\overline{z})^{2\nu}|^2}{c_{\nu}(\alpha)} = \frac{I_{\alpha}(z,\overline{z})}{2^{2(d+1)}\lambda \prod_{k=1}^d (\alpha_k+1)}.$$

This gives (ii).

Finally, from (3.5) we have

$$||F_{\lambda,D}^*(h)||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d, \nu \ge \mathbf{1}} c_{\nu}(\alpha) \left[\frac{c_{\nu-\mathbf{1}}(\alpha)|h_{\nu-\mathbf{1}}|}{\lambda c_{\nu}(\alpha) + c_{\nu-\mathbf{1}}(\alpha)} \right]^2.$$

Then we obtain

$$||F_{\lambda,D}^*(h)||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 \le \frac{1}{4\lambda} \sum_{\nu \in \mathbb{N}^d, \ \nu > \mathbf{1}} c_{\nu-1}(\alpha) |h_{\nu-1}|^2 = \frac{1}{4\lambda} ||h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2,$$

which gives (iii) and completes the proof of the lemma.

We establish approximate inversion formulas for the difference operator D.

Theorem 4.2. If $\lambda > 0$ and $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$, then

(i)
$$\lim_{\lambda \to 0^+} ||DF_{\lambda,D}^*(h) - h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} = 0,$$

(ii)
$$\lim_{\lambda \to 0^+} \|F_{\lambda,D}^*(Dh) - h_0\|_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)} = 0$$
, where $h_0(z) = \sum_{\nu \in \mathbb{N}^d, \ \nu \geq 1} h_{\nu} z^{2\nu}$ if $h(z) = \sum_{\nu \in \mathbb{N}^d} h_{\nu} z^{2\nu}$.

Proof. Let $\lambda > 0$ and $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$ with $h(z) = \sum_{\nu \in \mathbb{N}^d} h_{\nu} z^{2\nu}$. From (4.1) we have

$$DF_{\lambda,D}^*(h)(z) - h(z) = \sum_{\nu \in \mathbb{N}^d} \frac{-\lambda c_{\nu+1}(\alpha) h_{\nu}}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} z^{2\nu}.$$
 (4.2)

Therefore

$$||DF_{\lambda,D}^*(h) - h||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d} c_{\nu}(\alpha) \left[\frac{\lambda c_{\nu+1}(\alpha) |h_{\nu}|}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} \right]^2.$$

312 F. Soltani

Again, by dominated convergence theorem and the fact that

$$c_{\nu}(\alpha) \left[\frac{\lambda c_{\nu+1}(\alpha)|h_{\nu}|}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)} \right]^{2} \le c_{\nu}(\alpha)|h_{\nu}|^{2},$$

we deduce (i).

Finally, from (3.1) and (3.5) we have

$$F_{\lambda,D}^*(Dh)(z) - h_0(z) = \sum_{\nu \in \mathbb{N}^d, \nu > 1} \frac{-\lambda c_{\nu}(\alpha) h_{\nu}}{\lambda c_{\nu}(\alpha) + c_{\nu-1}(\alpha)} z^{2\nu}.$$
 (4.3)

So, one has

$$||F_{\lambda,D}^*(Dh) - h_0||_{\mathscr{F}_{\alpha,*}(\mathbb{C}^d)}^2 = \sum_{\nu \in \mathbb{N}^d, \nu > \mathbf{1}} c_{\nu}(\alpha) \left[\frac{\lambda c_{\nu}(\alpha)|h_{\nu}|}{\lambda c_{\nu}(\alpha) + c_{\nu-\mathbf{1}}(\alpha)} \right]^2.$$

Using the dominated convergence theorem and the fact that

$$c_{\nu}(\alpha) \left[\frac{\lambda c_{\nu}(\alpha) |h_{\nu}|}{\lambda c_{\nu}(\alpha) + c_{\nu-1}(\alpha)} \right]^{2} \leq c_{\nu}(\alpha) |h_{\nu}|^{2},$$

we deduce (ii).

