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ABSTRACT

We extend results of Vidaux and Videla concerning the set
of Julia Robinson numbers.

RESUMEN
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1 Introduction

Given a ring R of totally real algebraic integers and t ∈ R ∪ {∞}, consider the set

Rt = {x ∈ R : 0 ≪ x ≪ t},

where x ≪ y means that all the conjugates of y − x are positive, the interval (or singleton {∞})

{t ∈ R ∪ {∞} : #Rt = ∞}

and the so-called Julia Robinson number

JR(R) = inf{t ∈ R ∪ {∞} : #Rt = ∞}.

When the interval is closed or {∞}, we say that R has the JR property. Notice that JR(R) ≥ 4

by a result of Kronecker (see [3]). Using the above definition, J. Robinson proved in [6] a result

that can be formulated as

Theorem 1.1. Let R be a ring of totally real algebraic integers. If R has the JR property, then it

is possible to define N in R, and hence, R has undecidable first-order theory.

Originally Robinson only considered R when it was the ring of integers of a totally real field, but it

is not difficult to see that the proof of this theorem can be adapted to apply to any subring of the

ring of integers of a totally real field (see [1, Theorem 1.2.2 and Lemma 1.2.3] for more details).

In the same work, J. Robinson proved that the ring of integers of the field Qtr of all totally real

algebraic numbers (whose conjugates are all real numbers) has the JR property with JR number

equal to 4, and the ring of integers of K = Q(
√
p : p prime) also has the JR property with JR

number equal to ∞. In the case of the ring of integers of a totally real number field K has JR

number equal to ∞ and hence, has undecidable theory. In [5] J. Robinson proved that every ring

of integers of a number field (not necessarily totally real) has undecidable theory.

So, all known examples at that time had JR numbers equal to 4 or ∞ and the natural question,

asked by J. Robinson in [6], was

Does the JR property hold for every ring of integers of any totally real algebraic field?

Motivated by the attempt to find rings that do not satisfy one or the other of these two properties

of the JR number, Vidaux and Videla constructed in [7] infinitely many rings O depending on

two parameters (ν, x0) for which the JR number of O is a minimum but is not 4 or ∞, and also

also show that for infinitely many values of (ν, x0) the JR number is not a minimum, but satisfies

another topological property called isolation property defined as:
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R has the isolation property if and only if R does not have the JR property and there exists

M > 0 such that for every ε > 0, if ε < M then the set RJR(R)+M ∖RJR(R)+ε is finite.

In case that R has the isolation property then the natural numbers are definable in R, so in

particular the theory of the ring R is undecidable (see [7] for details).

In [2] P. Gillibert and G. Ranieri built infinite rings with JR number strictly between 4 and infinity,

which are the ring of integers of their field of fractions, however, the JR number of each of these

rings is a minimum, also leaving J. Robinson’s question open.

The objective of this article is to obtain new Julia Robinson numbers, having either the JR property

or the isolation property, and hence produce new examples of totally real undecidable rings — see

[4] for recent results on this spectrum problem.

Given (non-zero) natural numbers ν, λ and x0, put xn =
√
ν + λxn−1 for every n ≥ 1, and consider

the ring O equal to the union of all the Z[xn]. Vidaux and Videla [7], and Castillo [1], study the

definability of N in O when λ = 1. Generalizing their results, we have the following:

In section 2 we will start studying properties of the sequence (xn) and we will give necessary and

sufficient conditions for the ring O to be totally real (which is necessary to be able to apply Julia

Robinson’s techniques).

Theorem 2.7. O is totally real if and only if either ν > x2
0 − λx0 and ν ≥ 2λ2 or ν < x2

0 − λx0

and λ3x0 < ν2 − λ2ν.

Later, we will give sufficient conditions for the tower (Kn)n≥0, of the fraction fields of On = Z[xn]

is a 2-tower, that is, such that [Kn+1 : Kn] = 2 for all n ≥ 0 (the latter is necessary to apply the

argument given by Vidaux and Videla in [7]). More precisely, we will show that the tower grows

when ν +λx0 is congruent to 2 or 3 modulo 4, and λ is congruent to 1 or 3 modulo 4 (Proposition

2.13).

In section 3 we will study the increasing case, giving rise to our main result (in the following

theorem, the case λ = 1 is done in [7] and [1]):

Theorem 1.2. Assume ν > x2
0 − λx0 and ν ≥ 2λ2. Assume that for every n ≥ 0 we have

[Kn+1 : Kn] = 2. If λ = 1 and ν ̸= 3, then O has JR number equal to ⌈α⌉+α and satisfies the JR

property. If λ ≥ 2, ν ≥ 2λ2 +2, and x0 ≥ λ
4 , then O has JR number equal to ⌈α⌉+α and satisfies

the JR property.

This theorem gives us new values of JR numbers, e.g. for the parameters λ = 3, ν = 20 and x0 = 2,

the JR number is equal to 13.217 approximately, but with λ = 1 this number is not obtained.

In section 4 we present two new theorems: the first of them is a direct adaptation of [7, Proposition

3.4, Proposition 3.5 and Proposition 3.6]:



390 C. Muñoz Sandoval CUBO
26, 3 (2024)

Theorem 1.3. Assume ν < x2
0 −λx0 and λ3x0 < ν2 −λ2ν. Assume that for every n ≥ 0 we have

[Kn+1 : Kn] = 2. Assume that ν − λx1 ≥ 1 and x1 < ⌊α⌋+1. The JR number of O is ⌊α⌋+α+1

and satisfies the isolation property. Moreover, there are infinitely many rings O that satisfy these

hypotheses.

