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ABSTRACT

We show that there are finite distributive lattices that are not

the congruence lattice of any finite semidistributive lattice.

For 0 ≤ k ≤ 2, the distributive lattice (Bk)++ = 2 + Bk,

where Bk denotes the boolean lattice with k atoms, is not the

congruence lattice of any finite semidistributive lattice. Nei-

ther can these lattices be a filter in the congruence lattice of

a finite semidistributive lattice. However, each (Bk)++ with

k ≥ 3 is the congruence lattice of a finite semidistributive

lattice, say Lk. These lattices Lk cannot be bounded (in the

sense of McKenzie), as no (Bk)++ (k ≥ 0) is the congruence

lattice of a finite bounded lattice. A companion paper shows

that every (Bk)++ (k ≥ 0) can be represented as the congru-

ence lattice of an infinite semidistributive lattice. We also

find sufficient conditions for a finite distributive lattice to be

representable as the congruence lattice of a finite bounded

(and hence semidistributive) lattice.
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RESUMEN

Mostramos que existen reticulados distributivos finitos que

no son el reticulado de congruencia de cualquier reticulado

semidistributivo finito. Para 0 ≤ k ≤ 2, el reticulado dis-

tributivo (Bk)++ = 2 +Bk, donde Bk denota el reticulado

booleano con k átomos, no es el reticulado de congruencia

de cualquier reticulado semidistributivo finito. Estos reticu-

lados tampoco pueden ser un filtro en el reticulado de con-

gruencia de un reticulado semidistributivo finito. De todas

formas, cada (Bk)++ con k ≥ 3 es el reticulado de con-

gruencia de un reticulado semidistributivo finito, digamos

Lk. Estos reticulados Lk no pueden ser acotados (en el

sentido de McKenzie), puesto que ningún (Bk)++ (k ≥ 0)

es el reticulado de congruencia de un reticulado finito aco-

tado. Un artículo acompañante muestra que todo (Bk)++

(k ≥ 0) puede ser representado como el reticulado de con-

gruencia de un reticulado infinito semidistributivo. También

encontramos condiciones suficientes para que un reticulado

finito distributivo sea representable como el reticulado de

congruencia de un reticulado finito acotado (y por lo tanto

semidistributivo).
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1 Introduction

R. P. Dilworth proved in the 1940’s that every finite distributive lattice is the congruence lattice

of a finite lattice. Not every finite distributive lattice is isomorphic to the congruence lattice of a

finite join semidistributive (or meet semidistributive) lattice, but it turns out that there is only one

restriction; see Theorem 1.1 below, from [1]. This note shows that there is at least one additional

restriction on a finite distributive lattice D in order for D to be the congruence lattice of a finite

(meet and join) semidistributive lattice; see Theorem 3.1.

In the paper K. Adaricheva et al. [1] it was shown that a finite distributive lattice D ∼= O(P) is the

congruence lattice of a finite join semidistributive lattice if and only if every non-maximal element

of P is below at least two maximal elements. In fact, the equivalence of five conditions is proved

in that paper.

Theorem 1.1. The following are equivalent for a finite distributive lattice D. Let D ∼= O(P) for

an ordered set P (isomorphic to J(D)).

(1) D ∼= Con L for a finite join semidistributive lattice L.

(2) D ∼= Con S for a finite lower bounded lattice S.

(3) D ∼= Con G for a finite convex geometry G.

(4) D ∼= Con A for a finite, lower bounded, atomistic convex geometry A.

(5) Every non-maximal element of P is below at least two maximal elements.

(6) The three-element chain is not a filter in D.

We will show that there is at least one additional restriction for the congruence lattice Con K

when K is a finite lattice that is both join and meet semidistributive. The restrictions are perhaps

best expressed in terms of the lattices (Bk)++ obtained by adjoining a new zero twice to a boolean

lattice with k atoms. Theorem 3.1 is that neither (B0)++ nor (B2)++ can be a filter in the

congruence lattice of a finite semidistributive lattice. (Since (B0)++ is a three-element chain and

(B1)++ is a four-element chain, excluding the latter is redundant.) We can show that every (Bk)++

with k ≥ 3 is the congruence lattice of a finite semidistributive lattice (Theorem 4.8). However, a

lattice K with Con K ∼= (Bk)++ for K finite, semidistributive and k ≥ 3 cannot be bounded in the

sense of McKenzie (Theorem 4.2). To complicate matters, it turns out that every lattice (Bk)++

with k ≥ 0 is isomorphic to the congruence lattice of an infinite semidistributive lattice, as shown

by the author and G. Grätzer [11]. It remains open whether every finite distributive lattice is the

congruence lattice of an infinite semidistributive lattice.
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2 Preliminaries on congruence lattices and semidistributivity

A lattice is join semidistributive if it satisfies the condition

x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z) .

The dual is called meet semidistributive, and a lattice is semidistributive if it is both join and meet

semidistributive. This notion was introduced in Jónsson [12] as a basic property of free lattices;

summaries of semidistributive lattices can be found in [3, 7].

A lattice homomorphism h : K → L is lower bounded if for every a ∈ L, h−1(↑a) is either empty

or has a least element. Dually, h is an upper bounded homomorphism if h−1(↓ a) has a greatest

element whenever it is nonempty. A homomorphism that is both lower and upper bounded is

called bounded.

A finitely generated lattice is said to be bounded if it is a bounded homomorphic image of a free

lattice. The basic historical sources are R. McKenzie [15] and A. Day [5]; again more recent

summaries can be found in [3, 7]. Bounded lattices inherit semidistributivity from free lattices.

For k ≥ 0, Bk denotes the boolean lattice with k atoms; in particular, B0 is a one-element lattice.

Given a lattice K, let K+ denote the lattice obtained by adjoining a new zero element. The lattices

(Bk)++ will play an important role in this paper.

For finite subsets X, Y of a lattice L, we say that X refines Y , written X ≪ Y , if for each x ∈ X

there exists y ∈ Y such that x ≤ y. An inclusion p ≤
∨
Q, where p ∈ L and Q ⊆ L is a finite

nonempty subset, is a minimal nontrivial join cover if p ≰ q for all q ∈ Q and Q cannot be properly

refined, i.e., if p ≤
∨
R and R≪ Q, then Q ⊆ R. When p ≤

∨
Q is a minimal nontrivial join cover,

then Q is an antichain of join irreducible elements. We say that a minimal nontrivial join cover

p ≤
∨
Q is doubly minimal if there is no minimal nontrivial join cover S with p ≤

∨
S <

∨
Q.

A join irreducible element p in a finite lattice has a unique lower cover, denoted p∗. A finite lattice

L is meet semidistributive if and only if for each join irreducible element p ∈ J(L), there is a

unique element κ(p) that is maximal with respect to the property of being above p∗ and not above

p; see e.g. Theorem 2.56 of [7]. Thus x ≤ κ(p) if and only if p∗ ∨ x ≱ p. Indeed, κ(p) will be

meet irreducible with the unique upper cover κ(p)∗ = p ∨ κ(p). Note that if p ≤
∨
Q is a minimal

nontrivial join cover and q ∈ Q, then
∨
(Q\{q}) ≤ κ(q); else q could be replaced by q∗ for a proper

refinement.

