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ABSTRACT

In this article, we study the extended Weinstein equation

Lu = ∆u+
k

xn

∂u

∂xn
+

ℓ

x2
n

u,

where u is a sufficiently smooth function defined in Rn with
xn > 0 and n ≥ 3. We find a detailed construction for a
fundamental solution for the operator L. The fundamental
solution is represented by the associated Legendre functions
Qµ

ν .

RESUMEN

En este artículo estudiamos la ecuación de Weinstein exten-
dida

Lu = ∆u+
k

xn

∂u

∂xn
+

ℓ

x2
n

u,

donde u es una función suficientemente suave definida en
Rn con xn > 0 y n ≥ 3. Encontramos una construcción
detallada para una solución fundamental del operador L. La
solución fundamental está representada por las funciones de
Legendre asociadas Qµ

ν .
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1 Introduction

In this paper, we will study the extended Weinstein or the Leutwiler-Weinstein equation

Lu := ∆u+
k

xn

∂u

∂xn
+

ℓ

x2
n

u = 0, (1.1)

where k, ℓ ∈ R. The Weinstein operator L plays an interesting special role in the theory of partial

differential equations, hyperbolic geometry and in other areas of mathematics (cf. Section 5).

With the trivial choice of parameters k = ℓ = 0, the Weinstein operator is the usual Euclidean

Laplacian

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

acting on functions defined on Rn. The solutions are called harmonic functions and the theory is

well elaborated, see e.g. [3, 13, 14]. The next natural step is to just require the condition ℓ = 0 to

be fulfilled, in which case we are in the case presented by Alexander Weinstein, see [21] and also

[4, 11]. In this case, equation (1.1) is a classic Weinstein equation and the operator L is singular

on the surface xn = 0. In this case, we usually look at functions that are defined in the upper

half-space

Rn
+ := Rn−1 × (0,∞).

For more recent research on the Weinstein equation, see e.g. [5, 8]. The extended Weinstein

equation (1.1) with arbitrary parameters k, ℓ ∈ R was initially studied by Heinz Leutwiler in [12].

The equation has continued to be studied quite actively until these days, see e.g. [2].

The purpose of this article is to present the simplest possible construction (from the point of view

of the authors) for the fundamental solution for the Weinstein operator L represented in (1.1). We

try to present the theory in such a way that basic knowledge of partial differential equations and

vector analysis are sufficient to follow the presentation, i.e. the so-called graduate student level.

The structure of the article is as follows:

• In Section 2, we outline the required preliminaries, i.e. the Weinstein operator with its

reduced version, and some useful notions from the theory of distributions.

• In Section 3, find the special type of “radial” solutions for (1.1).

• In Section 4, we use the “radial” solutions to define the fundamental solution and compute

its proper coefficient.
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2 Preliminaries

2.1 Weinstein operator

Let us look at some basic properties of the Weinstein operator L. Note that the variable xn plays

a special role in the operator. We denote elements x = (x′, xn) ∈ Rn
+, where xn > 0. We observe

that keeping xn fixed, the operator L admits with respect to the variable x′ the same invariance

properties as the Laplacian in Rn−1, i.e. invariance under the Euclidean rigid motions (cf. [3]).

Particularly important in what follows is the invariance with respect to translations

x′ 7→ x′ + a′ (2.1)

for any a′ ∈ Rn−1. In the previous section, we did not discuss the fourth possible canonical special

case for the Weinstein equation, namely the situation k = 0. In fact, this situation is significantly

related to solving the extended Weinstein equation as follows. As a direct computation gives

L(x
− k

2
n u) = x

− k
2

n L̃u, (2.2)

where

L̃u = ∆u+
k(2− k) + 4ℓ

4

u

x2
n

,

we call the operator L̃ the reduced operator. Subsequently, we will base our calculations largely on

the reduced operator, as it is relatively close to the Laplace operator in its properties.

