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L,-boundedness of the Laplace transform
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1 Introduction

The Laplace transform £ is a well-known classical linear integral operator defined for every appro-

priate function f on [0,00) by

Lf(t) = /000 e "' f(s)ds, te(0,00).

Laplace transform is widely used for solving ordinary and partial differential equations. Hence it
is a useful tool not only for mathematicians but also for physicists and engineers. It is also useful

in Probability Theory (see [1], [8] and [10]).

Searching among the literature, we found that the study of the boundedness of the Laplace trans-
form for some unknown reason has been neglected. In this regard, we could only find the references
[3] and [6,7], in which the authors stated some results about the boundedness of the Laplace trans-
form. In [3], the optimal rearrangement-invariant space on either side of £ : X — Y is characterized
when the other space is given. In [6], the authors studied both the Laplace transform and a more
general class of operators (also in weighted L,, spaces), and in [7], they provided for them a spectral
representation in L. For more on the Laplace transform and its optimal domain of definition, the

interested reader is invited to check [2,9,11] and the references therein.

In such a sense, in a self contained presentation, we study the boundedness of the Laplace transform

on Lebesgue L,-spaces. Our main goal is to show that:
(1) L£:Ly(]0,00)) = Ly([0,00)) is bounded only if p = 2.
(2) L£L:Ly(]0,00)) = Ly([1,00)) is bounded only if p > 2.

(3) L:Ly([0,00)) = Ly([0,1]) is bounded only if 1 < p < 2.

2 Main results

We would like to discuss now about the boundedness of the Laplace transform £. For example,

for f € L1(]0,00)), it holds that

oo

1L ()] S/O [f(s)lle™"| ds S/O [f(8)[ds = [1f]| . 0.009) < 00

This means that £(f) exists and it is bounded for all ¢ > 0. By taking the supremum over
t € [0,00), we obtain

L) 2w 0,00 < NFllLy(10,00))5
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which means that

L:L1(]0,00)) — Loo([0,00)),

is a bounded operator.

For our next result we will use the so called Minkowski integral inequality, stated below. Details

and proof of this inequality may be found in [4].

Theorem 2.1 (Minkowski integral inequality). Let (X, ,u) and (Y, B,v) be o-finite measure
spaces. Suppose that f is o x B-measurable function and f(-,y) € Ly(u) for ally € Y. Then for
1 <p < oo we have

Q / f<x,y>dupdu " / (X @yl dp " (2.1)
Y Y

The next result is an exercise in the 1958 book of Dunford and Schwartz [5]. It states that
L : Ly(]0,00)) = La([0, 00)),

is a bounded operator. For the sake of completeness, we provide its proof.

Theorem 2.2. Let f € Ly([0,00)). Then

ILF | La(0,00)) < VTSN L2([0,00))-

Proof. Let f € Ly([0,00)) and .
:/ f(s)e " ds. (2.2)
0

Now, making the change of variables u = st, (2.2) becomes

o= [ e (5) %

By means of the Minkowski integral inequality (Theorem 2.1), one has

||£||L2<[o,oo>>=(/ooo lﬁf@'”’f)%: (/ EGh )
<[l e ) [ () -
= [Turter ([Tiera ) ([
=1 () 1122000

uz e dU> I £l 22(10.00))
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Figure 1: The graph of F(a) = a0y for p = 1.5 (solid) and p = 5 (dashed).

It is a well known fact that I" (%) = /7, so we finally arrive to

H‘CfHLz([O,OO)) < ﬁ“f”Lz([Q,oo)) 0

Remark 2.3. A routine calculation shows that, for p > 1, if f,(t) = e~ where a > 0, we have

1\ /7 al-p\ /P
lfallstoosn = () o 1EElnygomn = (2=7)

Hence

IL(fa)llz, (j0,00)) _ ( D )1/p o

-1
P — o0,
| fallZ, (0,00)) p—1

asa— oo for 1 <p<2, and as a — 0T for p > 2 (see e.g. Figure 1 below). This shows that
L2 Lp([0, 00)) = Lyp([0,00))
is not a bounded operator for p # 2.