Let us review congruence lattices of finite lattices and the special properties of bounded ones.

Define five relations on the set of join irreducible elements J(L), the first three requiring meet

semidistributivity.
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• pA q if q < p < q ∨ κ(q),

• pB q if p ̸= q, p ≤ p∗ ∨ q, p ≰ p∗ ∨ q∗, or equivalently, p ̸= q, q ≰ κ(p), q∗ ≤ κ(p),

• C = A ∪B,

• pD q if q ∈ Q for some minimal nontrivial join cover Q of p,

• pE q if q ∈ R for some doubly minimal nontrivial join cover R of p.

Now in a finite semidistributive lattice E ⊆ C ⊆ D, and the containments can be proper (The-

orem 2.59 of [7]). Form the reflexive, transitive closures of the last three: C, D, E. These are

quasi-orders.

An order ideal of a quasi-ordered set (Q,≤) is a subset I ⊆ Q such that s ≤ t ∈ I implies s ∈ I.

The order ideals of Q form a distributive lattice O(Q,≤). A standard result is that for any finite

lattice, Con L ∼= ( J(L), D), see Chapter 10 of [17] or Section II.3 of [7]. But for bounded finite

lattices, we also have Con L ∼= O(J(L), E), see Section 6.6 of [3] or Section 9 of [4]. (This does not

mean that D and E are the same, but their reflexive, transitive closures D and E are.)

We assume a familiarity with the following basic facts of lattice theory.

• Every finite distributive lattice is isomorphic to the lattice of order ideals of its join irreducible

elements, D ∼= O(P) where P = (J(D),≤). By convention, O(P) includes the empty ideal.

• Equivalently, D is isomorphic to the lattice of order filters of meet irreducible elements,

D ∼= F(Q), where Q = (M(D),≤) and filters are ordered by reverse set inclusion.

• For disjoint unions of ordered sets, O(P ∪̇Q) ∼= O(P)×O(Q), while lattices satisfy Con(K×
L) ∼= (Con K) × (Con L). Hence we may restrict our attention to connected finite ordered

sets.

• For any finite lattice L, the congruence lattice Con L is isomorphic to the ideal lattice of the

quasi-ordered set Q = (J(L), D), i.e., Con L ∼= O(J(L), D).

• In particular, maximal members of Q correspond to simple homomorphic images of L.

• The two-element lattice 2 is the only finite simple semidistributive lattice. (Infinite simple

semidistributive lattices exist; see [8].)

• Thus for a finite semidistributive lattice, coatoms of Con L correspond to maximal members

of Q = (J(L), D), which in turn correspond to join prime elements of L. That is, the maximal

proper congruences on a finite semidistributive lattice are exactly those with two classes, ↑p
and ↓κ(p), where p is a join prime element.
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• Every element in a finite join semidistributive lattice has a canonical join representation [13].

This canonical representation is the unique non-refinable join representation of the element,

and refines every other join representation. Thus if a =
∨
B canonically and also a =

∨
C,

then B ≪ C.

• In a finite join semidistributive lattice, the canonical joinands of 1L are join prime.

• The atoms of a finite meet semidistributive lattice are join prime.

While the whole theory of Day doubling of intervals is relevant to bounded lattices, for this paper

we need only double points, which is easily described; see [5, 6, 10]. If L is a lattice and a ∈ L, let

L[a] be the lattice on the set L\{a}∪{(a, 0), (a, 1)} with the order ≤′ such that, for x, y ∈ L\{a}
and i ∈ {0, 1},

• x ≤′ y iff x ≤ y,

• (a, 0) ≤′ (a, 1),

• x ≤′ (a, i) iff x ≤ a,

• (a, i) ≤′ y iff a ≤ y.

Note that (a, 1) is join irreducible in L[a]. Doubling intervals, and in particular points, preserves

both meet and join semidistributivity, and both lower and upper boundedness [5].

3 Congruence lattices of finite semidistributive lattices

Consider the two ordered sets in Figure 1.

Theorem 3.1. The distributive lattices O(2) and O(Y) are not the congruence lattice of a finite

semidistributive lattice.

Recall that the homomorphic images of a finite semidistributive lattice L are semidistributive.

(More generally, bounded homomorphisms preserve semidistributivity; see the proof of Theo-

rem 2.20 in [7].) It follows that neither 2 nor Y can be a filter in (J(L), D) when L is a finite semidis-

tributive lattice. Note that O(2) = 3 is the three-element chain (B0)++, while O(Y) = (B2)++.

The four-element chain 4 = (B1)++ has 3 as a filter, so neither is it the congruence lattice of a

finite semidistributive lattice. See also Lemma 3.3 below.

Proof. Elements of (J(L), D) may be equivalence classes induced by the quasi-orderD, but maximal

elements of (J(L), D) correspond to singleton classes with one join prime element. This is because
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Figure 1: Ordered sets 2 and Y

every finite nontrivial semidistributive lattice contains join prime elements, and a join prime ele-

ment p has no nontrivial join cover, making pD q impossible when p is maximal in (J(L), D). Now

2 is the only finite semidistributive lattice with only one join prime element, and its congruence

lattice is 2 = O(1), not 3 = O(2). We conclude that Con L ∼= 3 cannot occur. (This argument

applies with join semidistributivity only; see Theorem 1.1.)

So suppose L is a finite semidistributive lattice with Con L ∼= O(Y). Then L has two join prime

elements, which includes its atoms and the canonical joinands of 1. The trivial case with one atom

and 1L join prime would give L ∼= 3, while Con 3 ∼= 2 × 2, so that does not occur. Thus L has

exactly two atoms, say r and s, and 1L = r ∨ s. Since r is an atom, κ(r) is the largest element

not above r, and similarly for κ(s). So the coatoms of L are κ(r) and κ(s), and they satisfy

κ(r) ∧ κ(s) = 0L. Thus L = {0, 1} ∪̇ [r, κ(s)] ∪̇ [s, κ(r)], as in Figure 2.

Put U = [r, κ(s)] and V = [s, κ(r)]. Note u ∨ v = 1 and u ∧ v = 0 for any u ∈ U and v ∈ V .

Hence congruences behave independently on the sublattices U and V. It follows that Con L is

isomorphic to Con U × Con V with three additional elements on top, as illustrated in Figure 2.

If Con L ∼= O(Y), then Con U × Con V ∼= 3 = O(2), which is impossible by the first part.

Therefore there is no finite semidistributive lattice with Con L ∼= O(Y).

In the preceding argument, U and V are intervals of L, and hence finite semidistributive lattices.

On the other hand, one or both of these could have only one element. Hence, from the proof we

conclude:

Corollary 3.2. The following are equivalent for a finite distributive lattice D with two coatoms.

(1) D ∼= Con L for some finite semidistributive lattice L.

(2) D is a glued sum D = E⊕ (2× 2) where E ∼= Con K for some finite semidistributive lattice

K.

