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ABSTRACT

New norm inequalities for accretive operators on Hilbert
space are given. Among other inequalities, we prove that
if A,B ∈ B(H) and B is self-adjoint and also Cm,M (iAB) is
accretive, then

4
√
Mm

M +m
∥AB∥ ≤ ω(AB −BA∗),

where M and m are positive real numbers with M > m and
Cm,M (A) = (A∗ − mI)(MI − A). Also, we show that if
Cm,M (A) is accretive and (M −m) ≤ k∥A∥, then

ω(AB) ≤ (2 + k)ω(A)ω(B).

RESUMEN

Entregamos nuevas desigualdades para normas de opera-
dores acretivos en espacios de Hilbert. Entre otras desigual-
dades, probamos que si A,B ∈ B(H) y B es auto-adjunto y
también Cm,M (iAB) es acretivo, entonces

4
√
Mm

M +m
∥AB∥ ≤ ω(AB −BA∗),

donde M y m son números reales positivos con M > m y
Cm,M (A) = (A∗ − mI)(MI − A). También mostramos que
si Cm,M (A) es acretivo y (M −m) ≤ k∥A∥, entonces

ω(AB) ≤ (2 + k)ω(A)ω(B).
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1 Introduction and preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H with

inner product ⟨·, ·⟩. The numerical radius of A ∈ B(H) is defined by

ω(A) = sup{ |⟨Ax, x⟩| : ∥x∥ = 1 }.

In [14], Yamazaki proved that for any A ∈ B(H)

ω(A) = sup
θ∈R

∥Re(eiθA)∥. (1.1)

It is well known that ω(·) is a norm on B(H) which is equivalent to the usual operator norm ∥.∥.
In fact, for all A ∈ B(H),

∥A∥
2

≤ ω(A) ≤ ∥A∥. (1.2)

The first inequality becomes an equality if A2 = 0. The second inequality becomes an equality if

A is normal. Several numerical radius inequalities improving the inequalities in (1.2) have been

recently given in [1–3,7,9,11,12,15,16] and [17]. Holbrook in [6] showed that, for any A,B ∈ B(H),

ω(AB) ≤ 4ω(A)ω(B). (1.3)

In the case AB = BA, then

ω(AB) ≤ 2ω(A)ω(B).

The question about the best constant k such that the inequality

w (AB) ≤ k∥A∥ω(B) (1.4)

holds for all operators A,B ∈ B(H) is still open. It is shown in [4] that, for any A,B ∈ B(H),

ω(AB ±BA∗) ≤ 2∥A∥ω(B). (1.5)

Let DA = inf
λ∈C

∥A− λI∥ and let RA denote the radius of the smallest disk in the complex plane

containing σ(A) (the spectrum of A). Stampfli in [13] proved that if A ∈ B(H) and A is normal,

then

DA = RA. (1.6)
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The following result from [10] may be stated as well: if A,B ∈ B(H),then

w (AB) ≤ ω(A)ω(B) +DADB . (1.7)

Also, the authors in [8] proved that if A,B ∈ B(H) and A is self-adjointable, then

ω(BA) ≤ DB∥A∥. (1.8)

We consider the nonlinear functional Vs : B(H) −→ R, given by

Vs(A) = sup
∥x∥=1

Re⟨Ax, x⟩.

Recall that, for all A ∈ B(H),

Vs(A) ≤ ω(A) ≤ ∥A∥. (1.9)

We say that an operator A : H −→ H is accretive, if Re⟨Ax, x⟩ ≥ 0 for any x ∈ H. In [3],

Dragomir has shown that if M and m are positive real numbers with M > m and the operator

Cm,M (A) = (A∗ −mI)(MI −A) is accretive, then

∥A∥ ≤ M +m

2
√
Mm

Vs(A) (1.10)

and

∥A∥ ≤ M +m

2
√
Mm

ω(A). (1.11)

A sufficient simple condition for Cm,M (A) to be accretive is that A is a self-adjoint operator on

H such that mI ≤ A ≤ MI in the usual operator order of B(H). Moreover, if 0 < m < M , a

sufficient condition for Cm,M (A) to be accretive is that∥∥∥∥A− M +m

2
I

∥∥∥∥ <
(M −m)

2
.