The following theorem solves the problem for infinitely many values of the parameters ν and x0

when λ = 3, removing the hypothesis ν−λx1 ≥ 1. The proof of this theorem can be easily adapted

to λ = 2, 4, 5, . . . , as long as λ is not too large, nevertheless, despite the fact that the number of

cases to be considered seems to decrease as λ grows, we were not able to find a pattern that would

allow as to write a proof for arbitrary λ.

Theorem 1.4. Assume ν < x2
0 − 3x0 and 27x0 < ν2 − 9ν. Assume that for every n ≥ 0 we

have [Kn+1 : Kn] = 2. If x1 < ⌊α⌋ + 1 and ν ̸= 19, then O has JR number equal to ⌊α⌋ + α + 1

and satisfies the isolation property. Moreover, there are infinitely many rings O that satisfy these

hypotheses.

This article is a contribution to two long term projects:

1) Does the ring of integers of any 2-tower over a number field have undecidable theory?

2) Study the topology of the set of JR numbers on the interval [4,+∞) — e.g. is it a dense set?

2 Basic properties of the tower

We define the sequence (xn) whose general term is xn =
√

ν + λxn−1 and

• ν and x0 are non-negative integers and not zero simultaneously,

• λ > 0 is a rational integer, and

• ν ̸= x2
0 − λx0 (in order to avoid x1 = x0).

We define the following rings and their field of fractions:

O0 = Z

On = On−1[xn]

O =
⋃
n≥0

On

K0 = Q

Kn = Kn−1[xn]

K =
⋃
n≥0

Kn

Let us begin by stating the following lemma, whose proof is essentially the same as those given in

[7, Lemma 2.2, 2.3 and 2.14].
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Lemma 2.1. (1) The sequence (xn) is strictly increasing if and only if ν > x2
0−λx0 or is strictly

decreasing if and only if ν < x2
0 − λx0.

(2) The sequence (xn) converges to the limit α = λ+
√
λ2+4ν
2 .

(3) If O is totally real, then the JR number of O is finite, in particular the extension of K over

Q is infinite.

Lemma 2.2. There exists an integer n0 ≥ 0 such that for every n ≥ 0, we have n ≤ n0 if and

only if xn is a rational integer.

Proof. If xn /∈ Z for some n ≥ 0, then xn /∈ Q since xn is an algebraic integer. Hence, λxn /∈ Q for

every λ ≥ 1. So, xn+1 =
√
ν + λxn /∈ Z. Since (xn) is bounded, the sequence takes finitely many

integer values. We choose n0 to be the largest index n such that xn is a rational integer.

2.1 The totally real condition

As was indicated in [7], Julia Robinson’s criterion is only applicable for rings of totally real algebraic

integers. In this section we will give a sufficient and necessary condition for the ring O to be totally

real.

Lemma 2.3. We have ν ≥ 2λ2 if and only if ν ≥ λα.

Proof. Observe that ν ≥ λα if and only if

ν ≥ λ

(
λ+

√
λ2 + 4ν

2

)
≥ λ2

2
,

which implies 2ν ≥ λ2. Therefore, we have

ν ≥ 2λ2 ⇐⇒ 4ν2 ≥ 8λ2ν ⇐⇒ 4ν2 − 4λ2ν + λ4 ≥ λ4 + 4λ2ν

⇐⇒ (2ν − λ2)2 ≥ λ2(λ2 + 4ν) ⇐⇒ 2ν − λ2 ≥ λ
√

λ2 + 4ν

⇐⇒ ν ≥ λα.

Lemma 2.4. If O is totally real and ν > x2
0 − λx0, then ν ≥ 2λ2.

Proof. Since Kn+1 has degree 2 over Kn for infinitely many n by Lemma 2.1, we have a subsequence

of (xn), namely (xnk
), such that

√
ν − λxnk

is a conjugate of xnk+1. In particular, ν ≥ λxnk
for

every k ≥ 1 since the ring O is totally real. From this, and the fact that xn converges to α, we

can deduce ν ≥ λα. We can conclude using Lemma 2.3.



392 C. Muñoz Sandoval CUBO
26, 3 (2024)

Lemma 2.5. If O is totally real, then we have λ3xn0 < ν2 − λ2ν, where n0 comes from Lemma

2.2.

Proof. We write n1 = n0 + 1. By the definition of n0, we have xn1
/∈ Kn0

and therefore Kn1
is a

quadratic extension over Kn0 . Thus
√

ν − λxn1 is a conjugate of xn1+1. Since O is totally real,√
ν − λxn1 will be a real number, which is not zero because λxn1 is an irrational number and ν is

a rational integer. So we have ν > λxn1
= λ

√
ν + λxn0

if and only if λ3xn0
< ν2 − λ2ν.

Remark 2.6. Let x ∈ O. We use the notation |x| for the largest absolute value of conjugates of x

over Q.

The following theorem gives us a characterization of when our ring O is totally real and therefore,

will allow us to use Julia Robinson’s methods.

Theorem 2.7. The ring O is totally real if and only if

(1) either ν > x2
0 − λx0 and ν ≥ 2λ2, or

(2) ν < x2
0 − λx0 and λ3xn0 < ν2 − λ2ν.

If O is totally real, then |xn| = xn for each n ≥ 0.