While the corollary applies only to distributive lattices with two coatoms, it allows us to con-

struct a multitude of examples of distributive lattices, both representable and non-representable

as congruence lattices of finite semidistributive lattices. The construction in the positive direction

mimics Figure 2 with say U = K and |V| = 1.
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Figure 2: L and Con L for a finite semidistributive lattice with exactly two join prime elements,
r and s. The congruence ψr collapses the intervals [r, 1] and [0, κ(r)], the congruence ψs collapses
the interval [s, 1] and [0, κ(s)], so that L/(ψr ∧ ψs) ∼= 2× 2.

It is currently unknown whether additional restrictions apply to congruence lattices of finite

semidistributive lattices. By analogy with situation for finite join semidistributive lattices (Theo-

rem 1.1) we conjecture that the restrictions of Theorem 3.1 are the only ones.

Conjecture: A finite distributive lattice D is the congruence lattice of a finite semidistributive

lattice if and only if neither the 3-element chain nor O(Y) = (B2)++ is a filter of D.

With respect to such characterizations, we remind the reader of an elementary fact.

Lemma 3.3. Let S and P be finite ordered sets. Then O(S) is isomorphic to a filter of O(P) if

and only if S is a filter of P.

Proof. If S is a filter of P, let L = P \ S. Clearly ↑L is a filter of O(P) isomorphic to O(S).

Conversely, assume that O(S) is isomorphic to a filter of O(P), say O(S) ∼= ↑K. Set T = P \K
and T = (T,≤) with the order inherited from P. As the complement of an ideal, T is a filter in

P. Now S ∼= J(O(S)). We want to establish an isomorphism ν : T ∼= J(↑K) between T and the

ideals that are join irreducible in the filter ↑K (which need not be join irreducible in O(P)).

For t ∈ T , define ν(t) = K ∪ ↓ t. Note that ν(t) is join irreducible in ↑ K. In fact, for an ideal

L ≥ K, t ∈ L iff L ≥ ν(t).

On the other hand, if L is join irreducible in ↑K, then there is a unique ideal L† with L ≻ L† ≥ K.

There is only one element in L \ L†, and it must be in T . Denote this element by τ(L), so that

τ(L) ∈ T and L = L† ∪̇ {τ(L)}.

Now τν(t) = t because ν(t) ≻ ν(t) \ {t} ≥ K. Let us show that ντ(L) = K ∪ ↓ τ(L) = L when

L is join irreducible in ↑K. Clearly K ∪ ↓ τ(L) ⊆ L. Suppose the reverse inclusion fails. That

means there exists an element ℓ0 ∈ L ∩ T with ℓ0 ≰ τ(L). Let ℓ1 ≥ ℓ0 be maximal in L, so also
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ℓ1 ∈ T and ℓ1 ≱ τ(L). Then L ≻ L \ {ℓ1} ≥ K, yielding another lower cover of L in ↑K besides

L†, contrary to the assumption that L is join irreducible in the interval. Therefore ν(τ(L)) = L.

It remains to show that for I, L join irreducible in ↑K, τ(I) ≤ τ(L) iff I ≤ L. But I = ντ(I) =

K ∪ ↓τ(I) and L = ντ(L) = K ∪ ↓τ(L) with τ(I) and τ(L) not in K, from which the claim follows

immediately.

4 Congruence lattices of finite bounded lattices

Now we turn to finite lattices that are bounded homomorphic images of a free lattice. These inherit

semidistributivity from the free lattice. Finite bounded lattices have many special properties, which

we summarize here from [3], Sections 3-2.6 and 3-2.7, or [7], Sections II-4 and II-5, both of which

have references to the original sources.

Theorem 4.1. The following are equivalent for a finite semidistributive lattice L.

(1) L is bounded.

(2) L is lower bounded.

(3) L is upper bounded.

(4) J(L) contains no D-cycle

p0Dp1Dp2D . . . D pm−1Dp0.

(5) J(L) contains no E-cycle

p0E p1E p2E . . . E pn−1E p0.

(6) | J(Con L)| = | J(L)|.

Condition (6), from Pudlák and Tůma [19], is particularly important for us: if L is a finite bounded

lattice with Con L ∼= O(P), then there is a bijection between J(L) and P. This is not true for

unbounded semidistributive lattices in general, because of the presence of D-cycles as in (4).

Moreover, bounded finite lattices have Con L ∼= O(J(L), E), where E is the relation on J(L)

determined by doubly minimal join covers. This need not be true for unbounded lattices.

Recall that Bk denotes the boolean lattice with k atoms, and L+ denotes the lattice obtained by

adding a new least element 0 to L.

Theorem 4.2. For k ≥ 0, the distributive lattice (Bk)++ is not the congruence lattice of a finite

bounded lattice.

The proof uses a technical lemma, which is Theorem 2.60 in [7].
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Lemma 4.3. Let K be a finite semidistributive lattice, and let q ∈ J(K). Assume q ≤
∨
R is a

doubly minimal nontrivial join cover. Then there is a unique r0 ∈ R such that r0 ≰ q, and q B r0
holds. The remaining r ∈ R \ {r0} satisfy r < q and q A r.

Proof. Assume that q ≤
∨
R is doubly minimal, and consider any r ∈ R. Let S = R \ {r}, noting

that
∨
S ≤ κ(r) else r∨

∨
S = r∗∨

∨
S, contradicting minimality. If r < q, then r < q < r∨

∨
S ≤

r ∨ κ(r) = κ(r)∗ so that q A r holds.

Meanwhile, q ≤
∨
R implies

∨
R ≰ κ(q). Hence q ≤ q∗ ∨ r0 for at least one r0 ∈ R. This refines

to a minimal nontrivial join cover q ≤
∨
T with T ≪ {q∗, r0}. Clearly

∨
T ≤ q ∨ r0 ≤

∨
R; by the

double minimality,
∨
T = q ∨ r0 =

∨
R.

We have q ≤ q∗ ∨ r0 =
∨
R. Suppose q ≤ q∗ ∨ r0∗. Then by the double minimality of

∨
R we get∨

R = q∗ ∨ r0∗. Put S = R \ {r0}, noting
∨
S ≤ q∗ by the preceding paragraph. Recall that in a

join semidistributive lattice, u =
∨
ai =

∨
bj implies u =

∨
i,j(ai ∧ bj). (This is Theorem 1.21 in

[7], from Jónsson and Kiefer [13].) Thus we calculate

∨
R =

∨
S ∨ r0 = q∗ ∨ r0∗ =

∨
S ∨ (r0 ∧ q∗) ∨ r0∗ =

∨
S ∨ r0∗

which contradicts q ≤
∨
R being a minimal (nonrefinable) join cover. So q ≰ q∗ ∨ r0∗, whence

q B r0 holds.

By (SD∨), R = T consists of the canonical joinands of q ∨ r0, all except one of which, namely r0,

lie below q∗.

Corollary 4.4. If q E s and s ≰ q in a finite semidistributive lattice, then q B s.

Now we can prove Theorem 4.2.

Proof. We may assume k ≥ 3, as the cases 0 ≤ k ≤ 2 are covered by Theorem 3.1.