The following result from [5] may be stated as well: if M and m are positive real numbers with

M > m and A,B ∈ B(H) and also Cm,M (A) is accretive, then

ω(AB −BA∗) ≤ (M −m)ω(B). (1.12)

And also

∥A∥ ≤ M +m

2
√
Mm

∥Re(A)∥, (1.13)
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which is a refinement of inequality (1.11).

In Section 2, we introduce some inequalities between the operator norm and the numerical radius

of accretive operators on Hilbert spaces. More precisely, we establish the generalization of the

inequalities (1.11) and (1.13). Also, we find a lower bound for ω(AB −BA∗).

2 Main results

We need the following lemma, to achieve our goal.

Lemma 2.1. If A ∈ B(H), then

Vs(A) ≤ ∥Re(A)∥.

Proof. Suppose that x ∈ H with ∥x∥ = 1. We have

Re⟨Ax, x⟩ = ⟨(A+A∗)x, x⟩
2

≤ ∥A+A∗∥
2

≤ ∥Re(A)∥.

Hence

Re⟨Ax, x⟩ ≤ ∥Re(A)∥.

Taking the supremum over x ∈ H with ∥x∥ = 1 gives

Vs(A) ≤ ∥Re(A)∥,

which is exactly the desired result.

Remark 2.2. Let M and m be positive real numbers with M > m and A ∈ B(H) and also Cm,M (A)

is accretive. By (1.10) and Lemma 2.1 we deduce that

M +m

2
√
Mm

Vs(A) ≤ M +m

2
√
Mm

∥Re(A)∥.

Therefore, the inequality (1.10) strengthens (1.11) and (1.13). Then, we continue this section and

introduce some norm inequalities for products of two Hilbert space operators with inequality (1.10).
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The following result may be as well.

Theorem 2.3. If A,B ∈ B(H), then

Vs(AB) ≤ ∥B +B∗∥ω(A)

2
+

DADB+B∗

2
+

1

2
ω(AB −BA∗).

Proof. Clearly, ∥Re(AB)∥ = ω(Re(AB)). Then

∥Re(AB)∥ = ω

(
AB +B∗A∗

2

)
= ω

(
AB +AB∗ −AB∗ +B∗A∗

2

)
≤ ω

(
AB +AB∗

2

)
+ ω

(
−AB∗ +B∗A∗

2

)
=

1

2
ω(A(B +B∗)) +

1

2
ω(AB −BA∗)

≤ ∥B +B∗∥ω(A)

2
+

1

2
DADB+B∗ +

1

2
ω(AB −BA∗). (by (1.7))

Hence

∥Re(AB)∥ ≤ ∥B +B∗∥ω(A)

2
+

1

2
DADB+B∗ +

1

2
ω(AB −BA∗) (2.1)

and the result follows from Lemma 2.1.

Corollary 2.4. If A,B ∈ B(H), then

Vs(AB) ≤ ω(B) (ω(A) +DA) +
1

2
ω(AB −BA∗).

Proof. By Theorem 2.3,

Vs(AB) ≤ ∥B +B∗∥ω(A)

2
+

DADB+B∗

2
+

1

2
ω(AB −BA∗).

Since DB+B∗ ≤ ∥B +B∗∥, then

Vs(AB) ≤ ∥Re(B)∥(ω(A) +DA) +
1

2
ω(AB −BA∗)

≤ sup
θ∈R

∥Re(eiθB)∥(ω(A) +DA) +
1

2
ω(AB −BA∗)

≤ ω(B) (ω(A) +DA) +
1

2
ω(AB −BA∗). (by (1.1))

Therefore,

Vs(AB) ≤ ω(B) (ω(A) +DA) +
1

2
ω(AB −BA∗).

