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ABSTRACT

This study extensively investigates a specific category of
Kirchhoff-Schrödinger systems in fractional Sobolev space
with Dirichlet boundary conditions. The main focus is on
exploring the existence and multiplicity of non-negative so-
lutions. The non-linearity of the problem generally exhibits
singularity. By employing minimization arguments involving
the Nehari manifold and a variational approach, we estab-
lish the existence and multiplicity of positive solutions for
our problem with respect to the parameters η and ζ in suit-
able fractional Sobolev spaces. Our key findings are novel
and contribute significantly to the literature on coupled sys-
tems of Kirchhoff-Schrödinger system with Dirichlet bound-
ary conditions.

RESUMEN

Este estudio investiga en detalle una categoría específica de
sistemas de Kirchhoff-Schrödinger en espacios de Sobolev
fraccionarios con condiciones de borde de Dirichlet. El ob-
jetivo principal es explorar la existencia y multiplicidad de
soluciones no-negativas. La no-linealidad del problema ge-
neralmente exhibe singularidades. Empleando argumentos
de minimización que involucran la variedad de Nehari y un
enfoque variacional, establecemos la existencia y multiplici-
dad de soluciones positivas para nuestro problema con res-
pecto a los parámetros η y ζ en espacios de Sobolev frac-
cionarios apropiados. Nuestros hallazgos principales son
novedosos y contribuyen significativamente a la literatura de
sistemas de Kirchhoff-Schrödinger acoplados con condiciones
de borde de Dirichlet.
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1 Introduction

The Kirchhoff-Schrödinger problem is a class of partial differential equations that combines aspects

of Kirchhoff and Schrödinger equations. It takes the form:

M

(∫
Q

|∇u|2dx
)
(−∆u) + V (x)u = f(x, u),

where M is a function representing the Kirchhoff-type nonlinearity, V (x) is a potential function,

and f(x, u) denotes the nonlinearity in the system. This type of system generalizes the classical

Schrödinger equation by incorporating a nonlinear term dependent on the integral of the gradient,

reflecting the influence of the entire domain on the local behavior of the solution.

The Kirchhoff-Schrödinger system arises in various physical contexts, such as the study of quantum

mechanical systems, nonlinear optics, and the dynamics of elastic strings and membranes. These

systems are particularly challenging due to their nonlocal nature and the potential presence of sin-

gularities in the nonlinearity f(x, u), which can complicate both theoretical analysis and numerical

simulations.

In this study, we consider the following fractional Kirchhoff-Schrödinger equations with singular

nonlinearity,

K

(∫
Q

V (κ)|w|pdκ+

∫
Q×Q

|w(κ)− w(y)|p

|κ− y|d+sp
dκ dy

)[
(−∆)spw + V (κ)|w|p−2w

]
= ηα(κ)|w|q−2u+

1− ϱ

2− ϱ− τ
ξ(κ)|w|−ϱ|v|1−τ , in Q,

K

(∫
Q

V (κ)|v|pdκ+

∫
Q×Q

|v(κ)− v(y)|p

|κ− y|d+sp
dκ dy

)[
(−∆)spv + V (κ)|v|p−2v

]
= ζβ(κ)|v|q−2v +

1− τ

2− ϱ− τ
ξ(κ)|w|1−ϱ|v|−τ , on Q,

w = v = 0, on Rd \Q,

(1.1)

where Q ⊂ Rd (d ≥ 3) is a bounded domain with smooth boundary, s ∈ (0, 1), 0 < τ < 1,

0 < ϱ < 1, d > ps, 2 − ϱ − τ < p ≤ pσ < q < p∗s = dp
d−sp , α, β, ξ ∈ C(Q) are non-negative weight

functions, η, ζ are two parameters, (−∆)sp is the fractional p-Laplacian operator defined as (see

[10])

(−∆)spw(κ) = 2 lim
ϵ↘0

∫
Q\Bϵ

|w(κ)− w(y)|p−2(w(κ)− w(y))

|κ− y|d+sp
dy, κ ∈ Rd,

and K : (0,+∞) −→ (0,+∞) is the continuous Kirchhoff function defined by

K(t) = k + ltσ−1 with k > 0, l, σ ≥ 1. (1.2)

Recently, there has been a lot of interest in examining non local problems of this kind. For an
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interesting one, we refer to learn more about Kirchhoff problems, specifically those dealing with

the Laplace operator and a singular term, in references like [19–22]. Additionally, the study of the

fractional Kirchhoff problem, which involves a singular term like u−γ , can be found in [14]. This

research combines a variational approach with a specific truncation argument. For more details on

the fractional system, you can check out [23,36].

These problems involve studying how things spread unevenly in complicated environments. This

happens because of random movements, like jumps, where entities can move to nearby places or

make longer trips using a specific kind of flight pattern called Lévy flights. These issues are also

used to model things like turbulence, chaotic movements, plasma physics, and financial dynamics.

Check [1, 7] and references therein for more information.

The system expressed in (1.1) without a Kirchhoff function and potential function has been thor-

oughly explored in recent years. For the case involving the fractional p-Laplacian, the existence

results have been investigated using Morse theory, as discussed in [18]. Perera-Squassina-Yang [25]

introducing a novel abstract result based on a pseudo-index associated with the Z2-cohomological

index. These constraints are employed to establish the existence within a certain range of the

Palais-Smale condition. It is worth noting that, in this study, bifurcation and multiplicity results

are obtained with specific limitations on the parameter η. Additionally, the investigation into the

multiplicity of solutions is conducted through the Nehari manifold and fibering maps in works like

[6, 15,29,31].

In a distinct context, the investigation of the problem was undertaken in [6].



(−∆)spu = η|w|q−2u+
2ϱ

ϱ+ τ
|w|ϱ−2u|v|τ , in Q,

(−∆)spv = ζ|v|q−2v +
2τ

ϱ+ τ
|w|ϱ|v|τ−2v, in Q,

u = v = 0, on Rd \Q,

where Q is a bounded domain in Rn with smooth boundary ∂Q, d > sp, s ∈ (0, 1), p < ϱ+ τ < p∗s,

η, ζ are two parameters. The scholars investigated the Nehari manifold associated with the problem,

employing fibering maps, and established the existence of solutions under certain conditions for

the parameter pair (η, ζ).