Suppose that L is a bounded lattice and that Con L ∼= (Bk)++. Then (J(L), E) is isomorphic to

the ordered set drawn in Figure 3. Note that because L is bounded, the relation E is antisymmetric

(as there are no E-cycles), making E-classes singletons. So each point in Figure 3 represents an

element of J(L).

Moreover, the elements labeled r1, . . . , rk in the top row are join prime in L. Let R1 = {r1, . . . , rℓ}
be the join prime elements with ri < q, and let R2 = {rℓ+1, . . . , rk} be those with rj ≰ q. As the

diagram indicates, we have pE q and q E ri for all i. Since pE q, in L there is at least one doubly

minimal nontrivial join cover p ≤ q ∨
∨
S with S ⊆ R1 ∪R2.

Clearly S ∩ R1 = ∅, i.e., we cannot have s < q with both in the same minimal join cover. So

S ⊆ R2. But if s0 ∈ R2, then q B s0 by Corollary 4.4, so q ≤ q∗ ∨ s0. Thus p ≤ q∗ ∨
∨
S,

contradicting the minimality of {q} ∪ S.
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rℓ+1

R1 R2

p

q

r1 rℓ rk

Figure 3: (J(L), E) for (Bk)++

But now we encounter an unexpected surprise. The lattice U in Figure 4 is obtained by dou-

bling the point p0 in a lattice U0 from [14]. Now U is not bounded, because it has the D-cycle

p0Ap1Ap2B p3B p0. However, its congruence lattice Con U is (B3)++.

Theorem 4.5. The lattice (B3)++ is the congruence lattice of a finite semidistributive lattice.

A couple of lemmas are required to prove this.

When a point a is doubled in a finite lattice L, then the principal congruence α = Cg((a, 0), (a, 1))

has only one nontrivial congruence class, so that α is an atom of Con L[a] with L[a]/α ∼= L. But

we need a little more information as to which congruences lie above α. The calculation is based

on the following straightforward lemmas.

Lemma 4.6. Let L be a finite lattice. Double a join irreducible element a ∈ J(L), replacing a by

(a, 0) and (a, 1). Note that both (a, 0) and (a, 1) are join irreducible in L[a].

(1) If aD b in L, then (a, 0)D b and (a, 1)D b in L[a].

(2) If cD a in L, then cD (a, 0) in L[a], but c D̸ (a, 1).

(3) If L is meet semidistributive and κ(a) ̸= a∗, then (a, 1)D (a, 0).

If p and q are join irreducible elements with pD q, then we have the congruence inclusion Cg(p, p∗) ≤
Cg(q, q∗). Thus whenever there is aD-cycle p0Dp1D . . . D pn−1Dp0, then Cg(pi, pi∗) = Cg(pj , pj∗)

for all i, j. We refer to this congruence as the congruence generated by the cycle.

Lemma 4.7. Let L be a finite, subdirectly irreducible, semidistributive lattice with Con L ∼= D.

Suppose the monolith µ of L is generated by a proper D-cycle, and let a be a join irreducible

element in that cycle. Then Con L[a] ∼= D+.

The crucial observation is that if p0Dp1D . . . D pn−1Dp0 is aD-cycle in L, then by Lemma 4.6(1)

and (2),

p0Dp1D . . . D (pj , 0)D . . . D pn−1Dp0



454 J. B. Nation CUBO
26, 3 (2024)

a

p2

c

p3

b

p1

p0

m

m

p

a b c

Figure 4: A finite semidistributive lattice with Con U ∼= (B3)++. On the left U, on the right
(J(U), D).

is a D-cycle in L[pj ].

In our situation, for Theorem 4.5 we have the original lattice from [14] with congruence lattice

isomorphic to (B3)+. Doubling p0 to get the element labeled m in U, as in the figure, yields

Con U ∼= (B3)++ and thus Theorem 4.5.

With the lattice U as a pattern, we can find more examples. The lattice U0 from [14] has a D-cycle

of the form AABB and 3 join prime elements. We would like to find finite, subdirectly irreducible,

semidistributive lattices L0 whose join irreducibles consist of a D-cycle and k join prime elements,

so that Con L0
∼= (Bk)+. Then double an element p in the D-cycle to obtain (Bk)++ as the

congruence lattice of L0[p].

In [18] there is a finite, semidistributive, unbounded lattice V6 based on a D-cycle of the form

(AB)3 that has Con V6
∼= (B6)+. Doubling a join irreducible in the cycle yields another finite

semidistributive lattice W6 with Con W6
∼= (B6)++. A straightforward generalization of the

construction in [18], using a cycle of the form (AB)m for m ≥ 3, gives a finite semidistributive

lattice W2m with Con W2m
∼= (B2m)++. The general construction to represent all (Bn)++ with

n ≥ 4 is somewhat more complicated.

Theorem 4.8. For all k ≥ 3, the lattice (Bk)++ is the congruence lattice of a finite semidistribu-

tive lattice.

As noted earlier, all the lattices (Bk)++ (k ≥ 0) can be represented as the congruence lattice of

an infinite semidistributive lattice [11].
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Proof. The case k = 3 is Theorem 4.5, so let us consider n ≥ 4. We will construct a finite

semidistributive lattice Xn whose join irreducible elements have the following properties:

• there is a D-cycle of the form B2An−2,

p0B p1B p2Ap3A . . . A pn−1Ap0 ;

• there are n join prime elements p0∗, p1∗, x3, . . . , xn ;

• for each join prime element q there is a pj such that pj D q ;

• there are no more join irreducible elements in Xn.

Thus Con Xn
∼= (Bn)+. Applying Lemma 4.7 to double an element in the cycle yields a lattice

Yn with Con Yn
∼= (Bn)++.

A standard duality for finite lattices is to regard L as a closure system on the ordered set of

its join irreducibles J = (J(L),≤). Given L, the map a 7→ ↓ a ∩ J represents the lattice as an

intersection-closed collection of subsets of J. The corresponding closure operator γ on J is given

by

x ∈ γ({y}) if x ≤ y,

x ∈ γ(Y ) if x ≤
∨
Y

for x, y ∈ J and Y ⊆ J . Then L is isomorphic to the lattice of γ-closed subsets of J (which are

automatically order ideals by the first rule, including the empty ideal ∅).

To construct a lattice using the duality, we must specify the ordered set J and a basis for the desired

join operation. Following custom, we write the closure rules as x ≤ y and x ≤
∨
Y , respectively.

Part of the verification will include checking that ≤ is a partial order, and that γ(x)\{x} = ↓x\{x}
is closed for x ∈ J , so that x is join irreducible.

To construct Xn with the properties described above, for n ≥ 4 we take

Jn = {p0∗, p0, p1∗ , p1, p2, . . . , pn−1, x3, . . . , xn}.
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xn−2xn−1 x3

p0∗

p0

pn−1

p4

p3

p2

p1∗

p1

xn

Figure 5: The order on the join irreducibles of Xn

The order on Jn is given by

p2 > p3 > · · · > pn−1 > p0 > p0∗

xj > pj+1 for 3 ≤ j < n− 1

xn−1 > p0

xn > p0∗

p1 > p1∗

as illustrated in Figure 5. The defining join covers are

p0 ≤ p0∗ ∨ p1

p1 ≤ p1∗ ∨ p2

p2 ≤ p3 ∨ x3

(‡) · · ·

pn−2 ≤ pn−1 ∨ xn−1

pn−1 ≤ p0 ∨ xn

p1 ≤ p1∗ ∨ x3

The last is a bit of a mystery, but is required for meet semidistributivity, and does the job.