The reduced operator is especially useful from the point of view of the integration theory. Let

U be a bounded subset of Rn
+ with a sufficiently smooth boundary ∂U and let u and v twice

differentiable real valued functions defined in an open set containing U . Hence, the usual Green

formula for the Laplace operator is∫
U

(u∆v − v∆u) dx =

∫
∂U

(
u
∂v

∂n
− v

∂u

∂n

)
dS,

where the derivative with respect to the outer unit normal n is defined by

∂u

∂n
= n · ∇u.

The Green formula for the reduced operator is obtained by adding and subtracting the term
k(2− k) + 4ℓ

4

uv

x2
n

in the volume integral, i.e.

∫
U

(
uL̃v − vL̃u

)
dx =

∫
∂U

(
u
∂v

∂n
− v

∂u

∂n

)
dS. (2.3)
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2.2 Generalized functions

Generalized functions or distributions are a standard tool in modern partial differential equation

theory. Their history begins in 1936, when Sergei Sobolev introduced his "l’espace fonctionnel"

and applied them to solve a Cauchy problem of second-order partial differential equations in [17].

After this, the theory was further developed, see e.g., the first larger representation of Laurent

Schwartz [16]. A key work in the theory of partial differential equations is the classic book [9] by

Gelfand and Shilov. In this book, distributions are examined from the point of view of solving

partial differential equations, and the key tool is the connection between distributions and complex

analytical functions. All the following information can be found in more detail in the literature

mentioned above.

Let Ω be an open subset of Rn (or Rn
+). We denote D(Ω) as the space of compactly supported

functions

C∞
0 (Ω) := {φ ∈ C∞(Ω) : supp(φ) is compact and supp(φ) ⊂ Ω}

equipped with the topology of uniform convergence in compact subsets K ⊂ Ω. Indeed, φj → φ in

D(Ω), if there exists a compact subset K ⊂ Ω such that supp(φj) ⊂ K for any j and all derivatives

∂αφj → ∂αφ uniformly, i.e. the convergence in the Fréchet space C∞(K). Above, multi-index

notation α = (α1, . . . , αn) ∈ Nn
0 with

∂α =
∂α1

∂xα1
1

· · · ∂αn

∂xαn
n

is used. The preceding D(Ω) is called the test function space. We denote by D′(Ω) the space

of continuous linear functionals over D(Ω), and we call its elements distributions or generalized

functions. If T ∈ D′(Ω), we denote

T (φ) =: ⟨T, φ⟩

for all φ ∈ D(Ω). The continuity of a functional T means, that T (φ) → 0 for all φ → 0 in

D(Ω). The convergence in D′(Ω) is defined in the weak form, i.e. a sequence {Tj} of distributions

converges to a distribution T if and only if

⟨Tj , φ⟩ → ⟨T, φ⟩, for j → ∞, (2.4)

for any φ ∈ D(Ω). Important basic properties of distributions are that they have all derivatives

defined by setting

⟨∂αT, φ⟩ = (−1)|α|⟨T, ∂αφ⟩,

where |α| = α1+· · ·+αn, and multiplying by a smooth function f ∈ C∞(Ω) produces a distribution,

i.e.,

⟨fT, φ⟩ = ⟨T, fφ⟩.
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The above properties allow differential operators to be defined in distributional sense, e.g.,

⟨L̃T, φ⟩ = ⟨T, L̃φ⟩, (2.5)

for any T ∈ D′(Ω) and φ ∈ D(Ω) when Ω ⊂ Rn
+. We also denote

⟨T, φ⟩ = ⟨T (x), φ(x)⟩,

where the x is a dummy variable (cf. the use of variables in integrals). Any locally integrable

function g ∈ L1
loc(Ω) defines a distibution via the L2-inner product by

⟨g, φ⟩ := ⟨g, φ⟩L2(Ω) =

∫
Ω

g(x)φ(x) dx. (2.6)