Proof. Let us start proving that |xn| = xn for each n ≥ 0 if O is totally real. We will show this by

induction over n. The case n = 0 is trivial. Assume |xn| = xn for some n. We have

xn+1 =
√
ν + λxn ≥ ±

√
ν + λxσ

n

for every embedding σ and since the only possible conjugates of xn+1 are of the form ±
√

ν + λxσ
n

for some embedding σ, we are done. For the rest of the proof, the implication from left to right is an

immediate consequence of Lemma 2.4 and Lemma 2.5. We show the other implication by induction

on n. Let n1 = n0 + 1. If n ≤ n0, then On = Z which is totally real and hence |xn| = xn. For n1

we have xn1
/∈ Z and hence its conjugates are of the form ±

√
ν + λxn0

. Therefore, On1
= Z[xn1

] is

totally real and |xn1
| = xn1

. Suppose that for some n ≥ n1, On is totally real and |xn| = xn. Note

that the conjugates of xn+1 are of the form ±
√

ν + λxσ
n for some embedding σ. Since |xn| = xn,

we have |xn+1| = xn+1 and it will be enough to prove that ν ≥ λxn for each n ≥ n1. We can

separate the proof into cases where the sequence (xn) is increasing or decreasing:

• If ν > x2
0 − λx0 and ν ≥ 2λ2, then (xn) is strictly increasing by Lemma 2.1 and hence

λxn < λα ≤ ν by Lemma 2.3.

• If ν < x2
0 − λx0 and λ3xn0

< ν2 − λ2ν, then (xn) is strictly decreasing by Lemma 2.1 and

λxn1 < ν. Hence, λxn ≤ λxn1 < ν for each n ≥ n1.
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We can assume, without loss of generality, that n0 = 0, since if n0 > 0, then we can define a new

sequence yn = xn+n0
, and the rings O corresponding to (xn) and (yn) are the same.

Assumption 2.8. The number x1 is a non-rational integer

Lemma 2.9. In the decreasing case, we have ν ≥ 3 and x0 ≥ 3.

Proof. This is an immediate consequence of the inequalities ν < x2
0 − λx0 and λ3x0 < ν2 − λ2ν,

and the fact that λ is at least 1.

Lemma 2.10. Assume that (xn) is increasing. If ν ≥ 2λ2 + 2, then xn ≥ 2 for each n ≥ 1.

Proof. Since the sequence (xn) is increasing, we have

xn ≥ x1 =
√
ν + λx0 ≥

√
2λ2 + 2 ≥ 2.

for each n ≥ 1.

Lemma 2.11. We have α ≥ 2.

Proof. If (xn) is decreasing, then by Lemma 2.9 we have ν ≥ 3, and if (xn) is increasing, then

ν ≥ 2λ2 ≥ 2. In all cases, we have ν ≥ 2. Hence, we have

2α = λ+
√
λ2 + 4ν ≥ 4

because λ ≥ 1 and ν ≥ 2.

2.2 Conditions for the tower to increase at each step

For the induction arguments to work in the next sections, we will need the tower (Kn) to increase

at each step. In this subsection, we will provide sufficient conditions for that.

Let f(t) =
t2 − ν

λ
be a function of the real variable t. We define for each n ≥ 1

Pn = λ2n−1f◦n(t)− λ2n−1x0,

where f◦n stands for the composition of f with itself n times.
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Lemma 2.12. The polynomial Pn is monic for each n ≥ 1.

Proof. We prove it by induction on n. If n = 1, then P1 = λf(t) − λx0 = t2 − ν − λx0 is monic.

Suppose that for some n ≥ 2 the polynomial Pn is monic. We have

Pn+1(t) = λ2n+1−1f◦(n+1)(t)− λ2n+1−1x0 = λ2n+1−1

(
(f◦n(t))2 − ν

λ

)
− λ2n+1−1x0

= λ2n+1−2(f◦n(t))2 − λ2n+1−2ν − λ2n+1−1x0 =
(
λ2n−1f◦n(t)

)2
− λ2n+1−2ν − λ2n+1−1x0

=
(
Pn(t) + λ2n−1x0

)2
− λ2n+1−2ν − λ2n+1−1x0,

and since Pn is monic by hypothesis, Pn+1 is monic too.

Proposition 2.13. If ν+λx0 is congruent to 2 or 3 modulo 4 and λ is congruent to 1 or 3 modulo

4, then for each n ≥ 1, we have [Kn+1 : Kn] = 2.

Proof. From the definition of f we have f◦n(xn) = x0 for each n ≥ 1. Therefore, xn is a root of

Pn. Also note that, by Lemma 2.12, Pn is monic for each n ≥ 1. Given a, b ∈ Z, we have

P1(t+ a) = (t+ a)2 − ν − λx0 = t2 + 2at+ a2 − (ν + λx0), (2.1)

and

P2(t+ b) = λ3f◦2(t+ b)− λ3x0 (2.2)

= t4 + 4bt3 + 2(3b2 − ν)t2 + 4(b3 − bν)t+ (b4 − 2b2ν + ν2 − λ2(ν + λx0)).

Also, for each n ≥ 1, we have

Pn+2(t) = λ2n+2−1(f◦(n+2)(t)− x0) = λ2n+2−1(f◦2(f◦n(t))− x0)

= λ2n+2−1

(
f◦2

(
Pn(t)

λ2n−1
+ x0

)
− x0

)

= λ2n+2−1

P2

(
Pn(t)
λ2n−1 + x0

)
λ3

+ x0

− x0

 = λ4(2n−1)P2

(
Pn(t)

λ2n−1
+ x0

)
= P 4

n(t) + 4λ2n−1x0P
3
n(t) + 2λ2(2n−1)(3x2

0 − ν)P 2
n(t) + 4λ3(2n−1)(x3

0 − x0ν)Pn(t)

+ λ4(2n−1)
(
x4
0 − 2x2

0ν + ν2 − λ2(ν + λx0)
)
.