Set Xn to be the lattice of closed ideals of Jn. Routine checks, with multiple cases, show that the

elements of Jn are join irreducible, with the lower covers u∗ as indicated in Figure 5, and that the

join covers given in the basis (‡) are minimal (nonrefinable). Thus for each inclusion u ≤ y ∨ z in

(‡) we have uD y and uD z. These facts give the desired properties from the first paragraph of

the proof. It remains to prove that Xn is semidistributive.
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To see that Xn is meet semidistributive, we must show that every join irreducible element q has a

unique element κ(q) ∈ Xn that is maximal w.r.t. being above q∗ and not above q. The elements

p0∗, p1∗ , x3, . . . , xn are join prime, so for them κ(q) =
∨
{u ∈ J : u ≱ q}. For the rest, we calculate

as follows.

κ(p0) = p1∗ ∨ xn

κ(p1) = p1∗ ∨ p3 ∨
∨

4≤j≤n

xj

κ(p2) = p1 ∨ p3 ∨
∨

4≤j≤n

xj

κ(p3) = p1 ∨ x3 ∨
∨

5≤j≤n

xj

κ(p4) = p1 ∨ x4 ∨
∨

6≤j≤n

xj

· · ·

κ(pn−2) = p1 ∨ xn−2 ∨ xn

κ(pn−1) = p1 ∨ xn−1

Now we appeal to two lemmas from [18], the second one slightly enhanced.

Lemma 4.9. Let L be a finite lattice. Then L satisfies (SD∧) if and only if κ(a) exists for each

a ∈ J(L).

Lemma 4.10. Let L be a finite lattice that satisfies (SD∧). The following are equivalent.

(1) L satisfies (SD∨).

(2) There do not exist a, b ∈ J(L) such that aB bB a.

(3) There do not exist a, b ∈ J(L) such that a ̸= b and κ(a) = κ(b).

Proof. The equivalence of (1) and (2) is Theorem 8 of [18].

The definition of aB b is equivalent to a ̸= b, b∗ ≤ κ(a), b ≰ κ(a). Thus aB b implies κ(a) ≤ κ(b)

in a meet semidistributive lattice (though not conversely). If aB bB a, then a ̸= b and κ(a) = κ(b).

Finally, assume a ̸= b and κ(a) = κ(b) = m, say. Then a ∨m = m∗ = b ∨m > (a ∧ b) ∨m, since

a ∧ b ≤ a∗ or a ∧ b ≤ b∗. This is a failure of (SD∨).

We have just checked that κ(a) exists for each a ∈ J(Xn), with the values given above. By

Lemma 4.9, Xn satisfies (SD∧). Moreover, it is straightforward to check that the values of κ(a)

are all distinct, so Xm satisfies (SD∨) by Lemma 4.10. Thus Xn is semidistributive.
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This completes the proof of Theorem 4.8.

Some comments on the differences between representing congruence lattices of bounded versus

unbounded lattices are in order. The problems are twofold.

First, while Con L ∼= O(J(L), D) holds for all finite lattices, we would like to use the order induced

by the E-relation. However, Con L ∼= O(J(L), E) holds for all bounded finite lattices, does not

hold for all finite join semidistributive lattices, and it is unknown whether the E-relation suffices

for finite semidistributive lattices. See the discussion in Section 6.6 of [2].

The second difficulty is that unbounded finite semidistributive lattices contain D-cycles, making

the order on J(L) a proper quasi-order rather than a partial order. In that case it is necessary

to work with D-equivalence classes of join irreducibles. Little is known about the structure of

unbounded finite semidistributive lattices, except that they fail Whitman’s condition (W ) [16].

The examples used above, from [14] and [18], may be the only examples in the literature.

W. Geyer constructed others using formal concept analysis in connection with [9], but they may

not have been published. Our general construction was modeled on [18].

5 A sufficient condition

If behooves us then to find sufficient conditions for a finite distributive lattice to be the congruence

lattice of a finite semidistributive lattice.

Theorem 5.1. Let P be a finite ordered set satisfying

(♢) P is a tree, i.e., no element has more than one lower cover,

(♣) every non-maximal element in P has at least two upper covers.

Then O(P) is isomorphic to the congruence lattice of a finite bounded (and in particular semidis-

tributive) lattice.

In fact, the condition (♢) that P be a tree is much stronger than needed for the construction to

work, and is just the simplest way to guarantee that the technical condition of Theorem 5.11 holds.

Here is a sketch of our itinerary. We are given the ordered set P = (P,≤). Define a new ordered

set P = (P,⊑) with the same base set but a different order, described below. In fact, it will have

the property that x ⊑ y implies x ≥ y. The lattice M that we construct with Con M ∼= O(P) will

be the lattice of closed ideals of a closure operator on P. The join irreducible elements of M will

be the principal ideals ↓⊑u with u ∈ P .

When there is any chance of confusion, we write either (P,≤) or (P,⊑). The base set of both is

P , and P by itself means (P,≤).
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The order ⊑ uses a function † : P → P so that if x is not maximal in (P,≤), then x† is the unique

lower cover of x in (P,⊑). This will imply that if ↓⊑ x is not an atom of M, then ↓⊑ x† is its

unique lower cover in M, whence ↓⊑x is join irreducible. The basic idea is to define the join on M

so that x ⊑ x† ∨ y whenever x† ̸= y ≻ x in (P,≤). There is a slight complication: if x ⊑ x† ∨ y is a

minimal nontrivial join cover and y ⊑ y† ∨ z, then meet semidistributivity implies x ⊑ x† ∨ z. The

recursive definitions in the construction are a way of addressing this difficulty. With that guide,

let us proceed.

Assume that P satisfies (♣). For each non-maximal p ∈ P , choose an element p† ≻ p in (P,≤). If

p is maximal, then p† is undefined. Let p† < p, and take the reflexive, transitive closure of < as

the order ⊑ on P . (There will in general be many options for the †-function, but choose one.)

Let us consider the order ⊑ on the elements of P . The ideal of (P,⊑) generated by an element

u ∈ P is ↓⊑ u = {u, u†, u††, . . . }. Use u(k) to denote u†···† with k daggers.

Lemma 5.2. The order ⊑ on P satisfies the following.

(1) u ⊑ v if and only if u = v(k) for some k ≥ 0.

(2) u ⊑ v implies u ≥ v.

(3) ↓⊑ v is a chain.

(4) ↑⊑ u is a tree.

The proofs are straightforward. Note that (3) and (4) are equivalent in any ordered set.

Next, for each x ∈ P , we partition P into subsets K(x) and L(x) = P \ K(x). This is done

recursively on the depth of x in (P,≤). If x is a maximal element, then

K(x) = {z ∈ P : x ̸⊑ z}

L(x) = {z ∈ P : x ⊑ z} = ↑⊑x .