Remark 2.1. The starting point for the theory of distributions can be also in measure theory. Let

us elaborate on the equivalence of perspectives. If Ω ⊂ Rn is an open set and µ a complex Borel

measure on it with µ(K) < ∞ for any compact K ⊂ Ω, then

T (φ) =

∫
Ω

φ dµ,

defines a distribution, where φ ∈ D(Ω). If f ∈ L1
loc(Ω), then the measure

µ(E) =

∫
E

f(x) dx

for any Borel set E ⊂ Ω is a complex Borel measure with µ(K) < ∞. Then the Radon-Nikodym

derivative dµ
dx = f . Hence, we can intuitively identify distributions with functions f or equivalently

with measures µ.

The most important example of distributions is the Dirac delta distribution, which is defined by

setting

⟨δ(x− y), φ(x)⟩ := φ(y),

for y ∈ Rn. The Dirac delta is not a distribution generated by a locally integrable function. In the

distributional sense, one can see that δ(x − y) = 0 for any x ̸= y. Moreover, the Dirac delta has

the obvious property

f(x)δ(x− y) = f(y)δ(x− y), (2.7)

for f ∈ C∞(Ω), which plays a central role in this paper. If

Pu(x) =

m∑
k=0

∑
|α|=k

aα(x)∂
αu(x)
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is a linear differential operator P acting on a suitable function u, where aα ∈ C∞(Ω), we call a

distribution G(·, y) ∈ D′(Ω) a fundamental solution at y ∈ Ω, if it satisfies the equation

PG(x, y) = δ(x− y).

The main motivation to find a fundamental solution is to study solutions of the equation Pu = f .

One can see, that the solution of the problem is given by u = G ∗ f , where ∗ is the convolution of

a distribution and a function. See details, e.g. in [9].

3 Classical “radial” solutions

In this paper, our aim is to find a fundamental solution G for the Weinstein operator (1.1), i.e.

LG(x, y) = δ(x− y)

where y ∈ Rn
+. Our first observation is that due to the formulas (2.2) and (2.7), we obtain the

following formula.

Proposition 3.1. If L̃v = δ(x− y), then L

((
yn
xn

) k
2

v

)
= δ(x− y).

Hence, it is enough to find a fundamental solution for the reduced operator L̃. A usual problem

with any non-constant coefficient differential operator is that the symmetry of the operator does

not match with the symmetry of the Dirac delta. We know that the Dirac delta is rotationally

invariant (see [9]), i.e.

δ(Ax) = δ(x)

for any A ∈ SO(n), but as we mentioned above, L̃ is rotation invariant only around the xn-axis,

or more precisely, it is invariant under the subgroup SO(n− 1) in SO(n) defined as the stabiliser

of the xn-axis. Hence, the xn-direction will play a special role. Since the operator is translation

invariant with respect to x′, we can try to find first a fundamental solution only at the point

y = (0′, yn). Thus,

δ(x− y) = δ(x′)δ(xn − yn).

Consequently, the fundamental solution must be a “radial function”, i.e., it depends on |x − y|,
with the special role of xn. Hyperbolic geometry gives us an idea how to proceed. In [15], one can

find the expression

|x− y|2 = 2xnyn(λ(x, y)− 1), (3.1)
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where λ : Rn
+ × Rn

+ → [1,∞) is defined by

λ(x, y) = 1 +
|x− y|2

2xnyn
.

The reader should note that

λ ≥ 1. (3.2)

The function λ is an invariant with respect to the invariance group of the hyperbolic upper-half

space, cf. [15]. Based on this, one can try to find a solution for the extended Weinstein equation

in the form

u(x) = xα
nv(λ), (3.3)

for a fixed y ∈ Rn
+. We want to substitute this into equation (1.1). First, we compute the following

technical lemma.

Lemma 3.2. If u is of the form (3.3) and y′ = 0, we have

x2−α
n L̃u =

(
λ2 − 1

)
v′′(λ) +

(
(n− 2 + 2α)

xn

yn
+ 2(1− α)λ

)
v′(λ) +

(
α(α− 1) +

k(2− k) + 4ℓ

4

)
v(λ).