(2.3)

We prove by induction on n that the polynomial Pn is irreducible. If n = 1, then using Equation

(2.1) we choose a = 0 if ν+λx0 is congruent to 2 modulo 4, and a = 1 if ν+λx0 is congruent to 3

modulo 4. In both cases P1(t+ a) is an Eisenstein polynomial for 2. If n = 2, then using Equation

(2.2), we have that P2(t+x0) is an Eisenstein polynomial for 2, because x4
0−2x2

0ν+ν2−λ2(ν+λx0)
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is congruent to 2 modulo 4 when ν + λx0 is congruent to 2 or 3 modulo 4 and λ is congruent to 1

or 3 modulo 4 (we leave the verification to the reader). Note that λ2 is congruent to 1 modulo 4 by

hypothesis. Therefore, the constant term of Pn+2(t), seen as a polynomial in Pn(t), is congruent

to 2 modulo 4. So, using Equation (2.3), if Pn(t + c) is an Eisenstein polynomial for 2 for some

c ∈ Z, then Pn+2(t+c) is an Eisenstein polynomial for 2 too. Thus, we can prove the irreducibility

of Pn by induction on n, separating into two cases:

• If n is odd, then Pn(t+a) is an Eisenstein polynomial for 2 (with the respective choice of a).

• If n is even, then Pn(t+ x0) is an Eisenstein polynomial for 2.

From now on, we assume

Assumption 2.14. Kn is a quadratic extension of Kn−1 and the ring O is a totally real.

Lemma 2.15 ([7, Lemma 2.19]). Let r be any real number and a, b ∈ On−1 with n ≥ 1. For n = 1,

if 0 ≪ a + bx1 ≪ 2r, then |b| < r
x1

. For n ≥ 2, if 0 ≪ a + bxn ≪ 2r, then |bσ| < r√
ν−λxn−1

for

every embedding σ of On.

3 Increasing case

Assumption 3.1. For this section, let us assume ν ≥ 2λ2 + 2, x0 ≥ λ
4 and the sequence (xn) is

strictly increasing.

Definition 3.2. For each n ≥ 1, let kn be the only rational integer such that

⌈α⌉ − (kn + 1) < xn < ⌈α⌉ − kn.

Remember that x1 is not a rational integer by Assumption 2.14 and note that the sequence (kn) is

(non strictly) decreasing, hence the kn take only finitely many values, and since the sequence (xn)

tends to α, eventually kn is 0.

The main result we use to compute the JR number in the increasing case is the following lemma:

Lemma 3.3. Assume x ∈ O. We have 0 ≪ x ≪ 2⌈α⌉ if and only if x ∈ X.

The set X is defined as follows:

X0 = {1, 2, . . . , 2⌈α⌉ − 1},

Xn = X0 ∪ {⌈α⌉ ± j ± xs : 0 ≤ j ≤ ks and 1 ≤ s ≤ n},

X =
⋃
n≥0

Xn.
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Lemma 3.4. If λ ≥ 2, then x1 + x2 + ⌈x1⌉ > 2⌈α⌉.

Proof. It is enough to prove that we have x2 + 2x1 > 2(α+ 1). We have

2
√
ν + λx0 +

√
ν + λ

√
ν + λx0 ≥

√
4ν + λ2 +

√
2λ2 + 2 + λ

√
2λ2 + 2 +

λ2

4

≥
√
4ν + λ2 +

√
λ2 + 4λ+ 4 = 2(α+ 1),

where the first inequality is by Assumption 3.1.

Lemma 3.5. Let n ≥ 1. If 0 ≪ a± bxn ≪ 2⌈α⌉, with a, b ∈ On−1, then |b| < 2 (in the inequality,

the plus-minus means that both inequalities hold).

Proof. Since ν ≥ 2λ2+2 and ν ∈ N, we can write ν = 2λ2+k, for some k ≥ 2. Since 0 < a±bxn <

2⌈α⌉, combining both inequalities we obtain |b| < ⌈α⌉
xn

. So, we have

|b| < ⌈α⌉
xn

≤ α+ 1√
2λ2 + k + λxn−1

=
λ+

√
λ2 + 4(2λ2 + k) + 2

2
√

2λ2 + k + λxn−1

≤ λ+ 2 +
√
λ2 +

√
8λ2 + 4k√

8λ2 + 4k
≤ 1 +

2λ+ 2√
8λ2 + 4k

≤ 1 +
2λ+ 2√
8λ2 + 8

≤ 2,

where the last inequality is true because 2λ+ 2 ≤
√
8λ2 + 8 for every λ ≥ 1.

Lemma 3.6. We have ν − λα > 1.

Proof. Since ν ≥ 2λ2 + 2 and ν ∈ N, we can write ν = 2λ2 + k, for some k ≥ 2. Hence, we have

(2λ2 + k)− λ

(
λ+

√
λ2 + 4(2λ2 + k)

2

)
> 1 ⇐⇒ 3λ2 + 2k − 2 > λ

√
9λ2 + 4k

⇐⇒ 4k2 + 12kλ2 − 8k + 9λ4 − 12λ2 + 4 > 9λ4 + 4kλ2 ⇐⇒ 4k2 + (8λ2 − 8)k + 4− 12λ2 > 0,

and since k ≥ 0, the latter is true for

k >
8− 8λ2 +

√
64λ4 + 64λ2

8
= 1− λ2 +

√
λ4 + λ2.