If x is not maximal in (P,≤) and K(u), L(u) are defined for all u > x, set

K(x) =
⋂

x† ̸=y≻x

K(y) ∩ {z ∈ P : x ̸⊑ z}

L(x) =
⋃

x† ̸=y≻x

L(y) ∪ {z ∈ P : x ⊑ z} .

By induction on the depth of x in (P,≤), and using DeMorgan’s laws, one can show that P =

K(x) ∪̇L(x) for all x ∈ P .
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Lemma 5.3. For x ∈ P ,

(1) x ∈ L(x), whence x /∈ K(x),

(2) if x† ̸= y ≻ x, then y ∈ L(x),

(3) if z ⊑ u ∈ K(x), then z ∈ K(x),

(4) if t ⊒ v ∈ L(x), then t ∈ L(x).

The last pair says that K(x) is an order ideal in (P,⊑) and L(x) is an order filter. Item (3) requires

an easy induction, and (4) follows by complementation.

Let us describe L(x) and K(x) more completely. Recursively define subsets L∗(x) ⊆ P for x ∈ P

by

L∗(x) =

{x} if x is maximal in (P,≤),

{x} ∪
⋃

x† ̸=y≻x L
∗(y) otherwise.

Lemma 5.4. For all x ∈ P ,

(1) L∗(x) is contained in ↑≤ x,

(2) u ∈ L(x) if and only if u ⊒ v for some v ∈ L∗(x).

The proofs are straightforward induction using the definitions of L(x) and L∗(x).

Now to describe K(x).

Lemma 5.5. For each x ∈ P ,

K(x) = P \
⋃

u∈L∗(x)

↑⊑ u

Proof. If x is maximal, K(x) = P \ ↑⊑ x. So assume the statement holds for all u > x. Then

K(x) =
⋂

x† ̸=y≻x

K(y) ∩ {z ∈ P : x ̸⊑ z}

=
⋂

x† ̸=y≻x

P \
⋃

u∈L∗(y)

↑⊑ u

 ∩ (P \ ↑⊑ x)

=
⋂

u∈L∗(x)

(P \ ↑⊑ u)

= P \
⋃

u∈L∗(x)

↑⊑ u

by DeMorgan’s laws.
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Now we make additional assumptions about (P,≤) and †:

(♡) if x† ̸= y ≻ x in (P,≤), then

(a) x† ∈ K(y),

(b) y ∈ K(x†),

(c) y† ∈ K(x).

The condition looks mysterious, so some discussion is in order.

Long aside on (♡).

The first observation is straight from the definitions, using (a), but important.

Lemma 5.6. If (♡) holds and x ∈ P is not maximal in (P,≤), then x† ∈ K(x).

Consequently, condition (c) is equivalent to

(c′) if both y and y′ satisfy x† ̸= u ≻ x, then y† ∈ K(y′).

Corollary 5.7. Assume (♡) holds and x ∈ P is not maximal in (P,≤). If w ∈ P satisfies w ⊒ x†

and w ̸⊒ x, then w ∈ K(x).

Proof. If w /∈ K(x) then w ∈ L(x), which means that w ⊒ t for some t ∈ L∗(x). Remember that

↓⊑ w is a chain, so x† = w(i) and t = w(j) for some pair i, j. But w ̸⊒ x, so t ∈ L∗(y) for some y

with x† ̸= y ≻ x. This implies t > x. Hence i < j, making x† = t, which is a contradiction since

x† ∈ K(x) and t ∈ L(x).

How could (♡) fail? Consider x† ̸= y ≻ x in (P,≤), and for (iii) also x† ̸= y′ ≻ x. Here are some

failures of (a), (b), and (c′) respectively.

(i) If y† ̸= x(k) ≻ y for some k > 0, then x(k) ∈ L(y), whence x† ∈ L(y) since x† ⊒ x(k).

(ii) If x†† ̸= y(ℓ) ≻ x† for some ℓ > 0, then y(ℓ) ∈ L(x†), whence y ∈ L(x†) since y ⊒ y(ℓ).

(iii) If y′† ̸= y(m) ≻ y′ for some m > 0, then y(m) ∈ L(y′), whence y† ∈ L(y′) since y† ⊒ y(m),

contra (c′).

Figures 6 and 7 illustrate these situations. Figure 6 shows the conditions (i)–(iii) prohibited by

(♡), while Figure 7 indicates the exceptions allowed. Solid black lines are covers, solid red lines

are covers of the form u† ≻ u, and dashed red lines indicate sequences of covers from u to u(k)

with k ≥ 1.
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(i)
x

x† y

x(k) y†

(ii)
x

x† y

y(ℓ)x††

(iii)
x

x† y

y(m)

y′

y′†

Figure 6: Configurations prohibited in (P,≤) by (♡)

(i)
x

x† y

x(k)=y†

(ii)
x

x† y

y(ℓ)=x††

(iii)
x

x† y

y′†=y(m)

y′

Figure 7: Exceptions allowed by (♡)

The failures of (♡) in (i)–(iii) were direct, in that they used x† and y. The next type of failures

are once removed, using a cover z of one of those elements. Again let x† ̸= y ≻ x.

(iv) If x(k) ≻ z ≻ y for some k > 0, with x(k) ̸= z† and z ̸= y†, then x(k) ∈ L(y), whence

x† ∈ L(y).

(v) If y(ℓ) ≻ z ≻ x† for some ℓ > 0, with y(ℓ) ̸= z† and z ̸= x††, then y(ℓ) ∈ L(x†), whence

y ∈ L(x†).

(vi) If y(m) ≻ z ≻ y′ for some m > 0, with y(m) ̸= z† and z ̸= y′†, then y(m) ∈ L(y′), whence

y ∈ L(y′), contra (c′).

Cases (iv)–(vi) are illustrated in Figure 8.

Continuing in this manner, we arrive at the following characterization.

Theorem 5.8. An ordered set P with a †-function satisfies (♡) if and only if there do not exist

k, ℓ ≥ 2 and elements u, x and covering chains

u = c0 ≻ c1 ≻ · · · ≻ ck−1 ≻ x

u = d0 ≻ d1 ≻ · · · ≻ dℓ−1 ≻ x

with ci−1 = ci† for 1 ≤ i ≤ k − 1 and dj−1 ̸= dj† for 1 ≤ j ≤ ℓ− 1.
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(iv)
x

x† y

y†z

x(k) z†

(v)
x

x†

y

y(ℓ)

x†† z

z†

(vi)
x

x† y

y(m)

y′

z y′†

z†

Figure 8: More configurations prohibited in (P,≤) by (♡), cases (iv)–(vi)

x

ck−1 dℓ−1

c1 d1

u

Figure 9: Prohibited configuration from Theorem 5.8. The blue and green edges can be red or
black, but not both red.

The forbidden configuration is illustrated in Figure 9 where again red edges indicate ci−1 = ci†

and black edges indicate dj−1 ̸= dj†. The blue and green edges can be either, except they cannot

both be red, i.e., we can have x† = ck−1 or x† = dℓ−1 or neither, but not both.

This must be balanced with the requirement that x† be defined for every non-maximal x ∈ P .

