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ABSTRACT

In this paper, we present a continued fraction approxima-
tion and some inequalities of the factorial function based
on the Burnside’s formula. This approximation is fast in
comparison with the recently discovered asymptotic se-
ries. Finally, some numerical computations are provided
for demonstrating the superiority of our approximation
over the Burnside’s formula and the classical Stirling’s
series.

RESUMEN

En este artículo, presentamos una aproximación con una
fracción continua y algunas desigualdades para la fun-
ción factorial basada en la fórmula de Burnside. Esta
aproximación es rápida en comparación con las series
asintóticas descubiertas recientemente. Finalmente, se
entregan algunos cálculos numéricos para demostrar la
superioridad de nuestra aproximación por sobre la fór-
mula de Burnside y la serie de Stirling clásica.
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1 Introduction and main results

It is well known that we often need to deal with the big factorials in many situations in pure

mathematics and other branches of science. To the best of our knowledge, the Stirling’s formula

n! ∼
√
2πn

(n
e

)n
, n → ∞ (1.1)

is one of the most known formulas for approximation of the factorial function. Up to now, many

researchers made great efforts in the area of establishing more precise inequalities and more accurate

approximation for the factorial function and its extension, called gamma function, and had a lot

of inspiring results. For example, the Stirling series [1]

n! ∼
√
2πn

(n
e

)n(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ . . .

)
, n → ∞ (1.2)

is an extension of (1.1). Furthermore, there is a variety of approaches to Stirling’s formula, ranging

from elementary to advanced methods. We mention the estimations given by Schuster in [14], or

the formula

n! ∼
√
2π

(
n+ 1

2

e

)n+ 1
2

= σn, n → ∞, (1.3)

with n! < σn, due to Burnside, whose superiority over Stirling’s formula was proved in [3]. There

are also some approximations which are better than (1.3), Gosper’s formula [7]

n! ∼

√
2π

(
n+

1

6

)(n
e

)n
, n → ∞, (1.4)

and Ramanujan’s formula [13]

n! ∼
√
2π
(n
e

)n(
n3 +

1

2
n2 +

1

8
n+

1

240

)1/6

, n → ∞, (1.5)

and Nemes’s formula [12]

n! ∼
√
2πn

(n
e

)n(
1 +

1

12n2 − 1/10

)n

, n → ∞. (1.6)

In [2], Batir obtained an asymptotic formula as follows:

n! ∼
√
2π

nn+1e−n√
n− 1/6

, n → ∞. (1.7)
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The following more accurate approximation for n!

n! ∼
√
2π

(
n2 + n+ 1/6

e2

)n/2+1/4

, n → ∞. (1.8)

can be found in the literature [9].

Recently, Mortici [8] proved that for every x ≥ 0,

√
2πe · e−ω

(
x+ ω

e

)x+ 1
2

< Γ(x+ 1) ≤ α
√
2πe · e−ω

(
x+ ω

e

)x+ 1
2

, (1.9)

where ω =
3−

√
3

6
, α = 1.072042464 . . . , and

β
√
2πe · e−ζ

(
x+ ζ

e

)x+ 1
2

≤ Γ(x+ 1) <
√
2πe · e−ζ

(
x+ ζ

e

)x+ 1
2

, (1.10)

where ζ =
3 +

√
3

6
, β = 0.988503589 . . .

Estimates and approximations for the factorial function (and the gamma function) are a popular

subject, with many papers appearing on this topic over the years. More results involving the

asymptotic formulas or bounds for n! or gamma function can be found in the references cited

therein.

A natural question arises. It is true that the behavior of the Burnside’s formula for n approaches

infinity is of the form

n! ∼
√
2πe · e−p

(
n+ p

e

)n+q

, (1.11)

where p, q are some constants? We propose the following sharp approximation formula as n → ∞:

n! ∼
√
2πe · e−

3±
√

3
6

(
n+ 3±

√
3

6

e

)n+ 1
2

. (1.12)

These constants p, q in (1.11) given by (1.12), namely

p =
3±

√
3

6
, q =

1

2

are justified by the result in Theorem 1.1. Then we prove the following stronger approximation

formula using continued fraction for the factorial function by the multiple-correction method [4–6].
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Theorem 1.1. For the factorial function, we have

n! ∼
√
2πe · e−p

(
n+ p

e

)n+q

exp

 u1

n2 + v1n+ v0 +
s1

n+t1+
s2

n+t2+

...

 , n → ∞, (1.13)

where

p =
3±

√
3

6
, q =

1

2
; u1 = ∓ 1

72
√
3
, v1 =

10± 3
√
3

10
, v0 =

47± 15
√
3

10
;

s1 = ± 163

21000
√
3
, t1 =

815± 11596
√
3

1630
;

s2 =
15531525

106276
, t2 =

19139187627∓ 259913623163
√
3

38278375254
; . . . .

Using Theorem 1.1, we provide some inequalities for the factorial function.