Proof. Since v = v(λ(x, y)), we compute

∂v

∂xj
=

xj

xnyn
v′(λ),

∂v

∂xn
=

xn − ynλ

xnyn
v′(λ),

∂2v

∂x2
j

=
x2
jv

′′(λ) + xnynv
′(λ)

x2
ny

2
n

,

∂2v

∂x2
n

=
(xn − ynλ)

2v′′(λ) + (2y2nλ− xnyn)v
′(λ)

x2
ny

2
n

,

for j = 1, . . . , n− 1. Then we compute

∂u

∂xj
= xα−1

n

xj

yn
v′(λ),

∂u

∂xn
= xα−1

n

(
αv(λ) +

(
xn

yn
− λ

)
v′(λ)

)
,

∂2u

∂x2
j

=
xα−2
n

y2n

(
x2
jv

′′(λ) + ynxnv
′(λ)

)
,

∂2u

∂x2
n

=
xα−2
n

y2n

(
(xn − ynλ)

2v′′(λ) +
(
(2α− 1)xnyn + (y2n − αy2n)2λ

)
v′(λ) + α(α− 1)y2nv(λ)

)
,

for j = 1, . . . , n− 1. Then we observe

n−1∑
j=1

∂2u

∂xj
=

xα−2
n

y2n

(
|x′|2v′′(λ) + (n− 1)ynxnv

′(λ)
)
.
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Since y′ = 0, we have |x′|2 = 2xnynλ− x2
n − y2n and we obtain

∆u = xα−2
n

(
(λ2 − 1)v′′(λ) +

(
(n− 2 + 2α)

xn

yn
+ 2(1− α)λ

)
v′(λ) + α(α− 1)v(λ)

)
,

completing the proof.

We observe that we obtain the ordinary differential equation with respect to λ if we choose α = 2−n
2 .

Since α(α− 1) = 1
4 (n− 2)n, we obtain the following result.

Proposition 3.3. The function u(x) = x
2−n
2

n v(λ) is a solution of L̃u = 0 if and only if

(λ2 − 1)v′′(λ) + nλv′(λ) +
1

4
(k(2− k) + (n− 2)n+ 4ℓ)v(λ) = 0.

We denote β := 1
4 (k(2− k) + (n− 2)n+ 4ℓ). To solve the equation

(λ2 − 1)v′′(λ) + nλv′(λ) + βv(λ) = 0, (3.4)

we first observe that it is not far from the associated Legendre equation

(z2 − 1)w′′(z) + 2zw′(z)−
(
ν(ν + 1) +

µ2

z2 − 1

)
w(z) = 0, (3.5)

with parameters µ, ν ∈ C. The associated Legendre equation has two solutions Pµ
ν (z) and Qµ

ν (z)

defined outside of singularities z = ±1, see e.g. [1,10]. The solutions are called associated Legendre

functions. The solutions Pµ
ν (z) and Qµ

ν (z) are linearly independent if and only if µ± ν /∈ −N. We

need to exclude this case in the future.

Assume x ̸= y, that is, from (3.2) we obtain λ = λ(x, y) > 1. We look for a solution for (3.4) in

the form

v(λ) = (λ2 − 1)δw(λ).

Substituting this into the equation (3.4), the equation becomes

(λ2 − 1)w′′ + (4δ + n)λw′ +

(
2δ + β +

(4δ(δ − 1) + 2nδ)λ2

λ2 − 1

)
w = 0. (3.6)

To obtain the associated Legendre equation, it is required that

4δ + n = 2 ⇐⇒ δ =
2− n

4
.

We obtain the following result.
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Proposition 3.4. The function v(λ) = (λ2 − 1)
2−n
4 w(λ) satisfies equation (3.4) if and only if w

is a solution of the associated Legendre equation

(λ2 − 1)w′′ + 2λw′ −
(
−n(2− n) + 4β

4
+

1
4 (n− 2)2

λ2 − 1

)
w = 0.