Our next result states that

L : Ly([0,00)) = Ly([1,0)),

is a bounded operator for p > 2.

LAll plots in the present article were made using the software DESMOS.
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Theorem 2.4. Let f € L,([0,00)) with 2 < p < oo, then

1L L, (1,00) < Cpll fllz, (10,000
o101 . . .
Proof. Let f € L, with — 4+ — = 1. By Hoélder’s inequality one has
p q

o [/ oo p

1L 1y = [ V5@ do= [ [ i@y | do
1

1 0
00 p/q

< / / )P dy / cdy | dy
1 0 0

T/ e—azy |2\ P/4 )
/<_ qr o ) HfHL”([O’OO))dx
1

e [ F ) 1\ P/ 1
— | = —r/aq p — (=
(Q> 1/$ ? ) W1z, 0.0 <Q) (2-plar—2], ”f”“"°°
1\?/7 1
~(3) 5 oy
Finally,
1 1/q 1 1/p
Do = (3) (515) Wl
hence )
B 1/p
p—1\ » 1
L < | — —_— . O
elzom < (1) 7 (525) Mliee

Remark 2.5. Theorem 2.4 does not hold for 1 < p < 2. Let us check this. As in the previous
1 1/p

remark, for fo(t) = e~ with a > 0, we have | fal L, (0,5)) = <> , and also
ap

1 1/p . 1/p 1 1/p pet
||c<fa>||Lp<1,oo>=(p_1) ((1+a)') :(p_l> 14

Hence

— 0

1/p
1 1/p—1
IL(fa)llL,(1,00) _ (pﬂ) (I+a) B p 1/17. (a+a2)L/P
a -1 1+a

Ifallz,0,00) 1\
ap

as a — 0o and 1 < p < 2 (see, for example, Figure 2 below). So,
L:Ly([0,00)) = L,([1,0)),

is not a bounded operator for 1 < p < 2.
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1 fallz, (0,00

Figure 2: The graph of G(a) = for p =1.4.

In our last result, we will show that
L: Ly([0,00)) = Lp([0,1]),

is a bounded operator for 1 < p < 2.

Theorem 2.6. Let f € L,([0,00)) with 1 < p < 2. Then

IL(H)z,q0.1) < Collfllz, (j0,00))-

Proof. Let g denote the conjugate exponent of p, i.e. 1/p+ 1/¢ = 1. Assuming 1 < p < 2, then
¢ > 2 and also 1 —p/q > 0. Now,

1 1 oo p
1201, o = [1E5OF dt= [ | [etsisras | ar
0 0 0

1 oo 00 p/q

1
S/ /|f(s)|pds /e‘sqtds /( e
0 0 0 0
! 1 p/a 1 p/q
- [(5) w0 -(3) / VA D o
0 0

—(1)m L (p‘l)p_ll T
. “pjg Mlioeen = (7 5—p WL, m.0

p/q
) At 1 oo

where we used Holder’s inequality in the third line. Finally, we conclude that

ILfNz,q0,17) < Copllfllz,(0,00))5

where €, = (21) 7 ()", =
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Figure 3: The graph of H(a) = W for p = 3.9.

Remark 2.7. Theorem 2.6 does not hold for p > 2. Again, for f.(t) = e~ with a > 0, we have
1/p
1falliaqooon = () and also

al7? — (1+ a)l_p>1/p

Il o = (0

Hence

L(f, 1/p

||||;f”)||LP([O’1D = <p p 1> (a*? —a(l+ a)lfp)l/p — 00,
allLp([0,00)) -

as a— 0" and p > 2 (see e.g. Figure 3). So,

L : Ly([0,00)) = Ly([0,1]),

is not a bounded operator for p > 2.
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