We deduce also pointwise approximate inversion formulas for the operator D.

Theorem 4.3. If $\lambda > 0$ and $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$, then

- (i) $\lim_{\lambda \to 0^+} DF_{\lambda,D}^*(h)(z) = h(z),$
- (ii) $\lim_{\lambda \to 0^+} F_{\lambda,D}^*(Dh)(z) = h_0(z).$

Proof. Let $h \in \mathcal{F}_{\alpha,*}(\mathbb{C}^d)$ with $h(z) = \sum_{\nu \in \mathbb{N}^d} h_{\nu} z^{2\nu}$. From (4.2) and (4.3), by using the dominated convergence theorem and the fact that

$$\frac{\lambda c_{\nu+1}(\alpha)|h_{\nu}|}{\lambda c_{\nu+1}(\alpha) + c_{\nu}(\alpha)}|z^{2\nu}|, \ \frac{\lambda c_{\nu}(\alpha)|h_{\nu}|}{\lambda c_{\nu}(\alpha) + c_{\nu-1}(\alpha)}|z^{2\nu}| \leq |h_{\nu}||z^{2\nu}|,$$

we obtain (i) and (ii). \Box

Conflicts of interest. The author declares that there is no conflict of interests regarding the publication of this paper.

Data availability statement. There are no data used in this manuscript.

Acknowledgements

The author would like to thank the referee for the careful reading and editing of the paper.

References

- [1] V. A. Abilov and M. K. Kerimov, "Estimates for the Fourier-Bessel transforms of multivariate functions," Zh. Vychisl. Mat. Mat. Fiz, vol. 52, no. 6, pp. 980–989, 2012, doi: 10.1134/S0965542512060024.
- [2] B. Amri, "The Wigner transformation associated with the Hankel multidimensional operator," Georgian Math. J., vol. 30, no. 4, pp. 477–492, 2023, doi: 10.1515/gmj-2023-2018.
- [3] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform," Comm. Pure Appl. Math., vol. 14, pp. 187–214, 1961, doi: 10.1002/cpa.3160140303.
- [4] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory," Comm. Pure Appl. Math., vol. 20, pp. 1–101, 1967, doi: 10.1002/cpa.3160200102.
- [5] C. A. Berger and L. A. Coburn, "Toeplitz operators on the Segal-Bargmann space," Trans. Amer. Math. Soc., vol. 301, no. 2, pp. 813–829, 1987, doi: 10.2307/2000671.
- [6] Y. Chen and K. Zhu, "Uncertainty principles for the Fock space," Sci. Sin., Math., vol. 45, no. 11, pp. 1847–1854, 2015, doi: 10.1360/N012015-00057.
- [7] F. M. Cholewinski, "Generalized Fock spaces and associated operators," SIAM J. Math. Anal., vol. 15, no. 1, pp. 177–202, 1984, doi: 10.1137/0515015.
- [8] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.
- [9] Z. Li and F. Song, "A generalized Radon transform on the plane," Constr. Approx., vol. 33, no. 1, pp. 93–123, 2011, doi: 10.1007/s00365-010-9099-2.
- [10] M. A. Mourou and K. Trimèche, "Calderón's formula associated with a differential operator on (0,∞) and inversion of the generalized Abel transform," J. Fourier Anal. Appl., vol. 4, no. 2, pp. 229–245, 1998, doi: 10.1007/BF02475991.
- [11] R. S. Pathak and G. Pandey, "Calderón's reproducing formula for Hankel convolution," Int. J. Math. Math. Sci., 2006, Art. ID 24217, doi: 10.1155/IJMMS/2006/24217.
- [12] S. Saitoh, "Best approximation, Tikhonov regularization and reproducing kernels," Kodai Math. J., vol. 28, no. 2, pp. 359–367, 2005, doi: 10.2996/kmj/1123767016.
- [13] S. Saitoh, "Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces," in *Selected papers on analysis and differential equations*, ser. Amer. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, 2010, vol. 230, pp. 107–134, doi: 10.1090/trans2/230/06.