Proof. Using (3.6), we have

(λ2 − 1)w′′ + 2λw′ +

(
2− n

2
+ β − 1

4
(n− 2)2

λ2

λ2 − 1

)
w = 0.

On the other hand,
λ2

λ2 − 1
= 1 +

1

λ2 − 1
,

and we obtain the result.

Hence we obtain the solutions as follows.

Theorem 3.5. Equation (3.4) has two linearly independent solutions

(λ2 − 1)
2−n
4 P

±n−2
2

− 1
2±

√
n(n−2)+1−4β

2

(λ) and (λ2 − 1)
2−n
4 Q

±n−2
2

− 1
2±

√
n(n−2)+1−4β

2

(λ)

where we can choose any ± combination for any indices (4 possible combinations).

Proof. To solve the reduced equation, we need to find the right parameters in the Legendre equation

(3.5), that is

ν(ν + 1) = −n(2− n) + 4β

4
⇔ ν = −1

2
±
√

n(n− 2) + 1− 4β

2

and

µ2 =
1

4
(n− 2)2 ⇔ µ = ±n− 2

2
.

Equation (3.4) admits two linearly independent solutions

(λ2 − 1)
2−n
4 P

±n−2
2

− 1
2±

√
n(n−2)+1−4β

2

(λ) and (λ2 − 1)
2−n
4 Q

±n−2
2

− 1
2±

√
n(n−2)+1−4β

2

(λ).

Then, using the formulas 8.2.1 and 8.2.2 from [1], both functions Pµ

−κ− 1
2

and Qµ

−κ− 1
2

can be

represented by the functions Pµ

κ− 1
2

and Qµ

κ− 1
2

. Similarly, using the formulas 8.2.5 and 8.2.6, we

can represent P−µ
ν and Q−µ

ν by the functions Pµ
ν and Qµ

ν . Hence, the any ± combination gives us

two linear independent solutions.
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Corollary 3.6. Using (2.2), we obtain the solutions

x
− k

2
n (λ2 − 1)

2−n
4 P

±n−2
2

− 1
2±

√
n(n−2)+1−4β

2

(λ) and x
− k

2
n (λ2 − 1)

2−n
4 Q

±n−2
2

− 1
2±

√
n(n−2)+1−4β

2

(λ)

for the Weinstein equation (1.1).

Remark 3.7. We observe that if n(n− 2) + 1− 4β < 0, we obtain solutions with the functions

Pµ

− 1
2+iθ

(λ) and Qµ

− 1
2+iθ

(λ),

with some θ ∈ R. These functions are called the Mehler functions or conical functions, see e.g.

Section 8.12. in [1] or Section 8.84 in [10]. The first of the functions is real-valued, while the

second is complex-valued in general. To find completely real-valued solutions, see e.g. [6].

Remark 3.8. The special case n(n− 2) + 1− 4β = 0, i.e. k(2− k) + 4ℓ = 1, corresponds to the

equation

L̃u = ∆u+
1

4

u

x2
n

= 0 or Lu = ∆u+
k

xn

∂u

∂xn
+

1
4 (k − 1)2

x2
n

u = 0,

and the solutions are given by

Pµ

− 1
2

(λ) and Qµ

− 1
2

(λ).

4 Finding fundamental solutions

The solutions given in Theorem 3.5 can be used as candidates for a fundamental solution. From

(3.1), we infer that x → y if and only if λ → 1+. Next, let us examine the asymptotic behavior of

functions in general. In the following, we assume that the argument z of the functions is real.

Proposition 4.1. If Re(µ) > 0, then

lim
z→1

(
(z2 − 1)

µ
2 P−µ

ν (z)
)
= 0.