The problem expressed in (1.1) without a Kirchhoff coefficient has been thoroughly explored in

recent years. For the case involving the fractional p-Laplacian, the existence results have been
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investigated using Morse theory, as discussed in [24]
(−∆)spu+ |w|q−2u =

Hw(κ, u, v)

|κ|γ
, in Rd,

(−∆)spv + |w|q−2u =
Hw(κ, u, v)

|κ|γ
in Rd,

where d ≥ 1, 0 < s < 1, d = ps, γ ∈ (0, d) and H has exponential growth. By using a version

of the mountain pass theorem without (PS) condition, they established the existence of nontrivial

solution to the above system. In [35] the authors studied the existence of solutions to the following

quasi linear Schrödinger system
(−∆)spu+ α(κ)|w|q−2u = Hw(κ, u, v) in Rd,

(−∆)spv + β(κ)|w|q−2u = Hw(κ, u, v) in Rd,

where 1 < q ≤ p, sp < d, they used the critical approach, to obtain the existence of nontrivial and

non negative solutions for the above system.

Following this, the issue has been explored by various authors in the context of Laplacian, p-

Laplacian, and fractional N -Laplacian operators, employing either the technique employed in this

paper or employing critical point methods. Noteworthy references encompass [2, 4, 5, 9, 12, 16, 28,

30,34].

Motivated by the results above, by using minimization arguments and implicit function theorem

together with variational approach, we prove the existence and multiplicity of nontrivial, non-

negative solutions for the singular fractional Kirchhoff-Schrödinger system described in (1.1) within

suitable fractional Sobolev spaces.

This paper is organized as follow: In the second section, we discuss familiar properties and results

related to fractional Sobolev spaces. In the third section, we show the existence theorem and

its proof, which uses the Nehari manifold and fibering map approach. In the fourth section, we

demonstrate the existence of multiple nontrivial positive solutions for our problem (1.1).
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2 Preliminaries

In this paper, Q ⊂ Rd represents a bounded domain with a smooth boundary, and ⟨·, ·⟩ denotes

the standard duality between X and its dual space X∗.

Let u : Q×Q −→ R be a measurable function,

[w]s,p =

(∫
Q×Q

|w(κ)− w(y)|p

|κ− y|d+ps
dκ dy

)1/p

,

is the Gagliardo seminorm. We denote by Ws,p(Q) the fractional Sobolev space given by

Ws,p(Q) := {u ∈ Lp(Q) : [w]s,p <∞},

with the norm

∥w∥s,p :=
(
∥w∥pLp(Q) + [w]ps,p

)1/p
,

where

∥w∥Lp(Q) =

(∫
Q

|w|pdκ
)1/p

.

For our analysis, we assume the following assumption:

(V) V ∈ L∞
loc(Q)\{0}, ess infκ∈QV (κ) > 0 and meas({x ∈ q : V (x) ≤ L}) <∞, for all L > 0,

where meas(·) denotes the Lebesgue measure in Q.

When V satisfies (V), the basic space

Ws(Q) :=
{
w ∈ Ws,p(Q) : V |w|p ∈ L1(Q); u = 0 in Rd\Q

}
denotes the completion of C∞

0 (Q) with respect to the norm

∥w∥Ws
:=
(
∥w∥pLp(V,Q) + [w]ps,p

)1/p
,

where

∥w∥Lp(V,Q) =

(∫
Q

V (κ)|w|pdκ
)1/p

.

In Ws we have the following embedding

Lemma 2.1 ([33]). Let 0 < s < 1 < p < +∞ with ps < d and suppose that the assumption (V)

holds. Then,

Ws(Q) ↪→ Lq(Q) for all q ∈ [p, p∗s). (2.1)
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When r + r′ ∈ (p, p∗), then, for any u ∈ Ws, we obtain

∥w∥Lr+r′ (Q) ≤ S∥w∥Ws . (2.2)

Let us define the functional Ψs,p : Ws −→ R by

Ψs,p(w) =

∫
Q×Q

|w(κ)− w(y)|p

|κ− y|d+ps
dκ dy +

∫
Q

V (κ)|w|pdκ.

At this point, we introduce our working space W = Ws ×Ws, which is a reflexive Banach space

endowed with the norm

∥(w, v)∥W =
(
Ψs,p(w) + Ψs,p(v)

)1/p
. (2.3)

We say that (w, v) ∈ W is a weak solution to system (1.1) if u, v > 0 in Q, one has

K
(
∥w∥Ws

)(∫
Q

V (κ)|w|p−2uϕdκ+

∫
Q

|w(κ)− w(y)|p−2(w(κ)− w(y))(ϕ(κ)− ϕ(y))

|κ− y|d+sp
dκ dy

)
+K

(
∥v∥Ws

)(∫
Q

V (κ)|v|p−2vϕdκ+

∫
Q

|v(κ)− v(y)|p−2(v(κ)− v(y))(ψ(κ)− ψ(y))

|κ− y|d+sp
dκ dy

)
=

∫
Q

(
ηα(κ)|w|q−2uϕ+ ζβ(κ)|v|q−2vϕ

)
dκ+

1− ϱ

2− ϱ− τ

∫
Q

ξ(κ)u−ϱv1−τψ dκ

+
1− τ

2− ϱ− τ

∫
Q

ξ(κ)u1−ϱv−τψ dκ,

for all (ϕ, ψ) ∈ W.