As an immediate consequence of Theorem 5.8, we see that there is a †-function satisfying (♡)

whenever

• P is a tree (the condition (♢) of Theorem 5.1), or

• the height of P is at most 2, i.e., P contains no 3-element chain.

To find a more general sufficient condition for P, satisfying (♣), to admit a †-function satisfying

(♡), we imagine that † is given, and color the edges (covers) of the form (c, c†) of P red, the
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Figure 10: An ordered set with an edge-coloring that satisfies the conditions of Theorem 5.9, and
hence O(P) is representable by Theorem 5.11.

remaining edges black. Classify the non-minimal vertices of P thusly.

• An element of P is a Λ-node if it has ≥ 2 lower covers.

• An element with 1 lower cover is an S-node.

• s is a red Λ-node if all its lower covering edges are red.

• t is a black Λ-node if all its lower covering edges are black.

• u is a red S-node if its unique lower covering edge is red.

• v is a black S-node if its unique lower covering edge is black.

• w is a mixed node if it is a Λ-node with both red and black lower covers.

Theorem 5.9. Let P be a finite ordered set that satisfies (♣). Suppose there is a coloring of the

edges of P such that

(i) P has no mixed nodes,

(ii) every non-maximal node has exactly 1 red upper cover and ≥ 1 black upper covers.

For non-maximal elements x ∈ P , define x† to be the red upper cover of x. Then P with the

function † satisfies (♡).

For the configuration of Theorem 5.8 cannot occur, as every Λ-node is either red or black. Item

(ii) guarantees that there is a unique choice for x†. Examples are given in Figures 10 and 12.

Conjecture: If P is planar, then it has a coloring satisfying the conditions of Theorem 5.9.

The ordered sets P for which O(P) is known not to be representable as the congruence lattice

of a finite semidistributive or bounded lattice are all excluded by the condition (♣). It takes a
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m0

a0

m1

a1

m2

a2

m0

b2b1b0

a0

m1

b1

a1

m2

b2

a2

m0

b0

Figure 11: The ordered set Q at the top that satisfies (♣) but has no †-function satisfying (♡).
Note that Q is a torus: m0 is depicted twice. Nonetheless, O(Q) ∼= Con K for the bounded lattice
at the bottom.

little effort to find an ordered set Q that satisfies (♣) but fails (♡). Nonetheless, they exist, and

the ordered set Q at the top of Figure 11 gives one such. By circular symmetry we may assume

m0† = a0. To avoid the configuration of Figure 9, that implies m1† = a0. Hence m1† ̸= a1, whence

m2† ̸= a1. That in turn leads to m2† = a2 and m0† = a2, a contradiction.

Even though Theorem 5.11 does not apply, O(Q) is the congruence lattice of a finite bounded

lattice. The lattice K at the bottom of Figure 11 was obtained from B3 by two sets of doubling

three intervals, so it is bounded. The minimal nontrivial join covers in K are

mi ≤ ai ∨ ai+2

bi ≤ mi ∨ ai+1

bi ≤ mi+1 ∨ ai+2

where the subscripts are taken modulo 3. Thus (J(K), D) ∼= Q.

The argument against the ordered set in Figure 11 satisfying (♡) depended on having an odd
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m m

n n

Figure 12: An ordered set that is a torus and has an edge-coloring satisfying the conditions of
Theorem 5.9.

p

p† y p

p†

p† ∨ y

y

Figure 13: Illustrating a basic closure rule: on left p†, y ≻ p in P, on right p ⊑ p† ∨ y in M.

number of squares across the top row. With an even number, there is no problem satisfying the

conditions of Theorem 5.9, and the pattern can be extended downward as well, as in Figure 12.

Finally we are in position to construct the lattice M. Assume that (P,≤) satisfies (♣) and that

the †-function has been chosen to satisfy (♡). Form the ordered set P = (P,⊑) with u ⊑ v iff

u = v(k) for some k ≥ 0. Then define closure rules on P by setting p ∈ γ({y}) if p ⊑ y, and

p ∈ γ({p†, u})

for each non-⊑-minimal p ∈ P and every u ∈ L(p). With a slight abuse of notation, it is convenient

to think of γ as a join operation and write the closure rule as

p ⊑ p† ∨ u

for each u ∈ L(p). The condition (♣) makes this not vacuous. Let M be the lattice of γ-closed

order ideals of (P,⊑), i.e., subsets closed under joins and downward containment ⊒.

The closure rule p ⊑ p† ∨ y when p† ̸= y ≻ p in (P,≤) is illustrated in Figure 13. In general there

will be other closure rules: if p† ̸= y ≻ p and y† ̸= z ≻ y, then we also have p ⊑ p† ∨ z, etc.

Lemma 5.10. Let M be the lattice constructed above. Then the order ⊑ on P and the set of

closure rules x ⊑ x† ∨ u with u ∈ L∗(x) are a basis for M. Moreover, the join irreducible elements

of M are exactly the ideals ↓⊑u for u ∈ P .
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a

a†

a†† b c

↓a

↓a†

↓a††

↓c

↓b

a††

a†

a

cb

Figure 14: Representing a small distributive lattice as Con M with M semidistributive: P, O(P),
M.

Proof. The first part follows from Lemma 5.4.

Clearly every ideal in M is the join of the principal ideals ↓⊑u that it contains. Note that for any

u ∈ P , ↓⊑ u is closed with respect to the join operation in M, since ↓⊑ u is a chain. Thus you can

identify u with the ideal ↓⊑ u, as usual, and observe that u† is the unique lower cover of u in M.

In particular, each u ∈ P is join irreducible in M. (This is slightly more subtle than it appears.

If we had p† ⊑ u and p ̸⊑ u, then u ∈ K(p) by Corollary 5.7. That implies ↓⊑ u ⊆ K(p), so no

closure rule can apply in ↓⊑ u.)

Now we can state the stronger version of Theorem 5.1.

Theorem 5.11. Let P be a finite ordered set with a †-function satisfying (♡) and (♣). Then O(P)

is isomorphic to the congruence lattice of a finite bounded (and hence semidistributive) lattice.

Figure 14 provides an example of the construction, giving P, O(P), and M. The defining relations

for M are a = a† = a††, a ⊑ a† ∨ c, and a† ⊑ a†† ∨ b. It is straightforward to verify that

Con M ∼= O(P).

Figure 15 provides another example of the construction. The defining relations for M are a = a†,

b = b†, a ⊑ a† ∨ b†, and b ⊑ a† ∨ b†.
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a b

a† b†

↓a

↓a† ↓b†

↓b
a†

a b

b†

Figure 15: Representing a small distributive lattice as Con M with M semidistributive: P, O(P),
M.

a b

c=a†=b† d

↓a

↓c ↓d

↓b c

a b d

Figure 16: The same P as Figure 15 with a different †-function: P, O(P), M′.

Figure 16 has the same ordered set P as Figure 15, with a different †-function. Thus O(P) remains

the same, but the closure rules for M′ are c ⊑ a, b and a, b ⊑ c ∨ d.

Now let us return to the business of proving that the construction works, i.e., produces a bounded

lattice M with Con M ∼= O(P) when the two conditions (♡) and (♣) are satisfied.