This completes the proof.
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Corollary 2.5. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If there

exist θ0 ∈ R such that Cm,M (eiθ0AB) is accretive , then

∥AB∥ ≤ M +m

2
√
Mm

(
ω(B)(ω(A) +DA) +

1

2
ω(AB −BA∗)

)
. (2.2)

Proof. By (2.1),

∥Re(AB)∥ ≤ ∥B +B∗∥ω(A)

2
+

1

2
DADB+B∗ +

1

2
ω(AB −BA∗).

Since DB+B∗ ≤ ∥B +B∗∥, gives

∥Re(AB)∥ ≤ ∥Re(B)∥(ω(A) +DA) +
1

2
ω(AB −BA∗). (2.3)

Suppose that θ0 ∈ R. Replacing B by eiθ0B in the inequality (2.3) gives

∥Re(eiθ0AB)∥ ≤ ∥Re(eiθ0B)∥(ω(A) +DA) +
1

2
ω(eiθ0(AB −BA∗))

= ∥Re(eiθ0B)∥(ω(A) +DA) +
1

2
ω(AB −BA∗)

≤ sup
θ0∈R

∥Re(eiθ0B)∥(ω(A) +DA) +
1

2
ω(AB −BA∗)

= ω(B)(ω(A) +DA) +
1

2
ω(AB −BA∗). (by (1.1))

Hence,

∥Re(eiθ0AB)∥ ≤ ω(B)(ω(A) +DA) +
1

2
ω(AB −BA∗). (2.4)

Since Cm,M (eiθ0AB) is accretive, from the inequality (1.13) we have

2
√
Mm

M +m
∥AB∥ ≤ ∥Re(eiθ0AB)∥

and the result follows from (2.4).

Remark 2.6. The result stated in Corollary 2.5 is stronger than inequality (1.11). To explain

that, suppose that Cm,M (B) is accretive. Replacing A by I in inequality (2.2). Since DI = 0 and

ω(I) = ∥I∥ = 1, then we have ∥B∥ ≤ M +m

2
√
Mm

ω(B).
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The following result may be as well.

Theorem 2.7. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If

Cm,M

 0 AB

0 0

 is accretive, then

2
√
Mm

M +m
∥AB∥ ≤ ∥B∥

2
(ω(A) +DA) +

∥AB −BA∗∥
4

.

Proof. Let A1 =

 A 0

0 A

 and B1 =

 0 B

0 0

. Since Cm,M (A1B1) = Cm,M

 0 AB

0 0


is accretive, from the inequality (1.10) and Theorem 2.3 we have

2
√
Mm

M +m
∥AB∥ =

2
√
Mm

M +m
∥A1B1∥

≤ ∥B1 +B1
∗∥ω(A1)

2
+

DA1
DB1+B1

∗

2
+

1

2
ω(A1B1 −B1A1

∗)

=
∥B∥ω(A)

2
+

DADB1+B1
∗

2
+

1

2
ω

 0 AB −BA∗

0 0


≤ ∥B∥ω(A)

2
+

DA∥B1∥
2

+
1

2
ω

 0 AB −BA∗

0 0


=

∥B∥ω(A)

2
+

DA∥B∥
2

+
∥AB −BA∗∥

4
.

Consequently,
2
√
Mm

M +m
∥AB∥ ≤ ∥B∥

2
(ω(A) +DA) +

∥AB −BA∗∥
4

,

which is exactly the desired result.

As a direct consequence of Theorem 2.7, we have:

Corollary 2.8. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If

Cm,M

 0 AB

0 0

 is accretive and AB = BA∗, then

∥AB∥ ≤ M +m

4
√
Mm

∥B∥(ω(A) +DA).