We consider the continuous function x 7→ 1 − x2 +
√
x4 + x2. The line y = 3

2 is an horizontal

asymptote for this function, hence we have

1− λ2 +
√
λ4 + λ2 <

3

2
,

for every λ ≥ 1.
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Lemma 3.7. Let x = a+ bx1 ∈ O1, with a, b ∈ Z. If 0 < a± bx1 < 2⌈α⌉, then x ∈ X1.

Proof. By Lemma 3.5, we have b = ±1 or b = 0.

• If a ≤ ⌈α⌉ − (k1 + 1), then b = 0. Indeed, if |b| = 1, by choosing σ such that xσ = a− |b|x1,

we obtain:

a− |b|x1 ≤ ⌈α⌉ − (k1 + 1)− x1 ≤ 0,

by the definition of k1, contradicting our hypothesis.

• If a ≥ ⌈α⌉ + (k1 + 1), then b = 0. If |b| = 1, by choosing σ such that xσ = a + |b|x1, we

obtain:

a+ |b|x1 ≥ ⌈α⌉+ (k1 + 1) + x1 ≥ 2⌈α⌉,

again contradicting our hypothesis.

Therefore, we have either |a− ⌈α⌉| ≥ k1 + 1 and b = 0, or |a− ⌈α⌉| < k1 + 1 and |b| ≤ 1. In both

cases, we have x ∈ X1.

Lemma 3.8. Assume n > m ≥ 1 and λ ≥ 2.

(1) We have ⌈α⌉ ± j + xm + xn ≥ 2⌈α⌉ for every 0 ≤ j ≤ km.

(2) We have ⌈α⌉ ± j − xm − xn ≤ 0 for every 0 ≤ j ≤ km.

Proof.

(1) Note that ⌈x1⌉ = ⌈α⌉ − k1. By Lemma 3.4, and using the fact that (xn) is increasing, we

have

xm + xn + ⌈α⌉ − k1 ≥ 2⌈α⌉,

for each n > m ≥ 1. Since k1 ≥ km for each m ≥ 1, we have

xm + xn + ⌈α⌉ ± j ≥ 2⌈α⌉,

for every 0 ≤ j ≤ km.

(2) For every 0 ≤ j ≤ km, we have ⌈α⌉± j−xm−xn ≤ 0 if and only if xm+xn+⌈α⌉± j ≥ 2⌈α⌉.
So we can conclude by item (1).
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Lemma 3.9. Assume λ ≥ 2. We have ⌈xn⌉+xn ≥ ⌈α⌉+2 for each n ≥ 1. In particular, we have

xn ≥ kn + 2 for each n ≥ 1.

Proof. Since (xn) is increasing, it is enough to prove that we have x1 + ⌈x1⌉ > α + 3. If λ = 2,

then we have (recalling that we have x0 ≥ 1 and ν ≥ 10 by Assumption 3.1)

x1 + ⌈x1⌉ ≥
√
ν + 2 + ⌈

√
ν + 2⌉ >

√
ν + 1 + ⌈

√
12⌉ = 3 + α.

For λ ≥ 3, we have

2x1 + 2⌈x1⌉ ≥
√
4ν + λ2 +

√
9λ2 + 8 >

√
4ν + λ2 + λ+ 6 = 2(α+ 3),

where the first inequality is by Assumption 3.1, and the second inequality is because λ ≥ 3. In

particular, using ⌈xn⌉ = ⌈α⌉ − kn for each n ≥ 1, we have ⌈xn⌉ + xn ≥ ⌈α⌉ + 2 if and only if

xn ≥ kn + 2.

Lemma 3.10. Let x ∈ O. If 0 ≪ x ≪ 2⌈α⌉, then x ∈ X.

Proof. For λ = 1, this is [7, Lemma 4.9]. For λ ≥ 2, which we now assume, we start as in [7, Lemma

4.9]. We prove by induction on n that if x ∈ On is such that 0 ≪ x ≪ 2⌈α⌉, then x ∈ Xn. This

is clear for n = 0. For n = 1, we have x ∈ X1 by Lemma 3.7. Assume n ≥ 2. Let us fix

x = a + bxn ∈ On with a, b ∈ On−1. By Lemma 2.15, we have 0 ≪ a ≪ 2⌈α⌉, so a ∈ Xn−1 by

induction hypothesis. Also, by Lemma 2.15, we have

|b| < ⌈α⌉√
ν − λxn−1

<
⌈α⌉√
ν − λα

≤ ⌈α⌉,

since
√
ν − λα ≥ 1 by Lemma 3.6. Hence, we have 0 ≪ ⌈α⌉ + b ≪ 2⌈α⌉, and by induction

hypothesis we have ⌈α⌉ + b ∈ Xn−1. From the definition of Xn−1, we have either b ∈ Z, or

|b| = |j ± xs| for some 1 ≤ s ≤ n − 1 and 0 ≤ j ≤ ks. In the first case, we have either b = 0

or b = ±1 by Lemma 3.5. In the second case, we have, also by Lemma 3.5, either |j + xs| < 2

or |xs − j| < 2. If |j + xs| < 2, then xs < 2 − j ≤ 2 and we have a contradiction by Lemma

3.9. If |xs − j| < 2, then xs < j + 2 ≤ ks + 2, which is a contradiction, again by Lemma 3.9.

Therefore, we have b ∈ {−1, 0, 1}. For b = 0, there is nothing to prove, as we already know that

x = a lies in Xn−1. Assume |b| = 1. We can write x = a± xn, and since a ∈ Xn−1, we have either

a ∈ {1, . . . , 2⌈α⌉ − 1}, or a = ⌈α⌉ ± j ± xs for some 1 ≤ s ≤ n− 1 and 0 ≤ j ≤ ks.