Proof. For |1− z| < 2 the associated Legendre function Pµ
ν admits the representation (see 8.1.2 in

[1])

P−µ
ν (z) =

1

Γ(1 + µ)

(
z − 1

z + 1

)µ
2

2F1

(
−ν, ν + 1; 1 + µ;

1− z

2

)
,

where 2F1 represents the usual hypergometric functions (see [1, 10]). Hence

(z2 − 1)
µ
2 P−µ

ν (z) =
1

Γ(1 + µ)
(z − 1)µ2F1

(
−ν, ν + 1; 1 + µ;

1− z

2

)
,

completing the proof.
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Proposition 4.2. If Re(µ) > 0 and ν + 1
2 /∈ −N, then

lim
z→1+

(
(z2 − 1)

µ
2 Qµ

ν (z)
)
= eiπµ2µ−1Γ(µ).

Proof. Using the representation 8.703 in [10], we obtain the representation

(z2 − 1)−
µ
2 Qµ

ν (z) = eiπµ
Γ(ν + µ+ 1)

√
π

2ν+1Γ(ν + 3
2 )z

ν+µ+1 2F1

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3

2
;
1

z2

)
.

Using the transformation formula 9.131.1 in [10], we have

2F1

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3

2
;
1

z2

)
=

(z2 − 1)−µ

z−2µ 2F1

(
ν − µ+ 1

2
,
ν − µ+ 2

2
; ν +

3

2
,
1

z2

)
.

Hence

(z2 − 1)
µ
2 Qµ

ν (z) = eiπµ
Γ(ν + µ+ 1)

√
π

2ν+1Γ(ν + 3
2 )z

ν−µ+1 2F1

(
ν − µ+ 2

2
,
ν − µ+ 1

2
; ν +

3

2
;
1

z2

)
.

If Re(c− a− b) > 0 and c /∈ −N0, the identity 15.1.20 in [1] says

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

If a = ν−µ+1
2 , b = ν−µ+2

2 and c = ν+ 3
2 , we have Re(c−a−b) = Re(µ) > 0 and ν+ 3

2 ̸= 0,−1,−2, . . . ,

i.e.

2F1

(
ν − µ+ 1

2
,
ν − µ+ 2

2
; ν +

3

2
; 1

)
=

Γ(ν + 3
2 )Γ(µ)

Γ(ν+µ+2
2 )Γ(ν+µ+1

2 )
.

Using the doubling formula for the gamma function 8.335.1 in [10], we obtain

2F1

(
ν − µ+ 1

2
,
ν − µ+ 2

2
; ν +

3

2
; 1

)
=

2ν+µΓ(ν + 3
2 )Γ(µ)√

πΓ(ν + µ+ 1)
.

Thus

lim
z→1+

(
(z2 − 1)

µ
2 Qµ

ν (z)
)
= eiπµ

Γ(ν + µ+ 1)
√
π

2ν+1Γ(ν + 3
2 )

2ν+µΓ(ν + 3
2 )Γ(µ)√

πΓ(ν + µ+ 1)
= eiπµ2µ−1Γ(µ).

We know that the homogenity of the Dirac delta distribution is −n and the reduced operator is a

homogeneous differential operator of degree 2. Hence, the fundamental solutions should have the

homogenity −n + 2. From (3.1), we obtain, that (λ − 1)
n−2
2 has the needed homogenity. Hence

the solution (λ2 − 1)−
µ
2 Qµ

ν (λ) has the suitable homogenity. We see it by writing it in the form

(λ2 − 1)−
µ
2 Qµ

ν (λ) =
(λ2 − 1)

µ
2 Qµ

ν (λ)

(λ+ 1)µ(λ− 1)µ
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for µ = n−2
2 . Let us define the following function with the canonical asymptotic behavior, which

we can use as a candidate for a fundamental solution. This means that we fixing the constant, and

proving directly that it indeed satisfies the correct equation.