Now, with the essential tools in place, we are ready to state our main results, which take the

following form:

Theorem 2.2. There exists

Λ0 =

(
q + ϱ+ τ − 2

∥ζ∥∞k(q − p)

) p
p+ϱ+τ−2

(
2− ϱ− τ − q

k(2− ϱ− τ − p)
|Q|

p∗s−q

p∗s

)− p
p−q

S
2−ϱ−τ

p+ϱ+τ−2 ,

such that if

0 <
(
η∥α∥∞

) p
p−q +

(
ζ∥β∥∞

) p
p−q < Λ0,

then system (1.1) has at least two nontrivial positive solutions.
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3 Nehari manifold & fibering map analysis

In this part, we gather basic information about a Nehari manifold and discuss fibering maps.

Obviously, the energy functional Jη,ζ : Ws −→ R associated with problem (1.1) is given by

Jη,ζ(w, v) =
1

p

(
K̂(||w||pWs

) + K̂(||v||pWs
)
)
− 1

q

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

− 1

2− ϱ− τ

∫
Q

ξ(κ)(w+)1−ϱ(v+)1−τ dκ,

where K̂(t) =

∫ t

0

K(ϱ)dϱ. This together with (1.2) gets to

Jη,ζ(w, v) =
k

p

(
Ψs,p(w) + Ψs,p(v)

)p
+

l

pσ

(
Ψs,p(w) + Ψs,p(v)

)pσ
− 1

q

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ− 1

2− ϱ− τ

∫
Q

ξ(κ)(w+)1−ϱ(v+)1−τ dκ

=
k

p
∥(w, v)∥pW +

l

pσ
∥(w, v)∥pσW − 1

q

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

− 1

2− ϱ− τ

∫
Q

ξ(κ)(w+)1−ϱ(v+)1−τ dκ, (3.1)

where r+ = max{r, 0} and r− = max{−r, 0} for r ∈ R.

Keep in mind that Jη,ζ does not behave smoothly in W. So, standard variational methods will

not work here. If (w, v) is a weak solution for the problem (1.1), it means that both w and v are

positive in Q and satisfy the equation

K
(
∥w∥Ws

)
Ψs,p(w) +K

(
∥v∥Ws

)
Ψs,p(V) − η

∫
Q

α(κ)|w|q dκ

− ζ

∫
Q

β(κ)|v|q dκ−
∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ = 0,

which implies by using (1.2) that

k∥(w, v)∥pW + l∥(w, v)∥pσW − η

∫
Q

α(κ)|w|q dκ− ζ

∫
Q

β(κ)|v|q dκ−
∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ = 0.

(3.2)

It is simple to confirm that the energy functional Jη,ζ(w, v) is not bounded below in the space W.

However, we will demonstrate that on the Nehari manifold, defined below, Jη,ζ(w, v) is bounded

below. We will establish a solution by minimizing this functional over specific subsets. The Nehari

manifold is defined as follows:
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Nη,ζ =

{
(w, v) ∈ W \ {(0, 0)}; k

p
∥(w, v)∥pW +

l

k
∥(w, v)∥pσW − η

∫
Q

α(κ)|w|q dκ

−ζ
∫
Q

β(κ)|v|q dκ−
∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ = 0

}
.

Now, understanding that the Nehari manifold is intricately connected to a fibering maps which

is introduced by Drábek and Pohozaev in [11]. The form of the fibrering maps is as follows,

Υw,v : t 7→ Jη,ζ(tw, tv) for t > 0 defined by

Υw,v(t) =
1

p

(
K̂
(
tP ||w||pWs

)
+ K̂

(
tp||v||pWs

))
− tq

q

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

− t2−ϱ−τ

2− ϱ− τ

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ.

The first and second derivative of Υ respectively, is given by

Υ′
w,v(t) = ktp−1∥(w, v)∥pW + ltpσ−1∥(w, v)∥pσW − tq−1

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

− t1−ϱ−τ

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ

(3.3)

and
Υ′′

w,v(t) = (p− 1)ktp−2∥(w, v)∥pW + l(pσ − 1)tpσ−2∥(w, v)∥pσW

− (q − 1)tq−2

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

− (1− ϱ− τ)t−ϱ−τ

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ.

(3.4)

Now, we prove some useful inequality. Using Hölder’s and Sobolev inequalities, one has∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ ≤ |Q|

p∗s−q

p∗s

(
η∥α∥∞∥w∥qp∗

s
+ ζ∥β∥∞∥v∥qp∗

s

)
≤ |Q|

p∗s−q

p∗s S− q
p

(
η∥α∥∞∥w∥q + ζ∥β∥∞∥v∥q

)
≤ |Q|

p∗s−q

p∗s S− q
p

(
(η∥α∥∞)

p
p−q + ζ∥β∥∞)

p
p−q

) p−q
p

(∥w∥q + ∥v∥q)

≤ C|Q|
p∗s−q

p∗s S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p ∥(w, v)∥qW

(3.5)

and∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ ≤ ∥ζ∥∞
(

1− ϱ

2− ϱ− τ

∫
Q

|w|2−ϱ−τ dκ+
1− τ

2− ϱ− τ

∫
Q

|v|2−ϱ−τ dκ

)
≤ ∥ζ∥∞S− 2−ϱ−τ

p ∥(w, v)∥2−ϱ−τ
W .

(3.6)
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Lemma 3.1. Let (w, v) ∈ W \ {(0, 0)}. Then (tw, tv) ∈ Nη,ζ if and only if Υ′
w,v(t) = 0.

Proof. The conclusion is derived from the observation that

Υ′
w,v(t) = ⟨J′η,ζ(w, v), (w, v)⟩

= ktp−1∥(w, v)∥pW + ltpσ−1∥(w, v)∥pσW − tq−1

(∫
Q

ηα(κ)|w|q dκ−
∫
Q

ζβ(κ)|v|q dκ
)

− t1−ϱ−τ

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ = 0

if and only if (tw, tv) ∈ Nη,ζ .