• If a ∈ {1, . . . , ⌈α⌉ − (kn + 1)}, then we can choose an embedding σ such that:

xσ = a− xn ≤ ⌈α⌉ − (kn + 1)− xn < 0,
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by definition of kn, which contradicts our hypothesis.

• If a ∈ {⌈α⌉+ (kn + 1), . . . , 2⌈α⌉ − 1}, then again we can choose σ such that

xσ = a+ xn ≥ ⌈α⌉+ (kn + 1) + xn > 2⌈α⌉,

which again contradicts our hypothesis on x.

• If a = ⌈α⌉ ± j + xs, with 0 ≤ j ≤ ks, then

a+ xn = ⌈α⌉ ± j + xs + xn ≥ 2⌈α⌉,

by Lemma 3.8, a contradiction.

• If a = ⌈α⌉ ± j − xs, with 0 ≤ j ≤ ks, then

a− xn = ⌈α⌉ ± j − xs − xn ≤ 0,

also by Lemma 3.8, again a contradiction.

So, we have a ∈ {⌈α⌉ − kn, . . . , ⌈α⌉+ kn}. Therefore, if |b| = 1, then x is of the form ⌈α⌉ ± j ± xn

where 0 ≤ j ≤ kn. In all the cases we obtain x ∈ X.

Proof Lemma 3.3. Thanks to Lemma 3.10, we need only to prove the lemma from right to left.

Assume x ∈ X. For x ∈ X0, there is nothing to prove. Assume x ∈ Xn for some n ≥ 1, so that

x = ⌈α⌉ ± j ± xs for some s and j such that 1 ≤ s ≤ n and 0 ≤ j ≤ ks. By definition of ks, we

have xs + ks < ⌈α⌉. Hence, we have

⌈α⌉ ± j + xs ≤ ⌈α⌉+ ks + xs < 2⌈α⌉,

and

⌈α⌉ ± j − xs ≥ ⌈α⌉ − ks − xs > 0.

Thus, we have 0 < xσ < 2⌈α⌉ for every embedding σ of Os since |xs| = xs by Lemma 2.7.

Proposition 3.11. The ring O has the JR property and JR(O) = ⌈α⌉+ α.

Proof. For each n we have xn + ⌈α⌉ < α + ⌈α⌉. By Theorem 2.7, we have |xn| = xn, and hence,

there are infinitely many x ∈ O such that 0 ≪ x ≪ ⌈α⌉+ α. Since the sequence (xn) is increasing

and converges to α, for each ε > 0, there are only finitely many n such that xn+⌈α⌉ < α+⌈α⌉−ε.

Moreover, almost all n we have kn = 0. Hence, there are only finitely many elements of the form

xn + ⌈α⌉ + j where 0 ≤ j ≤ kn and kn ≥ 1. In particular, only finitely many of them satisfy
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0 ≪ xn + ⌈α⌉ + j ≪ ⌈α⌉ + α. Therefore, by Lemma 3.3, for each ε > 0, there are only finitely

many x ∈ O such that 0 ≪ x ≪ ⌈α⌉+ α− ε.

4 Decreasing case

Assumption 4.1. For this section, let us assume that the sequence (xn) is strictly decreasing.

We define the following sets:

X0 = {1, 2, . . . , 2⌊α⌋+ 1}

Xn = X0 ∪ {⌊α⌋+ 1± xk : 1 ≤ k ≤ n}

X =
⋃
n≥0

Xn.

The following lemma and theorem are exactly as [7, Lemma 3.2, Proposition 3.4 and Proposition

3.5], changing their hypothesis ν − x1 ≥ 1 by ν − λx1 ≥ 1. For this reason, we will omit the proof.

Lemma 4.2 ([7, Lemma 3.2]). Assume ν − λx1 ≥ 1 and x1 < ⌊α⌋+1. For each n ≥ 0, if x ∈ On

and 0 ≪ x ≪ 2⌊α⌋+ 2, then x ∈ Xn.

Theorem 4.3 ([7, Propositions 3.4 and 3.5]). Assume ν − λx1 ≥ 1 and x1 < ⌊α⌋ + 1. The JR

number of O is ⌊α⌋+ α+ 1 and O satisfies the isolation property.

The following proposition proves that there are infinitely many pairs (ν, x0) for which Theorem

4.3 holds.

Proposition 4.4. For any λ congruent to 1 or 3 modulo 4, there are infinitely many distinct

values of α corresponding to pairs (ν, x0) of rational integers such that

(1) ν < x2
0 − λx0,

(2)
√
ν + λx0 is not a rational integer,

(3) For every n ≥ 1, we have [Kn : Kn−1] = 2,

(4) λ3x0 < ν2 − λ2ν,

(5) ν − λx1 ≥ 1,

(6)
√
ν + λx0 < ⌊α⌋+ 1.

Proof. For any λ ≥ 1 which is congruent to 1 or 3 modulo 4, we choose ν = 4λ4 and x0 = 2λ2 +λ.