We need the following lemma to give some applications of Theorem 2.3.

Lemma 2.9. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If Cm,M (A)

and Cm,M (B) are accretive, then Cm,M

 A 0

0 B

 is accretive.
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Proof. Put X =

 x

y

, where x, y ∈ H. First we show that if A and B are accretive, then

T =

 A 0

0 B

 is accretive. We have

Re(⟨TX,X⟩) = Re

〈 A 0

0 B

 x

y

 ,

 x

y

〉 = Re

〈 Ax

By

 ,

 x

y

〉
= Re(⟨Ax, x⟩) +Re(⟨By, y⟩).

Since Re(⟨Ax, x⟩) ≥ 0 and Re(⟨By, y⟩) ≥ 0, then

Re(⟨TX,X⟩) ≥ 0 (2.5)

and so T is accretive. On the other hand,

Cm,M

 A 0

0 B

 =

 A∗ 0

0 B∗

−

 mI 0

0 mI

 MI 0

0 MI

−

 A 0

0 B


=

 A∗ −mI 0

0 B∗ −mI

 MI −A 0

0 MI −B


=

 (A∗ −mI)(MI −A) 0

0 (B∗ −mI)(MI −A)


=

 Cm,M (A) 0

0 Cm,M (B)

 .

Consequently,

Cm,M

 A 0

0 B

 =

 Cm,M (A) 0

0 Cm,M (B)

 . (2.6)

Since Cm,M (A) and Cm,M (B) are accretive, the result follows from (2.5) and (2.6).

In the following, we provide a lower bound of the ω(AB −BA∗) in terms of ∥AB∥ for some case.

Theorem 2.10. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If B is

self-adjoint and Cm,M (iAB) is accretive, then

4
√
Mm

M +m
∥AB∥ ≤ ω(AB −BA∗). (2.7)
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Proof. By Theorem 2.3,

Vs(AB) ≤ ∥B +B∗∥ω(A)

2
+

DADB+B∗

2
+

1

2
ω(AB −BA∗).

Replacing B by iB in the last inequality gives

Vs(iAB) ≤ 1

2
ω(AB −BA∗). (2.8)

Since Cm,M (iAB) is accretive, from the inequality (1.10) and (2.8) we have

2
√
Mm

M +m
∥AB∥ ≤ Vs(iAB) ≤ 1

2
ω(AB −BA∗).

Therefore,
2
√
Mm

M +m
∥AB∥ ≤ 1

2
ω(AB −BA∗).

This completes the proof.

Recently, some inequalities have been presented by mathematicians to find the upper bound of

ω(AB − BA∗), for example inequalities (1.5) and (1.12). On the other hand, we have to use the

first inequality (1.2) to find a lower bound of ω(AB − BA∗). Now, in the following we give an

example to show how Theorem 2.10 improves the first inequality (1.2).

Example 2.11. Let B =

 1 0

0 0.5

, A =

 −1.5i 0.2i

0 −3.2i

, M = 3, and m = 1. Clearly B is

self-adjoint and with a simple calculation, we have

∥∥∥∥iAB − M +m

2
I

∥∥∥∥ =

∥∥∥∥∥∥
 0.5 0.1

0 0.4

∥∥∥∥∥∥ ≃ 0.52 ≤ 1 =
M −m

2
.

Therefore, Cm,M (iAB) is accretive. On the other hand,

∥AB∥ =

∥∥∥∥∥∥
 −1.5i 0.1i

0 −1.6i

∥∥∥∥∥∥ ≃ 1.62

and

∥AB −BA∗∥ =

∥∥∥∥∥∥
 −3i 0.1i

0.1i −3.2i

∥∥∥∥∥∥ ≃ 3.24.

In this case
∥AB −BA∗∥

2
≃ 1.62
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while
4
√
Mm

M +m
∥AB∥ ≃ 2.80.