Due to Lemma 3.1, we have (w, v) ∈ Nη,ζ are associated with stationary points of Υw,v(tw, tv)

and in particular, (w, v) ∈ Nη,ζ if and only if Υ′
w,v(1) = 0. Hence, we split Nη,ζ into three parts:

N+
η,ζ =

{
(w, v) ∈ Nη,ζ : Υ′′

w,v(1) > 0
}
=
{
(tw, tv) ∈ W \ {0, 0} : Υ′

w,v(t) = 0,Υ′′
w,v(t) > 0

}
,

N−
η,ζ =

{
(w, v) ∈ Nη,ζ : Υ′′

w,v(1) < 0
}
=
{
(tw, tv) ∈ W \ {0, 0} : Υ′

w,v(t) = 0,Υ′′
w,v(t) < 0

}
,

N0
η,ζ =

{
(w, v) ∈ Nη,ζ : Υ′′

w,v(1) = 0
}
=
{
(tw, tv) ∈ W \ {0, 0} : Υ′

w,v(t) = 0,Υ′′
w,v(t) = 0

}
.

For the proof of the following lemma we refer to [32].

Lemma 3.2. If (w, v) is a minimizer of Jη,ζ on Nη,ζ such that (w, v) ̸∈ N0
η,ζ . Then, (w, v) is a

critical point for Jη,ζ .

Our initial result is as follows:

Lemma 3.3. Jη,ζ is bounded below on Nη,ζ and coercive.

Proof. As (w, v) ∈ Nη,ζ , then using (3.2) and the embedding of Ws in L2−ϱ−τ (Q), we obtain

Jη,ζ(w, v) = k

(
1

p
− 1

q

)
∥(w, v)∥pW+l

( 1

pσ
−1

q

)
∥(w, v)∥pσW −

(
1

2− ϱ− τ
− 1

q

)∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ.

Then by (3.6), we obtain

Jη,ζ(w, v) ≥ k

(
1

p
− 1

q

)
∥(w, v)∥pW + l

(
1

pσ
− 1

q

)
∥(w, v)∥pσW

−
(

1

2− ϱ− τ
− 1

q

)
∥ζ∥∞S− 2−ϱ−τ

2 ∥(w, v)∥2−ϱ−τ
W .

Since 2− ϱ− τ < p ≤ pσ, it follows that Jη,ζ is coercive and bounded below on Nη,ζ .
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Lemma 3.4. For every (w, v) ∈ N−
η,ζ (respectively N+

η,ζ) with u, v ≥ 0, and all (ϕ, ψ) ∈ Nη,ζ with

(ϕ, ψ) ≥ 0, there exist ε > 0 and a continuous function h = h(r) > 0 such that for all r ∈ R with

|r| < ε we have h(0) = 1 and h(r)(w + rϕ, v + rψ) ∈ N−
η,ζ (respectively N+

η,ζ).

Proof. First, let us introduce the function f : R× R −→ R defined by

f(t, r) = ktp+ϱ+τ−2∥(w + rϕ, v + rψ)∥p + ltpσ+ϱ+τ−2∥(w + rϕ, v + rψ)∥pσ

− (q + ϱ+ τ − 2)tq+ϱ+τ−3

∫
Q

(
ηα(κ)(w + rϕ)q + ζβ(κ)(v + rψ)q

)
dκ

−
∫
Q

ξ(κ)(w + rϕ)1−ϱ(v + rψ)1−τdκ.

Therefore,

df

dt
(t, r) = k

(
p+ ϱ+ τ −

)
tp+ϱ+τ−3∥(w + rϕ, v + rψ)∥p

+ l
(
pσ + ϱ+ τ − 2

)
tpσ+ϱ+τ−3∥(w + rϕ, v + rψ)∥pσ

− tq+ϱ+τ−2

∫
Q

(
ηα(κ)(w + rϕ)q + ζβ(κ)(v + rψ)q

)
dκ.

Hence, df
dt is continuous. Recall that (w, v) ∈ N−

η,ζ ⊂ Nη,ζ , we have f(1, 0) = 0, and

df

dt
(1, 0) = k

(
p+ ϱ+ τ − 2

)
∥(w, v)∥pW + l

(
pσ + ϱ+ τ − 2

)
∥(w, v)∥pσW

−
(
q + ϱ+ τ − 2

) ∫
Q

(
ηα(κ)wq + ζβ(κ)vq

)
dκ < 0.

Thus, by applying the implicit function theorem to the function f at the point (1, 0), we deduce

the existence of δ > 0 and a positive continuous function h = h(r) > 0, defined for r ∈ R with

|r| < δ, satisfying:

h(0) = 1 and h(r)(w + rϕ, v + rψ) ∈ Nη,ζ , for all r ∈ R, |r| < δ.

Hence, for a small possible ε > 0 (ε < δ), we obtain

h(r)(w + rϕ, v + rψ) ∈ N−
η,ζ , ∀r ∈ R, |r| < ε.

Similarly, we prove the other case.
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Lemma 3.5. There exists

Λ0 =

(
q + ϱ+ τ − 2

∥ζ∥∞k(q − p)

) p
p+ϱ+τ−2

(
2− ϱ− τ − q

k(2− ϱ− τ − p)
|Q|

2∗s−q

2∗s

)− p
p−q

S
2−ϱ−τ

p+ϱ+τ−2 ,

such that for 0 <
(
η∥α∥∞

) p
p−q +

(
ζ∥β∥∞

) p
p−q < Λ0 we have:

(i) If
∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ > 0, then, there exist a unique Tl > 0 and t0 < Tl < t1

such that

Υw,v(t0) = Υw,v(t1),

Υ′
w,v(t0) < 0 < Υ′

w,v(t1);

that is, (t0w, t0v) ∈ N+
η,ζ , (t1w, t1v) ∈ N−

η,ζ and

Jη,ζ(t0w, t0v) = min
0≤t≤t1

Jη,ζ(tw, tv),

Jη,ζ(t1w, t1v) = max
t≥Tl

Jη,ζ(tw, tv).

(ii) If
∫
Q

(
ηα(κ)|w|q+ζβ(κ)|v|q

)
dκ < 0, then there exists a unique Tl > 0 such that (Tlw, Tlv) ∈

N−
η,ζ and Jη,ζ(Tlw, Tlv) = max

t≥0
Jη,ζ(tw, tv).