Proposition 4.3. Let µ = n−2
2 and µ = − 1

2 ±
√

n(n−2)+1−4β

2 . The function

F (x, y) =
f(λ)

(λ− 1)µ
,

where

f(λ) =
2e−πµi

Γ(ν)

(λ2 − 1)
µ
2 Qµ

ν (λ)

(λ+ 1)µ

is a null solution of the reduced operator for x ̸= y and

lim
λ→1

f(λ) = 1.

Proof. Using the preceding proposition, we obtain

lim
λ→1

(
(λ2 − 1)

µ
2 Qµ

ν (λ)

(λ+ 1)µ

)
=

eπµi

2
Γ(µ).

Next we need to evaluate L̃F (·, y) in the distribution sense. We proceed as follows. We take a test

function φ ∈ D(Rn
+) and choose a bounded open set U ⊂ Rn

+ with a sufficiently smooth boundary

satisfying supp(φ) ⊂ U , and we define Ur(y) := U\Br(y) for 0 < r < R, where R = inf{|x − y| :
x ∈ ∂U}. If χUr(y) is the characteristic function of Ur(y), then we define the sequence of locally

integrable functions {Fr} by Fr := χUr(y)F (·, y). Obviously, the sequence converges to the F (·, y)
in the distributional sense (2.4). Then, using this convergence and (2.5), we obtain

⟨L̃F (·, y), φ⟩ = ⟨F (·, y), L̃φ⟩ = lim
r→0

⟨Fr, L̃φ⟩. (4.1)

Since Fr is locally integrable, we have using (2.6) and the Green formula (2.3),

⟨Fr, L̃φ⟩ =
∫
Ur(y)

F (x, y)L̃φ(x) dx =

∫
Ur(y)

L̃F (x, y)φ(x) dx+

∫
∂Ur(y)

(
F
∂φ

∂n
− φ

∂F

∂n

)
dS.

We observe that L̃F (x, y) = 0 for x ̸= y and split ∂Ur(y) = ∂U ∪ (−∂Br(y)), where the minus

sign denotes the opposite (i.e. inward) orientation. Since supp(∂φ∂n ) ⊂ supp(φ), we observe that

the surface integral over ∂U vanishes. Hence

⟨Fr, L̃φ⟩ =
∫
∂Br(y)

(
φ
∂F

∂n
− F

∂φ

∂n

)
dS. (4.2)

To compute the surface integral in (4.2), we need the following technical lemma.
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Lemma 4.4. If x ∈ ∂Br(y) with y = (0′, yn), then the normal derivative of λ(x, y) satisfies

∂λ

∂n
= r

xn + yn
2x2

nyn
.

Proof. We compute

∂λ

∂xj
=

xj

xnyn
, for j = 1, . . . , n− 1,

∂λ

∂xn
=

−|x′|2 + x2
n − y2n

2x2
nyn

,

i.e.

∇λ =

(
x′,

−|x′|2+x2
n−y2

n

2xn

)
xnyn

.

At x ∈ ∂Br(y), the outward pointing unit normal is

n(x) =
(x′, xn − yn)

r
.

Since |x′|2 = r2 − (xn − yn)
2, we compute

∂λ

∂n
= n · ∇λ = r

xn + yn
2x2

nyn
.

We also need the following asymptotics.

Remark 4.5 (Integrals over spheres). If f : U → R is a continuous function, y ∈ U and R > 0

a radius such that Br(y) ⊂ U for all 0 < r < R. Then there is the classical asymptotic formula

of the surface integrals, depending on the singularity of the integrand. A direct consequence of the

continuity of the function f is

lim
r→0

∫
∂Br(y)

f(x)

rα
dS(x) =


0, for 0 < α < n− 1,

ωn−1f(y), for α = n− 1,

±∞, for α > n− 1,

(4.3)

where ωn−1 is the surface area of the unit sphere Sn−1 ⊂ Rn. These are a special case of the

so-called potential type integrals, see e.g. [19].