Theorem 1.2. For every n ∈ N, it holds:

√
2πe · e−

3−
√

3
6

(
n+ 3−

√
3

6

e

)n+ 1
2

< n! <
√
2πe · e−

3+
√

3
6

(
n+ 3+

√
3

6

e

)n+ 1
2

. (1.14)

To obtain Theorem 1.1, we need the following lemma which was used in [8,10,11] and is very useful

for constructing asymptotic expansions.

Lemma 1.3. If the sequence (xn)n∈N is convergent to zero and there exists the limit

lim
n→+∞

ns(xn − xn+1) = l ∈ [−∞,+∞] (1.15)

with s > 1, then

lim
n→+∞

ns−1xn =
l

s− 1
. (1.16)

Lemma 1.3 was proved by Mortici in [8]. From Lemma 1.3, we can see that the speed of convergence

of the sequences (xn)n∈N increases together with the values s satisfying (1.15).
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2 Proof of Theorem 1.1

Step 0: The initial-correction.

Based on the Burnside’s formula n! ∼
√
2π

(
n+ 1

2

e

)n+ 1
2

, n → ∞, we need to find the values p, q

which produces the most accurate approximation of the form

n! ∼
√
2πe · e−p

(
n+ p

e

)n+q

, n → ∞.

To measure the accuracy of this approximation, a method is to define a sequence (u0(n))n≥1 by

the relations

n! =
√
2πe · e−p

(
n+ p

e

)n+q

expu0(n), (2.1)

and to say that the approximation n! ∼
√
2πe·e−p

(
n+ p

e

)n+q

, n → ∞ is better if u0(n) converges

to zero faster.

From (2.1), we have

u0(n) = lnn!− 1

2
ln(2πe) + p− (n+ q) ln(n+ p) + (n+ q). (2.2)

Thus,

u0(n)− u0(n+ 1) = −1− ln(n+ 1)− (n+ q) ln(n+ p) + (n+ 1 + q) ln(n+ 1 + p). (2.3)

Developing (2.3) into power series expansion in 1/n, we have

u0(n)− u0(n+ 1) =
−1 + 2q

2

1

n
+

2 + 3p2 − 3q − 6pq

6

1

n2
(2.4)

+
−3− 6p2 − 8p3 + 4q + 12pq + 12p2q

12

1

n3
+O

(
1

n4

)
.

The fastest possible sequence (u0(n))n≥1 is obtained as the first two items on the right of (2.4)

vanishes, we get p =
3±

√
3

6
, q =

1

2
. Thus, using Lemma 1.3, from (2.4) we have

u0(n)− u0(n+ 1) = ∓ 1

36
√
3

1

n3
+O

(
1

n4

)
,

and the rate of convergence of the sequence (u0(n))n≥1 is at least n−2.
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Step 1: The first-correction.

Next, we define the sequence (u1(n))n≥1 by the relation

n! =
√
2πe · e−

3±
√

3
6

(
n+ 3±

√
3

6

e

)n+ 1
2

exp

(
u1

n2 + v1n+ v0

)
expu1(n). (2.5)

From (2.5), we have

u1(n)− u1(n+ 1) = −1− ln(n+ 1)−
(
n+

1

2

)
ln

(
n+

3±
√
3

6

)

+

(
n+

3

2

)
ln

(
n+ 1 +

3±
√
3

6

)
− u1

n2 + v1n+ v0
+

u1

(n+ 1)2 + v1(n+ 1) + v0
. (2.6)

Developing (2.6) into power series expansion in 1/n, we have

u1(n)− u1(n+ 1) =

(
∓ 1

36
√
3
− 2u1

)
1

n3
+

(
1

80
± 1

12
√
3
+ 3u1 + 3u1v1

)
1

n4
(2.7)

+

(
− 1

20
∓ 11

60
√
3
− 4u1 + 4u1v0 − 6u1v1 − 4u1v

2
1

)
1

n5

+

(
599

4536
± 13

36
√
3
+ 5u1 − 10u1v0 + 10u1v1 − 10u1v0v1 + 10u1v

2
1 + 5u1v

3
1

)
1

n6
+O

(
1

n7

)
.

By Lemma 1.3, the fastest possible sequence (u1(n))n≥1 is obtained as the first three items on the

right of (2.7) vanishes. So we can obtain

u1 = ∓ 1

72
√
3
, v1 =

10± 3
√
3

10
, v0 =

47± 15
√
3

100
,

and from (2.7) we have

u1(n)− u1(n+ 1) =
163

907200

1

n6
+O

(
1

n7

)
,

and the rate of convergence of the sequence (u1(n))n≥1 is at least n−5.

Step 2: The second-correction.