Proof. (i) Suppose that
∫
Q

(
ηα(κ)|w|q+ζβ(κ)|v|q

)
dκ > 0. Define the function ψw,v : R+ −→ R

by

ψw,v(t) = ktp−q∥(w, v)∥pW + ltpσ−q∥(w, v)∥pσW − t2−ϱ−τ−q

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ.

Note that (tw, tv) ∈ Nη,ζ if and only if

ψw,v(t) =

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ.

Now, the first derivative of the function ψ is

ψ′
w,v(t) = k(p− q)tp−q−1∥(w, v)∥pW + (pσ − q)ltpσ−q−1∥(w, v)∥pσW

− (2− ϱ− τ − q)t1−ϱ−τ−q

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ

= t−q−1
(
k(p− q)tp∥(w, v)∥pW + (pσ − q)ltpσ∥(w, v)∥pσW

− (2− ϱ− τ − q)t−ϱ−τ+2

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ
)
.

(3.7)
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It is clear that ψw,v(t) −→ −∞ as t −→ ∞. Moreover, using (3.7), it is simple to see that

limt−→0+ ψ
′
w,v(t) > 0 and limt−→∞ ψ′

w,v(t) < 0. Thus, there exists Tl > 0 such that ψw,v(t)

is decreasing on (Tl,∞), increasing on (0, Tl), and ψ′
w,v(Tl) = 0. Thus,

ψw,v(Tl) = kT p−q
l ∥(w, v)∥pW + lT pσ−q

l ∥(w, v)∥pσW − T 2−ϱ−τ−q
l

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ,

where Tl is the solution of

k(p− q)tp∥(w, v)∥pW + (pσ − q)ltpσ∥(w, v)∥pσW

− (2− ϱ− τ − q)t−ϱ−τ+2

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ = 0.
(3.8)

Then, using (3.8), we obtain

T0 :=

(
(2− ϱ− τ − q)

∫
Q
ξ(κ)|w|1−ϱ|v|1−τ dκ

k(p− q)∥(w, v)∥pW

) 1
p+τ+ϱ−2

≤ Tl. (3.9)

From inequality (3.9), we can find a constant C = C(p, q, ϱ, τ) > 0 such that

ψw,v(Tl) ≥ ψw,v(T0)

≥ kT p−q
0 ∥(w, v)∥pW − T 2−ϱ−τ−q

0

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ

≥ k
( ϱ+ τ

q + ϱ+ τ − 2

)(q + ϱ+ τ − 2

k(q − 2)

) 2−q
τ+ϱ ∥(w, v)∥2

q+ϱ+τ−2
τ+ϱ

W( ∫
Q
ξ(κ)|w|1−ϱ|v|1−τ dκ

) q−2
τ+ϱ

− |Q|
2∗s−q

2∗s S− q
2

(
(η∥α∥∞)

2
2−q + (ζ∥β∥∞)

2
2−q

) 2−q
2 ∥(w, v)∥qW > 0,

if and only if

(η∥α∥∞)
2

2−q + (ζ∥β∥∞)
2

2−q

<

(
k(q − 2)

∥ζ∥∞(q + ϱ+ τ − 2)

)− 2
ϱ+τ

(
q + ϱ+ τ − 2

k(ϱ+ τ)
|Q|

2∗s−q

2∗s

)− 2
2−q

S
ϱ+τ−2
ϱ+τ + q

2−q = Λ0.

Then, there exist exactly two points t0 < Tl and t1 > Tl with

ψ′
w,v(t0) =

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ = ψ′

w,v(t1).

Also, ψ′
w,v(t0) > 0 and ψ′

w,v(t1) < 0. That is, (t0u, t0v) ∈ N+
η,ζ and (t1u, t1v) ∈ N−

η,ζ . Since

Υ′
w,v(t) = tq

(
ψw,v(t)−

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

)
.



CUBO
26, 3 (2024)

Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems... 419

Thus, Υ′
w,v(t) < 0 for all t ∈ [0, t0) and Υ′

w,v(t) > 0 for all t ∈ (t0, t1). Hence Jη,ζ(t0w, t0v) =

min
0≤t≤t1

Jη,ζ(tw, tv). In the same way, Υ′
w,v(t) > 0 for all t ∈ (t0, t1), Υ′

w,v(t) = 0 and

Υ′
w,v(t) < 0 for all t ∈ (t1,∞) that is Jη,ζ(t1w, t1v) = max

t≥Tl

Jη,ζ(tw, tv).

(ii) Suppose that
∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ < 0. So ψw,v(t) −→ −∞ as t −→ ∞. There-

fore, for all (η, ζ) there exists Tl > 0 such that (Tlw, Tlv) ∈ N−
η,ζ and Jη,ζ(Tlw, Tlv) =

max
t≥0

Jη,ζ(tw, tv).

The consequence of Lemma 3.5 is summarized in the following Lemma.

Lemma 3.6. There exists

Λ0 =

(
q + ϱ+ τ − 2

∥ζ∥∞k(q − p)

) p
p+ϱ+τ−2

(
2− ϱ− τ − q

k(2− ϱ− τ − p)
|Q|

p∗s−q

p∗s

)− p
p−q

S
2−ϱ−τ

p+ϱ+τ−2 ,

such that for 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0, we have N±
η,ζ ̸= ∅ and N0

η,ζ = ∅.

Proof. From Lemma 3.4, we infer that N±
η,ζ are non-empty for all (η, ζ) with 0 < (η∥α∥∞)

p
p−q +

(ζ∥β∥∞)
p

p−q < Λ0. Next, we employ a proof by contradiction to show that N0
η,ζ = ∅ for all (η, ζ),

with 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0. Let (w, v) ∈ N0
η,ζ . Then, we have two cases:

Case 1: (w, v) ∈ N+
η,ζ and

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ = 0. Using (3.3) and (3.4) with t = 1,

it follows that

(p− 1)k∥(w, v)∥pW + l(pσ − 1)∥(w, v)∥pσW − (1− ϱ− τ)

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ

= (p+ ϱ+ τ − 2)k∥(w, v)∥pW + l(pσ + ϱ+ τ − 2)∥(w, v)∥pσW > 0,

which is a contradiction.