314 F. Soltani

- [14] S. Saitoh and Y. Sawano, Theory of reproducing kernels and applications, ser. Developments in Mathematics. Springer, Singapore, 2016, vol. 44, doi: 10.1007/978-981-10-0530-5.
- [15] B. Selmi and M. A. Allagui, "Some integral operators and their relation to multidimensional Fourier-Bessel transform on $L^2_{\alpha}(\mathbb{R}^n_+)$ and applications," *Integral Transforms Spec. Funct.*, vol. 33, no. 3, pp. 176–190, 2022, doi: 10.1080/10652469.2021.1925666.
- [16] B. Selmi and R. Chbeb, "Calderón's reproducing formulas for the poly-axially L_{α}^2 -multiplier operators," *Integral Transforms Spec. Funct.*, vol. 34, no. 10, pp. 770–787, 2023, doi: 10.1080/10652469.2023.2190971.
- [17] B. Selmi and C. Khelifi, "Estimate of the Fourier-Bessel multipliers for the poly-axially operator," Acta Math. Sin. (Engl. Ser.), vol. 36, no. 7, pp. 797–811, 2020, doi: 10.1007/s10114-020-9120-z.
- [18] B. Selmi and C. Khelifi, "Linear and nonlinear Bessel potentials associated with the poly-axially operator," *Integral Transforms Spec. Funct.*, vol. 32, no. 2, pp. 90–104, 2021, doi: 10.1080/10652469.2020.1802262.
- [19] F. Soltani, "Best approximation formulas for the Dunkl L^2 -multiplier operators on \mathbf{R}^d ," Rocky Mountain J. Math., vol. 42, no. 1, pp. 305–328, 2012, doi: 10.1216/RMJ-2012-42-1-305.
- [20] F. Soltani, "Operators and Tikhonov regularization on the Fock space," Integral Transforms Spec. Funct., vol. 25, no. 4, pp. 283–294, 2014, doi: 10.1080/10652469.2013.839666.
- [21] F. Soltani, "Some examples of extremal functions on the Fock space $F(\mathbb{C})$," Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., vol. 42, no. 2, pp. 265–272, 2016.
- [22] F. Soltani, "Uncertainty principles for the Segal-Bargmann transform," J. Math. Res. Appl., vol. 37, no. 5, pp. 563–576, 2017, doi: 10.3770/j.issn:2095-2651.2017.05.007.
- [23] F. Soltani, "Fock-type spaces associated to higher-order Bessel operator," Integral Transforms Spec. Funct., vol. 29, no. 7, pp. 514–526, 2018, doi: 10.1080/10652469.2018.1462806.
- [24] F. Soltani, "Hankel-type Segal-Bargmann transform and its applications to UP and PDEs," Bol. Soc. Mat. Mex. (3), vol. 29, no. 3, 2023, Art. ID 83, doi: 10.1007/s40590-023-00564-6.
- [25] F. Soltani, "Reproducing kernel Hilbert spaces (RKHS) for the higher order Bessel operator," Bol. Soc. Mat. Mex. (3), vol. 29, no. 1, 2023, Art. ID 20, doi: 10.1007/s40590-023-00492-5.
- [26] G. N. Watson, A treatise on the theory of Bessel functions, ser. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1966.

- [27] H. Yildirim, M. Z. Sarikaya, and S. Öztürk, "The solutions of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution," Proc. Indian Acad. Sci. Math. Sci., vol. 114, no. 4, pp. 375–387, 2004, doi: 10.1007/BF02829442.
- [28] K. Zhu, Analysis on Fock spaces, ser. Graduate Texts in Mathematics. Springer, New York, 2012, vol. 263, doi: 10.1007/978-1-4419-8801-0.