Then we are ready to prove:
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Theorem 4.6. If y = (0′, yn), then

L̃F (·, y) = −n− 2

2
yn−2
n ωn−1δ(x

′)δ(xn − yn),

where ωn−1 is the surface area of the unit sphere Sn−1 ⊂ Rn and n ≥ 3.

Proof. Since λ− 1 = r2

2xnyn
, we have

F (x, y) =
(2xnyn)

µf(λ)

rn−2
,

where µ = n−2
2 . Hence using (4.3), we obtain

lim
r→0

∫
∂Br(y)

F
∂φ

∂n
dS = lim

r→0

∫
∂Br(y)

(2xnyn)
µf(λ)

rn−2

∂φ

∂n
dS = 0.

Then we compute using Lemma 4.4

∂F

∂n
=

d

dλ

(
f(λ)

(λ− 1)µ

)
∂λ

∂n

=

(
f ′(λ)

(λ− 1)µ
− µf(λ)

(λ− 1)µ+1

)
∂λ

∂n

=
1

2

(
(2xnyn)

µf ′(λ)

rn−3
− µ(2xnyn)

n
2 f(λ)

rn−1

)
xn + yn
x2
nyn

.

Hence, we can compute

lim
r→0

∫
∂Br(y)

φ
∂F

∂n
dS =

1

2
lim
r→0

∫
∂Br(y)

(2xnyn)
µf ′(λ)

rn−3

xn + yn
x2
nyn

φdS︸ ︷︷ ︸
=0, using (4.3)

− 1

2
lim
r→0

∫
∂Br(y)

µ(2xnyn)
n
2 f(λ)

rn−1

xn + yn
x2
nyn

φdS

=− µyn−2
n ωn−1φ(y)

again using (4.3). Hence, using (4.1) and (4.2), we conclude

⟨L̃F (·, y), φ⟩ = −µyn−2
n ωn−1φ(y).

Using the definition of the Dirac delta distribution, we obtain the result.

Since L̃ is invariant under (2.1), we obtain a fundamental solution by the simple substitution.
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Theorem 4.7. Let n ≥ 3. The distribution

H(x, y) =
h(λ(x, y))

(λ(x, y)− 1)
n−2
2

where

h(λ) = − 4e−πµi

(n− 2)yn−2
n ωn−1Γ(ν)

(λ2 − 1)
µ
2 Qµ

ν (λ)

(λ+ 1)µ

is a fundamental solution for L̃, i.e.

L̃H(·, y) = δ(x− y),

for any y ∈ Rn
+.

Proposition 3.1 gives the following theorem.

Theorem 4.8. Let n ≥ 3. The distribution

G(x, y) =
g(λ(x, y))

(λ(x, y)− 1)
n−2
2

where

g(λ) = − 1

x
k
2
n y

n−2− k
2

n

4e−πµi

(n− 2)ωn−1Γ(ν)

(λ2 − 1)
µ
2 Qµ

ν (λ)

(λ+ 1)µ

is a fundamental solution for L, i.e.

LG(·, y) = δ(x− y),

for any y ∈ Rn
+.

Above, the special case n = 2 is not considered and is left as a future research topic. The question

is a natural deformation for the hyperbolic Laplace operator on the complex upper half-plane.

5 Conclusions

In this paper, we derive the fundamental solution for the operator L in detail. The reader can see

that to find the fundamental solution for an operator with a non-constant coefficient is much more

challenging than in the case of constant coefficients. The reader should also bear in mind how

the only constant multiplication special case k = ℓ = 0 makes calculations significantly easier. By

doing the calculations presented in the paper in this case, we recover a classical derivation, based

on differential equations, for the fundamental solution of the Laplace operator.

Finally, the authors would like to point out that the results of the paper may be interesting in



356 S.-L. Eriksson & H. Orelma CUBO
26, 2 (2024)

addition to analysis in other areas of mathematics, such as analytical number theory, because

the extended Weinstein equation also encompasses the famous Maaß wave equation, including the

famous Maaß forms as special solutions, see e.g. [7, 18].
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