Case 2: Let (w, v) ∈ N−
η,ζ and

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ = 0. Using (3.3) and (3.4) with

t = 1, it follows that

(p− q)k∥(w, v)∥pW + l(pσ − q)∥(w, v)∥pσW = −(q + ϱ+ τ)

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ, (3.10)

(2− ϱ− τ − p)k∥(w, v)∥pW + l(2− ϱ− τ − pσ)∥(w, v)∥pσW

= (2− ϱ− τ − q)

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ.

(3.11)
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Now, define Eη,ζ : Nη,ζ −→ R as follows

Eη,ζ(w, v) =
2− ϱ− τ − p

2− ϱ− τ − q
k∥(w, v)∥pW +

2− ϱ− τ − pσ

2− ϱ− τ − q
l∥(w, v)∥pσW

−
∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ.

Therefore, from (3.11), Eη,ζ(w, v) = 0 for all (w, v) ∈ N0
η,ζ . Furthermore,

Eη,ζ(w, v) ≥
2− ϱ− τ − p

2− ϱ− τ − q
k∥(w, v)∥pW −

∫
Q

(
ηα(κ)|w|q + ζβ(κ)|v|q

)
dκ

≥ 2− ϱ− τ − p

2− ϱ− τ − q
k∥(w, v)∥pW

− C|Q|
p∗s−q

p∗s S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p ∥(w, v)∥qW

≥ ∥(w, v)∥qW

(
2− ϱ− τ − p

2− ϱ− τ − q
k∥(w, v)∥p−q

W

−C|Q|
p∗s−q

p∗s S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p

)
.

Then, utilizing (3.6) and (3.10), we get

∥(u, v)∥ ≥ 1

∥ζ∥∞
S− 2−ϱ−τ

p(p+ϱ+τ−2)

( k(p− q)

2− ϱ− τ − q

)− 1
p+ϱ+τ−2

. (3.12)

From (3.12) we get

Eη,ζ(w, v) ≥ ∥(w, v)∥qW

(
2− ϱ− τ − p

2− ϱ− τ − q
k
(
k(p− q)∥ζ∥∞S

2−ϱ−τ
p(p+ϱ+τ−2)

)( k(p− q)

2− ϱ− τ − q

) q−p
p+ϱ+τ−2

− C|Q|
p∗s−q

p∗s S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p

)
.

This implies that for 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0, we have Eη,ζ(w, v) > 0, for all

(w, v) ∈ N0
η,ζ . The proof is complete.

Due to Lemmas 3.3 and 3.4, for 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0, we can write Nη,ζ =

N+
η,ζ ∪N−

η,ζ and define

c+η,ζ = inf
(w,v)∈N+

η,ζ

Jη,ζ(w, v), c−η,ζ = inf
(w,v)∈N−

η,ζ

Jη,ζ(w, v).
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3.1 Existence of a minimizer on N+
η,ζ.

In this subsection, we establish that the minimum of Jη,ζ is found within N+
η,ζ . Furthermore, we

demonstrate that this minimizer also serves as a solution to problem (1.1).

Lemma 3.7. If 0 < (η∥α∥∞)
p

p−q +(ζ∥β∥∞)
p

p−q < Λ0, then for all (w, v) ∈ N+
η,ζ , we have c+η,ζ < 0.

Proof. Let (w+
0 , v

+
0 ) ∈ N+

η,ζ , then Υ′′
(w+

0 ,v+
0 )
(1) > 0 which from (3.2) gives

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ <
k(p− q)

2− ϱ− τ − q
∥(w, v)∥pW +

l(pσ − q)

2− ϱ− τ − q
∥(w, v)∥pσW . (3.13)

Thus, according to (3.2) with (3.13), we obtain

Jη,ζ(w, v) ≤ k
(1
p
− 1

q

)
∥(w, v)∥pW + l

(
1

pσ
− 1

q

)
∥(w, v)∥pσW

−
(

1

2− ϱ− τ
− 1

q

)∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ

≤
[
k

(
1

p
− 1

q

)
−
(

1

2− ϱ− τ
− 1

q

)
k(p− q)

2− ϱ− τ − q

]
∥(w, v)∥pW

+

[
l

(
1

pσ
− 1

q

)
−
(

1

2− ϱ− τ
− 1

q

)
l(pσ − q)

2− ϱ− τ − q

]
∥(w, v)∥pσW .

(3.14)

Hence, using (3.14), we get

Jη,ζ(w, v) < −
(
k(q − p)(p+ ϱ+ τ − 2)

pq(2− ϱ− τ)
∥(w, v)∥p + l(q − p)(p+ ϱ+ τ − 2)

pq(2− ϱ− τ)
∥(w, v)∥pσ

)
< 0.

Therefore, the definition of c+η,ζ owing to c+η,ζ < 0.

Theorem 3.8. If 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0, then there exists (w+
0 , v

+
0 ) in N+

η,ζ

satisfying Jη,ζ(w
+
0 , v

+
0 ) = inf

(w,v)∈N+
η,ζ

Jη,ζ(w, v).

Proof. From the fact that Jη,ζ is bounded below on Nη,ζ , then it bounded on N+
η,ζ . Thus, there

exists {(w+
n , v

+
n )} ⊂ N+

η,ζ a sequence such that

Jη,ζ(w
+
n , v

+
n ) −→ inf

(w,v)∈N+
η,ζ

Jη,ζ(w, v) as n −→ ∞.

Since Jη,ζ is coercive, {wn, vn} is bounded in W. Then, there exists a sub-sequence, still denoted

by (w+
n , v

+
n ) and (w+

0 , v
+
0 ) ∈ W such that, as n −→ ∞,
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w+
n ⇀ w+

0 , v
+
n ⇀ v+0 weakly in Ws(Q),

w+
n −→ w+

0 , v
+
n −→ v+0 strongly in Lr(Q) for 1 ≤ r < p∗s,

w+
n −→ w+

0 , v
+
n −→ v+0 a.e. in Q.