Furthermore, we define the sequence (u2(n))n≥1 by the relation

n! =
√
2πe · e−

3±
√

3
6

(
n+ 3±

√
3

6

e

)n+ 1
2

exp

(
∓ 1

72
√
3

n2 + 10±3
√
3

10 n+ 47±15
√
3

100 + s1
n+t1

)
expu2(n) (2.8)
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Using the same method as above, we obtain that the sequence (u2(n))n≥1 converges fastest only

if s1 = ± 163

21000
√
3
, t1 =

815± 11596
√
3

1630
, and the rate of convergence of the sequence (u2(n))n≥1

is at least n−7. We can get

u2(n)− u2(n+ 1) = − 69029

1877760

1

n8
+O

(
1

n9

)
.

Step 3: The third-correction.

Similarly, define the sequence (u3(n))n≥1 by the relation

n! =
√
2πe · e−

3±
√

3
6

(
n+ 3±

√
3

6

e

)n+ 1
2

(2.9)

exp

 ∓ 1
72

√
3

n2 + 10±3
√
3

10 n+ 47±15
√
3

100 +
± 163

21000
√

3

n+ 815±11596
√

3
1630 +

s2
n+t2

 expu3(n).

Using the same method as above, we obtain that the sequence (u3(n))n≥1 converges fastest only

if s2 =
15531525

106276
, t2 =

19139187627∓ 259913623163
√
3

38278375254
.

The new asymptotic (1.13) is obtained.

3 Proof of Theorem 1.2

The double-side inequality (1.14) may be written as follows:

f(n) = lnΓ(n+ 1)− 1

2
ln(2πe) +

3 +
√
3

6
−
(
n+

1

2

)(
ln

(
n+

3 +
√
3

6

)
− 1

)
< 0

and

g(n) = lnΓ(n+ 1)− 1

2
ln(2πe) +

3−
√
3

6
−
(
n+

1

2

)(
ln

(
n+

3−
√
3

6

)
− 1

)
> 0.

Suppose F (n) = f(n+ 1)− f(n) and G(n) = g(n+ 1)− g(n). For every x > 1, we can get

F ′′(x) =
36(−1 + 4

√
3 + 4

√
3n)

(1 + n)2(3 +
√
3 + 6n)2(9 +

√
3 + 6n)2

> 0 (3.1)
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and

G′′(x) = − 36(1 + 4
√
3 + 4

√
3n)

(1 + n)2(3−
√
3 + 6n)2(9−

√
3 + 6n)2

< 0. (3.2)

It shows that F (x) is strictly convex and G(x) is strictly concave on (0,∞). According to The-

orem 1.1, when n → ∞, it holds that limn→∞ f(n) = limn→∞ g(n) = 0; thus limn→∞ F (n) =

limn→∞ G(n) = 0. As a result, we can make sure that F (x) > 0 and G(x) < 0 on (0,∞). Con-

sequently, the sequence f(n) is strictly increasing and g(n) is strictly decreasing while they both

converge to 0. As a result, we conclude that f(n) < 0, and g(n) > 0 for every integer n > 1.

The proof of Theorem 1.2 is completed.

4 Numerical computations

In this section, we give Table 1 to demonstrate the superiority of our new series respectively. From

what has been discussed above, we found out some new approximations as follows:

n! ≈
√
2πe · e−

3+
√

3
6

(
n+ 3+

√
3

6

e

)n+ 1
2

= β1(n), (4.1)

or

n! ≈
√
2πe · e−

3−
√

3
6

(
n+ 3−

√
3

6

e

)n+ 1
2

= β2(n) (4.2)

or

n! ≈
√
2πe · e−

3+
√

3
6

(
n+ 3+

√
3

6

e

)n+ 1
2

exp

(
− 1

72
√
3

n2 + 10+3
√
3

10 n+ 47+15
√
3

100

)
= β3(n) (4.3)

For simplicity, we only give three approximations β1(n), β2(n), β3(n), more formulas can be directly

obtained from Theorem 1.1.

Burnside [3] gave the formula:

n! ≈
√
2π

(
n+ 1

2

e

)n+ 1
2

= β(n). (4.4)

The great advantage of our continued fraction approximation β3(n) consists in its simple form and

its accuracy. From Table 1, we can see that the relative error of β3(n) is −1.1137 × 10−18 when

calculating 500! and the relative error of β(n) is 8.2540× 10−4 when calculating 50!. Our formula
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Table 1: Simulations for β(n) and βi(n), i = 1, 2, 3.

n β(n)−n!
n!

β1(n)−n!
n!

β2(n)−n!
n!

β3(n)−n!
n!

50 8.2540× 10−4 −3.1767× 10−6 3.1120× 10−6 −8.1273× 10−14

500 8.3254× 10−5 −3.2044× 10−8 3.1978× 10−8 −1.1137× 10−18

1000 4.1647× 10−5 −8.0149× 10−9 8.0066× 10−9 −3.5367× 10−20

2000 2.0828× 10−5 −2.0042× 10−9 2.0032× 10−9 −1.1141× 10−21

β3(n) converges faster than the approximation of the Burnside’s formula β(n).
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