Lemma 5.12. Let Q ⊆ P . The join
∨
Q in M is obtained by:

(1) for each q ∈ Q, add ↓⊑ q to obtain Q1;

(2) recursively, if x†, u ∈ Qj with u ∈ L∗(x), let Qj+1 = Qj ∪ {x}.

If Qm denotes the end result of applying (2) as long as possible, then Qm is a closed ideal of

(P,⊑), and hence
∨
Q = Qm. In particular, one need not go back to (1).

The crucial observation here is that when one adds x to Qj in step (2), we already have ↓⊑ x† ⊆ Qj .

Lemma 5.13. Let x ∈ P . Then every join cover x ⊑
∨
Q refines to a join cover x ⊑

∨
R with

R≪ Q and R ⊆ ↑≤ x. Thus every minimal nontrivial join cover of x is contained in ↑≤ x.
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Proof. Suppose x ∈ Qm′ with m′ ≤ m from Lemma 5.12. If m′ = 1 then x ⊑ q for some q ∈ Q;

note that implies x ≥ q in (P,≤), i.e., the trivial cover {x} refines Q. So assume m′ > 1. Then

there exists u ∈ L∗(x) such that x†, u ∈ Qm′−1. Note x ≤ x†, x ≤ u, and both x†, u ≤
∨
Q. By

induction, there exist R1 ⊆↑≤ x† with R1 ≪ Q and x† ⊑
∨
R1, and R2 ⊆↑≤ u with R2 ≪ Q and

u ⊑
∨
R2. Then R1 ∪R2 ≪ Q, R1 ∪R2 ⊆ (↑≤ x†) ∪ (↑≤ u) ⊆↑≤ x, and

x ⊑ x† ∨ u ⊑
∨
R1 ∨

∨
R2

as desired.

Lemma 5.14. For each x ∈ P , K(x) is a closed ideal of (P,⊑).

Proof. Since maximal elements of (P,≤) are join prime in M, this certainly holds for them. So

assume x is not maximal and that K(y) is a closed ideal for every y > x. Recall that

K(x) =
⋂

x† ̸=y≻x

K(y) ∩ Sx

where Sx = {z ∈ P : x ̸⊑ z}.

Suppose K(x) is not a closed ideal. Now K(x) is an ideal with respect to ⊑ by Lemma 5.3(3).

Assume it is not join-closed. Let u ⊑ u† ∨ v be the first instance where a basic closure rule applies,

i.e., u /∈ K(x) but u†, v ∈ K(x) and v ∈ L∗(u). (We can do this because K(x) is ⊒-closed.) Then,

since each K(y) is closed, we must have u /∈ Sx and u†, v ∈ Sx. Now u† ∈ Sx means u†(k) ̸= x for

all k ≥ 0. But that implies u(k+1) ̸= x for all k ≥ 0. Meanwhile u /∈ Sx says u(ℓ) = x for some

ℓ ≥ 0. This only makes sense if ℓ = 0, i.e., u = x. But then v ∈ L∗(x) ⊆ L(x), whence v /∈ K(x),

a contradiction.

Lemma 5.15. If x† ̸= y ≻ x in (P,≤), then x ⊑ x† ∨ y is a minimal nontrivial join cover in M.

Hence xD x† and xD y.

Proof. Let x ∈ P , so ↓⊑ x ∈ M. We have x†† ∈ K(x†) by Lemma 5.6, while y ∈ K(x†) by (♡)(b).

Thus x†† ∨ y ⊑
∨
K(x†) = K(x†) using Lemma 5.14, while x /∈ K(x†) since x = x†. Therefore

x ̸⊑ x†† ∨ y.

Similarly, x† ∈ K(x) by Lemma 5.6, while y† ∈ K(x) by (♡)(c). Thus x† ∨ y† ⊑
∨
K(x) = K(x),

while x /∈ K(x). Hence x ̸⊑ x† ∨ y†.

Lemma 5.13 does not tell us exactly which join covers are minimal. It is often the case in semidis-

tributive lattices that compounding the defining join covers produces more minimal nontrivial join

covers (though not doubly minimal join covers!). However, we know the following.
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(i) The join irreducible elements of M are exactly the ideals ↓⊑ x for x ∈ P (Lemma 5.10).

(ii) If z ≻ p in (P,≤) then xD z (Lemma 5.15).

(iii) If p ⊑
∨
Q is a minimal nontrivial join cover in M, then p < q in (P,≤) for each q ∈ Q

(Lemma 5.13).

Consequently, the dependency relation D on M satisfies ≺P⊆ D ⊆≤P and we get ConM ∼= O(P).

Moreover, in view of (iii), there can be no D-cycles. Thus M is lower bounded, and hence join

semidistributive

(It is interesting to note how the construction fails on the ordered set Y, which fails (♣). On the

other hand, in nature the defining closure operators need not use only covers.)

Now let us prove that M is meet semidistributive by showing that κ(x) exists for each x ∈ P . It

is useful to have a slightly enhanced technical version of Lemma 4.9.

Lemma 5.16. In a finite lattice L, the following conditions are equivalent (to (SD∧)).

(1) For all x ∈ J(L) there exists κ(x) such that x ≰ κ(x) and for all u ∈ L, x ≰ x∗ ∨ u implies

u ≤ κ(x).

(2) For all x ∈ J(L) there exists κ(x) such that x ≰ κ(x) and for all join irreducible elements

w ∈ J(L), x ≰ x∗ ∨ w implies w ≤ κ(x).

Condition (1) is a traditional equivalent to meet semidistributivity, and (2) allows us to check it

at join irreducibles only.

Proof. Clearly (1) implies (2). Conversely, assume that L satisfies (2) and that x ≰ x∗ ∨ u for

some u ∈ L. Let u =
∨
ui with each ui ∈ J(L). Since ui ≤ u we have x ≰ x∗ ∨ ui for all i, whence

ui ≤ κ(x) by (2). Thus u =
∨
ui ≤ κ(x) as well.

For each x ∈ P we claim that K(x) ⊆ P has these properties.

(a) K(x) is a closed ideal of (P,⊑), i.e.,
∨
K(x) = K(x),

(b) x† ∈ K(x),

(c) x /∈ K(x),

(d) for all u ∈ P we have x ̸⊑ x† ∨ u if and only if u ∈ K(x).

Indeed, (a) is Lemma 5.13, (b) is Lemma 5.6, and (c) is Lemma 5.3(1). For (d), if u ∈ L(x) then

x ⊑ x† ∨ u by the definition of join in M. If u ∈ K(x), though, then x† ∨ u ∈ K(x) by (a) and (b),

while x /∈ K(x). Thus we cannot have x ⊑ x† ∨ u if u ∈ K(x).



CUBO
26, 3 (2024)

Congruences of finite semidistributive lattices 471

We conclude by Lemma 5.16 that M is meet semidistributive. Moreover, since M is lower bounded

and semidistributive, it is also upper bounded by Theorem 4.1.

Thus M as constructed is a finite bounded lattice with Con M ∼= O(P,≤), completing the proof

of Theorem 5.1.
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