Claim:

lim
n−→∞

∫
Q

α(κ)|w+
n |1−ϱdκ =

∫
Q

α(κ)|w+
0 |1−ϱdκ. (3.15)

Indeed, due to Vitali’s theorem (see [26, pp. 133]), we only need to prove that{∫
Q

α(κ)|w+
n |1−ϱdκ, n ∈ N

}
is equi-absolutely-continuous.

Since {wn} is bounded, by the Sobolev embedding theorem, there exists a constant C > 0 such

that |wn|p∗
s
≤ C <∞. Moreover, by the Hölder inequality we have

∫
Q

α(κ)w1−ϱdκ ≤ ∥α∥∞
∫
Q

|w|1−ϱdκ ≤ ∥α∥∞|Q|
p∗s

p∗s+ϱ−1 |w|1−ϱ
p∗
s
. (3.16)

From (3.16), for every ε > 0, setting

δ =

(
ε

∥α∥∞C1−ϱ

) p∗s
p∗s+γ−1

,

when A ⊂ Q with meas(A) < δ, we have∫
A

α(κ)|w+
n |1−ϱdκ ≤ ∥α∥∞∥w∥1−ϱ

p∗
s

(
meas(A)

) p∗s+ϱ−1

p∗s ≤ ∥α∥∞C1−ϱδ
p∗s+ϱ−1

p∗s < ε.

Thus, our claim is true. Similarly, we claim that

lim
n−→∞

∫
Q

β(κ)|v+n |1−τdκ =

∫
Q

β(κ)|v+0 |1−τdκ. (3.17)

On the other hand, by [3] there exists l ∈ Lr(Rd) such that

|w+
n (κ)| ≤ l(κ), |v+n (κ)| ≤ l(κ), as k −→ ∞

for 1 ≤ r < p∗s. Therefore by the dominated convergence theorem,∫
Q

(
η|w+

n |q + ζ|v+n |q
)
dκ −→

∫
Q

(
η|w+

0 |q + ζ|v+0 |q
)
dκ.

Furthermore, from Lemma 3.5, there exists t0 such that (t0w+
0 , t0v

+
0 ) ∈ N+

η,ζ . Now, we shall prove
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that w+
n −→ w+

0 strongly in Ws, v+n −→ v+0 strongly in Ws. Suppose otherwise, then

∥(w+
0 , v

+
0 )∥W ≤ lim inf

n−→∞
∥(w+

n , v
+
n )∥W.

On the other hand, since (w+
n , v

+
n ) ∈ N+

η,ζ , one has

lim
n−→∞

Υ′
w+

n ,v+
n
(t0) = lim

n−→∞

(
ktp−1

0 ∥(w+
n , v

+
n )∥p + ltpσ−1

0 ∥(w+
n , v

+
n )∥pσ

− tq−1
0

∫
Q

(
ηα(κ)|w+

n |q + ζβ(κ)|v+n )|q
)
dκ− t1−ϱ−τ

0

∫
Q

ξ(κ)|w+
n |1−ϱ|v+n |1−τ dκ

)
> ktp−1

0 ∥(w+
0 , v

+
0 )∥p + ltpσ−1

0 ∥(w+
0 , v

+
0 )∥pσ

− tq−1
0

∫
Q

(
ηα(κ)|w+

0 |q + ζβ(κ)|v+0 )|q
)
dκ− t1−ϱ−τ

0

∫
Q

ξ(κ)|w+
0 |1−ϱ|v+0 |1−τ dκ

= Υ′
w+

0 ,v+
0
(t0) = 0.

Therefore, Υ′
w+

n ,v+
n
(t0) > 0 for n large enough. Furthermore, (w+

n , v
+
n ) ∈ N+

η,ζ , and we can see for

all n that Υ′
w+

n ,v+
n
(t) < 0 for t ∈ (0, t) and Υ′

w+
n ,v+

n
(1) = 0. Thus we must have t0 > 1. Moreover

Υw+
n ,v+

n
(1) is decreasing for t ∈ (0, t0) and that is

Jη,ζ(t0w
+
0 , t0v

+
0 ) < Jη,ζ(w

+
0 , v

+
0 ) = lim

n−→∞
Jη,ζ(w

+
n , v

+
n ) = inf

(w,v)∈N+
η,ζ

Jη,ζ(w, v)

which gives a contradiction. Thus, w+
n −→ w+

0 strongly in Ws, v+n −→ v+0 strongly in Ws and

Jη,ζ(w
+
0 , v

+
0 ) = inf

(w,v)∈N+
η,ζ

Jη,ζ(w, v). The proof of Theorem 3.8 is complete.

3.2 Existence of a minimizer on N−
η,ζ.

In this subsection, we aim to establish the existence of a solution to problem (1.1) by demonstrating

the existence of a minimizer for Jη,ζ within the set N−
η,ζ .

Lemma 3.9. If 0 < (η∥α∥∞)
p

p−q +(ζ∥β∥∞)
p

p−q < Λ0, then for all (w, v) ∈ N+
η,ζ , one has c−η,ζ > d0

for some d0 = d0
(
ϱ, τ, p, q, α, β, η, ζ, |Q|

)
> 0.