The first two conditions are immediate. The condition 3 holds by Proposition 2.13. The condition
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4 holds because ν2 > λ2ν + λ3x0 iff 16λ4 > 4λ2 + 2λ + 1 which is true for all λ ≥ 1. For the

condition 5 we have

ν − λx1 > ν − λx0 = 4λ4 − 2λ3 − λ2 ≥ 1.

for each λ ≥ 1. Finally, we have

α =
λ+

√
λ2 + 4ν

2
=

λ+
√
16λ4 + λ2

2
=

λ+ 4λ2 + ε

2
=

λ− 1

2
+ 2λ2 +

1

2
+

ε

2

for some 0 < ε < 1. Since λ is congruent to 1 or 3 modulo 4, we have ⌊α⌋ = 2λ2+ λ−1
2 . Therefore,

we have

(⌊α⌋+ 1)2 = 4λ4 + 2λ3 + 2λ2 +

(
λ+ 1

2

)2

> 4λ4 + 2λ3 + λ2 = ν + λx0,

so the last condition is satisfied.

For λ = 1, M. Castillo [1, Theorem 1] was able to remove the hypothesis ν−x1 ≥ 1 and x1 < ⌊α⌋+1,

and obtain the following theorem:

Theorem 4.5. Assuming λ = 1 and ν > 3, O has JR number ⌊α⌋ + α + 1 and it satisfies the

isolation property.

Now we will present some new results for λ = 3. The same proof can be easily adapted to the case

λ = 2, 4, 5 . . . We could not find the general pattern that would let us write a general proof since

for each value of λ there are cases that must be studied independently.

We will prove the following theorem at the end of this section.

Theorem 4.6. Assume λ = 3. If x1 < ⌊α⌋ + 1 and ν ̸= 19, then O has JR number ⌊α⌋ + α + 1

and it satisfies the isolation property.

Assumption 4.7. For the following lemmas we assume that λ = 3.

Lemma 4.8. If x1 < ⌊α⌋+ 1 and ν ̸= 19, then ν − 3x2 ≥ 1.

Proof. Since x1 < ⌊α⌋+ 1, we have

ν − 3x2 > ν − 3(⌊α⌋+ 1) ≥ ν − 3α− 3.

Therefore, it suffices to prove ν − 3α− 3 ≥ 1. This is satisfied if and only if 2ν − 17 ≥ 3
√
9 + 4ν,

which is true for every ν ≥ 24. By Lemma 2.9, we have ν ≥ 3, so we must analyze the cases when

ν ∈ {3, . . . , 23}. A simple calculation shows that for ν ∈ {3, . . . , 18}, there is no x0 that satisfies

the inequalities given in Theorem 2.7. Hence, ν ∈ {19, . . . , 23}, and again solving the inequalities

given in Theorem 2.7, we obtain the following cases:
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ν x0 x1 x2 ν − 3x1 ν − 3x2

19 7
√
40

√
19 + 3

√
40 0.03 0.51

20 7
√
41

√
20 + 3

√
41 0.79 1.21

8
√
44

√
20 + 3

√
44 0.10 1.05

21

7
√
42

√
21 + 3

√
42 1.56 1.92

8
√
45

√
21 + 3

√
45 0.88 1.76

9
√
48

√
21 + 3

√
48 0.22 1.61

22

7
√
43

√
22 + 3

√
43 2.33 2.63

8
√
46

√
22 + 3

√
46 1.65 2.48

9 7
√
22 + 3

√
49 1 2.33

10
√
52

√
22 + 3

√
52 0.37 2.18

23

7
√
44

√
23 + 3

√
44 3.10 3.35

8
√
47

√
23 + 3

√
47 2.43 3.20

9
√
50

√
23 + 3

√
50 1.79 3.05

10
√
53

√
23 + 3

√
53 1.16 2.91

11
√
56

√
23 + 3

√
56 0.55 2.78

Table 1: Approximate values of ν − 3x1 and ν − 3x2 for ν ∈ {19, . . . , 23}.

Lemma 4.9. Let x ∈ O1 be such that 0 ≪ x ≪ 2⌊α⌋+2. If (ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9)},
then x ∈ X1.

Proof. Let x = a + bx1 ∈ O1, with a, b ∈ Z, be such that 0 ≪ x ≪ 2⌊α⌋ + 2. Note that in all

cases we have ⌊α⌋ + 1 = 7 and x1 ≥
√
41. Since 0 ≪ x ≪ 2⌊α⌋ + 2, by Lemma 2.15, we have

a ∈ {1, . . . , 13} and

|b| < ⌊α⌋+ 1

x1
≤ 7√

41
,

so we have b ∈ {−1, 0, 1}. Finally, using a computer program (we used SageMath 9.2, see below)

we can analyze all the cases to see that x is indeed in X1.

def cases_X1(x_0, nu, l):

x_1=sqrt(nu+l*x_0)

floor_alpha=math.floor((l+sqrt(l**2+4*nu))/2)

for a in srange(1,2*floor_alpha+2,1):

for b in [-1,0,1]:

if 0<a+b*x_1<2*floor_alpha+2 and

0<a-b*x_1<2*floor_alpha+2:

print(a+b*x_1)

cases_X1(7,20,3)

cases_X1(8,20,3)

cases_X1(8,21,3)

cases_X1(9,21,3)
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Lemma 4.10. Let x ∈ O2 be such that 0 ≪ x ≪ 2⌊α⌋+2. If (ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9)},
then x ∈ X2.

Proof. Let x = a + bx2 ∈ O2, with a, b ∈ O1. Note that in all cases we have x1 ≥
√
41, x2 ≥√

20 + 3
√
41 and ⌊α⌋+ 1 = 7. Since 0 ≪ a+ bx2 ≪ 2⌊α⌋+ 2, by Lemma 2.15 we have 0 ≪ a ≪

2⌊α⌋+ 2. Hence, a ∈ {1, . . . , 13} ∪ {7± x1} by Lemma 4.9. We will prove that we have |b| < 1.2.