Remark 2.12. Let M and m are positive real numbers with M > m and A ∈ B(H) and also

Cm,M (A) is accretive. Replacing B by I and A by −iA in Theorem 2.10 gives

2
√
Mm

M +m
∥A∥ ≤ 1

2
ω(A+A∗) = ∥Re(A)∥.

Therefore, the inequality (2.7) strengthens (1.13).

Corollary 2.13. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If B

is self-adjoint and Cm,M (A) and also Cm,M (iAB) is accretive, then

∥AB∥ ≤ (M2 −m2)

4
√
Mm

∥B∥.

Proof. By Theorem 2.10,
4
√
Mm

M +m
∥AB∥ ≤ ω(AB −BA∗).

From the hypothesis Cm,M (A) is accretive and (1.12),

4
√
Mm

M +m
∥AB∥ ≤ (M −m)ω(B),

which is exactly the desired result.

At the end of this section, we introduce some numerical radius inequalities for products of two

operators.

Theorem 2.14. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If

Cm,M (A) is accretive, then

ω(AB) ≤
(
DA +

M −m

2

)
ω(B).

Proof. Clearly, ∥Re(AB)∥ = ω(Re(AB)). Then

∥Re(AB)∥ = ω

(
AB +B∗A∗

2

)
= ω

(
AB +AB∗ −AB∗ +B∗A∗

2

)
≤ ω

(
AB +AB∗

2

)
+ ω

(
−AB∗ +B∗A∗

2

)
=

1

2
ω(A(B +B∗)) +

1

2
ω(AB −BA∗)

≤ 1

2
DA∥B +B∗∥+ 1

2
ω(AB −BA∗) (by (1.8))
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= DA∥Re(B)∥+ 1

2
ω(AB −BA∗)

≤ DA sup
θ∈R

∥Re(eiθB)∥+ 1

2
ω(AB −BA∗)

= DAω(B) +
1

2
ω(AB −BA∗)

≤ DAω(B) +
M −m

2
ω(B). (by (1.12))

=

(
DA +

M −m

2

)
ω(B).

Hence,

∥Re(AB)∥ ≤
(
DA +

M −m

2

)
ω(B). (2.9)

Suppose that θ0 ∈ R. Replacing B by eiθ0B in the inequality (2.9) gives

∥Re(eiθ0AB)∥ ≤
(
DA +

M −m

2

)
ω(B).

Taking the supremum over θ0 ∈ R gives

ω(AB) ≤
(
DA +

M −m

2

)
ω(B),

which is exactly the desired result.

Corollary 2.15. Let M and m (with M > m) are positive real numbers and A,B ∈ B(H). If

Cm,M (A) is accretive, then

ω(AB) ≤
(
∥A∥+ M −m

2

)
ω(B).

Proof. Since DA ≤ ∥A∥, the result follows from Theorem 2.14.

Concerning the inequality (1.4), the following result is interesting.

Theorem 2.16. Let k, M and m (with M > m) are positive real numbers and A,B ∈ B(H). If

Cm,M (A) is accretive and (M −m) ≤ k∥A∥, then

ω(AB) ≤
(
1 +

k

2

)
∥A∥ω(B).

Proof. By Corollary 2.15,

ω(AB) ≤
(
∥A∥+ M −m

2

)
ω(B). (2.10)

From the hypothesis (M −m) ≤ k∥A∥ and inequality (2.10),

ω(AB) ≤
(
∥A∥+ k∥A∥

2

)
ω(B),
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which is exactly the desired result.

Corollary 2.17. Let k, M and m (with M > m) are positive real numbers and A,B ∈ B(H). If

Cm,M (A) is accretive and (M −m) ≤ k∥A∥, then

ω(AB) ≤ (2 + k)ω(A)ω(B).

Proof. Since ∥A∥ ≤ 2ω(A), the result follows from Theorem 2.16.

Remark 2.18. If k < 2, Corollary 2.16 refines the inequality (1.3).
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