Proof. Let (w−
0 , v

−
0 ) ∈ N−

η,ζ , then we have Υ′′
w−

0 ,v−
0

(1) < 0 which from (3.2) gives

∫
Q

ξ(κ)|w|1−ϱ|v|1−τ dκ >
k(p− q)

2− ϱ− τ − q
∥(w, v)∥pW +

l(pσ − q)

2− ϱ− τ − q
∥(w, v)∥pσW . (3.18)

Hence, using (3.6), we get

∥(w, v)∥W >
1

∥ζ∥∞
S− 2−ϱ−τ

p(p+ϱ+τ−2)

(
k(p− q)

2− ϱ− τ − q

)− 1
p+ϱ+τ−2

. (3.19)
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Therefore, by (3.5) and (3.19), we obtain

Jη,ζ(w, v) ≥ k

(
1

p
− 1

2− ϱ− τ

)
∥(w, v)∥pW −

(
1

q
− 1

2− ϱ− τ

)
|Q|

p∗s−q

p∗s

× S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p ∥(w, v)∥qW

= ∥(w, v)∥qW

[
k

(
1

p
− 1

2− ϱ− τ

)
∥(w, v)∥p−q

W −
(
1

q
− 1

2− ϱ− τ

)
|Q|

p∗s−q

p∗s

× S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p

]

> ∥(w, v)∥qW

[
k

(
1

p
− 1

2− ϱ− τ

)
S

(p−q)
p

(
p− q

2− ϱ− τ − q

) q−p
p+ϱ+τ−2

−
(
1

q
− 1

2− ϱ− τ

)
|Q|

p∗s−q

p∗s S− q
p

(
(η∥α∥∞)

p
p−q + (ζ∥β∥∞)

p
p−q

) p−q
p

]
.

Hence, if 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0, then Jη,ζ(w, v) > d0 for all (w, v) ∈ N−
η,ζ for some

d0 = d0
(
ϱ, τ, p, q, α, β, η, ζ, |Q|

)
> 0. Therefore c−η,ζ > d0 follows from the definition c−η,ζ .

Theorem 3.10. If 0 < (η∥α∥∞)
p

p−q + (ζ∥β∥∞)
p

p−q < Λ0, then there exists (w−
0 , v

−
0 ) in N−

η,ζ

satisfying Jη,ζ(w
−
0 , v

−
0 ) = inf

(w,v)∈N−
η,ζ

Jη,ζ(w, v).

Proof. As Jη,ζ is bounded below on Nη,ζ and then on N−
η,ζ . Thus, there exists {(w−

n , v
−
n )} ⊂ N−

η,ζ ,

a sequence such that

Jη,ζ(w
−
n , v

−
n ) −→ inf

(w,v)∈N−
η,ζ

Jη,ζ(w, v) as n −→ ∞.

Since Jη,ζ is coercive, {(wn, vn)} is bounded in W. Then there exists a sub-sequence, still denoted

by (w−
n , v

−
n ) and (w−

0 , v
−
0 ) ∈ W such that, as n −→ ∞,

w+
n ⇀ w−

0 , v
−
n ⇀ v−0 weakly in Ws(Q),

w−
n −→ w−

0 , v
−
n −→ v−0 strongly in Lr(Q) for 1 ≤ r < p∗s,

w−
n −→ w−

0 , v
−
n −→ v−0 a.e. in Q.

Furthermore, similar to the proof in Lemma 3.8, we have

lim
n−→∞

∫
Q

|w−
n |1−ϱdκ =

∫
Q

|w−
0 |1−ϱdκ,

lim
n−→∞

∫
Q

|v−n |1−τdκ =

∫
Q

|v−0 |1−τdκ,∫
Q

(
ηα(κ)|w+

n |q + ζβ(κ)|v+n |q
)
dκ −→

∫
Q

(
ηα(κ)|w+

0 |q + ζβ(κ)|v+0 |q
)
dκ.
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Moreover, by Lemma 3.5, there exists t1 such that (t1w
−
0 , t1v

−
0 ) ∈ N−

η,ζ . Now, we prove that

w−
n −→ w−

0 strongly in Ws, v−n −→ v−0 strongly in Ws. Suppose otherwise, then

∥(w−
0 , v

−
0 )∥W ≤ lim inf

n−→∞
∥(w−

n , v
−
n )∥W.

Thus, since (w−
n , v

−
n ) ∈ N−

η,ζ and Jη,ζ(tw
−
0 , tv

−
0 ) ≤ Jη,ζ(w

−
0 , v

−
0 ), for all t ≥ 0 we have

Jη,ζ(t1w
−
0 , t1v

−
0 ) < lim

n−→∞
Jη,ζ(t1u

−
n , t1v

−
n ) ≤ lim

n−→∞
Jη,ζ(w

−
n , v

−
n ) = c−η,ζ ,

which gives a contradiction. Hence, w−
n −→ w−

0 strongly in Ws(Q), v−n −→ v−0 strongly in Ws(Q)

and Jη,ζ(w
−
0 , v

−
0 ) = inf

(w,v)∈N−
η,ζ

Jη,ζ(w, v). Which complete the proof.

4 Multiple solutions

In this section, we shall prove Theorem (2.2), which gives the multiplicity of solutions for problem

(1.1).

Proof of Theorem 2.2. To begin, let us establish the existence of non-negative solutions. Initially,

according to Theorems 3.8 and 3.10, there exist(w+
0 , v

+
0 ) ∈ N+

η,ζ , (w
−
0 , v

−
0 ) ∈ N−

η,ζ satisfying

Jη,ζ(w
+
0 , v

+
0 ) = inf

(w,v)∈N+
η,ζ

Jη,ζ(w, v),

Jη,ζ(w
−
0 , v

−
0 ) = inf

(w,v)∈N−
η,ζ

Jη,ζ(w, v).

Also, from the fact that Jη,ζ(w+
0 , v

+
0 ) = Jη,ζ(|w+

0 |, |v
+
0 |) and (|w+

0 |, |v
+
0 |) ∈ N+

η,ζ . Similarly we have

Jη(w
−
0 , v

−
0 ) = Jη,ζ(|w−

0 |, |v
−
0 |) and (|w−

0 |, |v
−
0 |) ∈ N−

η,ζ , thus we can assume (w±
0 , v

±
0 ) ≥ 0. Due

to Lemma 3.2, (w±
0 , v

±
0 ) are the nontrivial non-negative solutions of problem (1.1). Finally, we

need to establish that the solutions obtained in Theorems 3.8 and 3.10 are distinct. Given that

N−
η,ζ ∩N+

η,ζ = ∅, it follows that (w±
0 , v

±
0 ) are indeed distinct. This completes the proof.
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