Assume, for the sake of contradiction, that this is not the case. We will see that for whatever

choice of a, there is an embedding σ such that xσ is either negative or larger than 14, contradicting

our hypothesis.

• Assume first a ∈ {1, 2, 3, 4, 5, 6}: We choose σ such that xσ = a− |b|x2, so that we have

xσ = a− |b|x2 ≤ 6− x2 < 0.

• Assume a ∈ {8, 9, 10, 11, 12, 13}: We choose σ such that xσ = a+ |b|x2, so that we have

(a+ bx2)
σ = a+ |b|x2 ≥ 8 + x2 > 14.

• Assume a = 7 + x1: We choose σ such that xσ = a+ |b|x2, so that we have

a+ |b|x2 ≥ 7 + x1 + x2 > 14.

• Assume a = 7− x1: We choose σ such that xσ = a− |b|x2, so that we have

a− |b|x2 ≤ 7− x1 − x2 < 0.

• Assume a = 7. We choose σ such that xσ = a− |b|x2, so that we have

a+ |b|x2 ≥ 7 + 1.2x2 ≥ 7 + 1.2

√
20 + 3

√
41 > 14.

We conclude |b| < 1.2.

Write b = b1 + b2x1, with b1, b2 ∈ Z, so that

|b1 + b2x1| < 1.2.

Hence in particular, we have |b1| < 1.2 and |b2| < 1.2√
41

. The only choices for b1 and b2 are

(b1, b2) ∈ {(−1, 0), (0, 0), (1, 0)}. Therefore, if a ∈ {1, . . . , 6}∪{8, . . . , 13}∪{7±x1}, then b = 0 by

the first four cases above. Otherwise, if a = 7, then we can have either x = 7− x2, or x = 7 + x2,

or x = 7. In all cases we obtain x ∈ X2.
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Lemma 4.11. Assume x1 < ⌊α⌋+1 and ν ̸= 19. For each n ≥ 0, if x ∈ On and 0 ≪ x ≪ 2⌊α⌋+2,

then x ∈ Xn.

Proof. If ν − 3x1 ≥ 1, then we are done by Lemma 4.2. Assume ν − 3x1 < 1. By Lemma 4.8, the

only cases where ν − 3x1 < 1 are when

(ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9), (22, 10), (23, 11)}

(see Table 1). However, when (ν, x0) ∈ {(22, 10), (23, 11)}, a simple calculation shows that x1 >

⌊α⌋ + 1, so we may assume (ν, x0) ∈ {(20, 7), (20, 8), (21, 8), (21, 9)}. We will prove by induction

on n that if x ∈ On is such that 0 ≪ x ≪ 2⌈α⌉+ 2, then x ∈ Xn. It is clear for n = 0. For n = 1

and n = 2 we are done by Lemmas 4.9 and 4.10 respectively. Assume n ≥ 3. By Lemmas 2.15 and

4.8 we have

|bσ| < ⌊α⌋+ 1√
ν − 3xn−1

≤ ⌊α⌋+ 1√
ν − 3x2

≤ ⌊α⌋+ 1

for every n ≥ 3. The rest of the proof goes exactly as the proof of [7, Lemma 3.2].

Lemma 4.12. Assume x1 < ⌊α⌋+ 1 and ν ̸= 19. Let x ∈ O. We have 0 ≪ x ≪ 2⌊α⌋+ 2 if and

only if x ∈ X.

Proof. By Lemma 4.11, we need only to prove the lemma from right to left. Let x ∈ X. If x ∈ X0,

then there is nothing to prove. Assume x ∈ Xn for some n ≥ 1, so that x = ⌊α⌋+ 1± xk for some

1 ≤ k ≤ n. Since the sequence (xn) is decreasing, we have

⌊α⌋+ 1 + xk < 2⌊α⌋+ 2,

and

⌊α⌋+ 1− xk > 0

for every 1 ≤ k ≤ n. Therefore, we have 0 ≪ x ≪ 2⌊α⌋+ 2 since |xk| = xk by Theorem 2.7.

Proof Theorem 4.6. We will prove that ⌊α⌋+α+1 is the JR number of O and that it satisfies the

isolation property. Since (xn) is a decreasing sequence and converges to α, for every ε > 0 there

exist infinitely many n such that

xn + ⌊α⌋+ 1 < ⌊α⌋+ α+ 1 + ε.

So, by Lemma 4.12 and Theorem 2.7, for every ε > 0, there exist infinitely many x ∈ O such that

0 ≪ x ≪ ⌊α⌋ + α + 1 + ε. Also, for each n ≥ 1, we have ⌊α⌋ + 1 + xn > ⌊α⌋ + 1 + α. Hence, if

x ∈ O is such that 0 ≪ x ≪ ⌊α⌋ + α + 1, by Lemma 4.12, then we have x ∈ {1, . . . , 2⌊α⌋ + 1}.
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Therefore, ⌊α⌋ + α + 1 is the JR number of O, and it is not a minimum. We now show that it

satisfies the isolation property. Let M = ⌊α⌋+ 1− α and x ∈ O be such that

0 ≪ x ≪ JR(O) +M = 2⌊α⌋+ 2.

By Lemma 4.12, we have

x ∈ {1, 2, . . . , 2⌊α⌋+ 1} ∪ {⌊α⌋+ 1± xn : n ≥ 1}

and since (xn) is decreasing with limit α, we have

⌊α⌋+ 1 + xn ≥ ⌊α⌋+ 1 + α+ ε

for only finitely many n.
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