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ABSTRACT

The metric dimension of a graph serves a fundamental role
in organizing structures of varying dimensions and establish-
ing their foundations through diverse perspectives. Studying
symmetric network characteristics like connectedness, diam-
eter, vertex centrality, and complexity depends heavily on
the distance parameter. In this article, we explore the ex-
act value for different hexagonal networks’ metric dimensions,
such as cyclic hexagonal chains, triangular honeycomb mesh,
and pencil graphs.

RESUMEN

La dimensión métrica de un grafo cumple un rol fundamen-
tal para organizar estructuras de dimensiones variables y es-
tablecer sus fundamentos a través de perspectivas diversas.
Estudiar características de redes simétricas como la conexi-
dad, diámetro, centralidad de vértices y complejidad depende
fuertemente del parámetro de distancia. En este artículo ex-
ploramos el valor exacto de la dimensión métrica de diferentes
redes hexagonales, tales como cadenas hexagonales cíclicas, la
malla triangular panal y grafos lápices.
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1 Introduction

In the field of robotics, the metric dimension problem is important. A robot is an automated

machine designed to move through space while avoiding obstacles. It does not understand either

direction or visibility. However, it is presumable that it can detect the separation of a collection

of landmarks. Evidently, the robot can establish its precise location in space if it is aware of the

distances to a significant number of landmarks. In order to perform this, the idea of “landmarks

in a graph” was created [12], and later it was expanded to the metric dimension in which networks

are taken into consideration within the framework of the graph structure.

Finding a metric basis for the graph is the goal of the metric dimension problem in graph theory; the

landmarks that make up a metric basis are known as landmarks, and the cardinality of a metric

basis is referred to as the metric dimension of the graph. Harary and Melter [10] did the first

investigation into the metric dimension problem. They provided a description of the trees’ metric

dimensions. Melter and Tomescu investigated the grid graphs’ metric dimension problem [18]. For

each arbitrary graph, the metric dimension problem is NP-complete [9]. Since then, a great deal

of study has been conducted on this problem. In many fields of science and technology, the metric

dimension has several uses. For grid graphs and trees, the metric dimension problem has been

studied [12], hexagonal and honeycomb networks [15], silicate networks [16], torus networks [14],

and enhanced hypercubes [17]. Metric dimension is used to address issues with robot navigation

and pattern recognition [12], network discovery and validation [5], and issues with coin weighing

and graph joins [20,22].

In this paper, in Section 2, preliminaries and basis definitions are discussed. Section 3, deals with

the metric dimension of the cyclic hexagonal chain, honeycomb triangular mesh, and pencil graph.

Finally, the Significance and Contributions of the Results, concluding remarks and, open problem

are given in Section 4 and Section 5 respectively.

2 Basis concepts

A finite simple connected graph G = (V,E) is used in this paper, where V and E are the set

of vertices and edges respectively. The distance between two vertices a and b in a graph G,

denoted as d(a, b), is defined as the minimum number of edges in any path from a to b. It is

normal to have questions about the characterizations of graphs based on their metric dimension.

Researchers are continuously interested in determining whether the metric dimension of a network

family is constant, bounded, or unbounded. Consequently, there has been significant research

focused on finding the metric dimension of networks, resulting in numerous findings. Examples of

such findings include: Muhammad et al. [19] investigated the metric dimension of some chemical
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structures. Akhter and Farooq [3] investigated the metric dimension of the Indu-Bala product of

graphs. The metric dimension of the subdivided honeycomb network and Aztec diamond network

was determined by Xiujun et al. [23]. Ahmad et al. [1] found the metric dimension for benzenoid

hammer graph. A bicyclic network’s metric dimension was examined by Khan et al. [11]. Bokhary

et al. [11] studied the metric dimension of the subdivision graph of a circulant network. Koam

et al. [13] investigated the metric dimension and exchange property of nanotubes. Resolving sets

have been discussed across the literature [2, 4, 8, 10,18].

In this study, we obtain the metric dimension of specific planar architectures. To prove the main

results we need the following.

Definition 2.1. The diameter of a graph is the greatest distance between any pair of vertices,

where the distance is defined as the length of the shortest path connecting them.

Definition 2.2. The metric basis or resolving set for a graph G = (V,E), a resolving set of G

is a subset of vertices S ⊆ V such that every vertex v ∈ V is uniquely determined by its distance

vector to the vertices in S. For each vertex v ∈ V , its distance vector with respect to S is defined

as (d(v, s1), d(v, s2), . . . , d(v, sk)), where s1, s2, . . . , sk ∈ S, and d(v, si) is the shortest distance

between v and si in the graph.

The subset S is a metric basis if, for any two distinct vertices u, v ∈ V , their distance vectors

relative to S are distinct, i.e.,

d(u, si) ̸= d(v, si) for at least one si ∈ S.

The cardinality of the metric basis or resolving set S is called the metric dimension of the graph

and is denoted as dim(G).

Theorem 2.3 ([7]). A simple connected graph G has a metric dimension 1 if and only if it is

precisely identical in structure to the path graph Pn.

Theorem 2.4 ([12]). Suppose G is a graph with a minimum metric dimension of 2, and let {a, b}
be a subset of the vertices set V that forms a metric basis in B. In this context, the subsequent

statements hold true:

(a) Only one shortest route is possible between a and b.

(b) Each a and b has a maximum degree of three.
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3 Main results

In this section, we determine the metric dimension of the cyclic hexagonal chain, honeycomb

triangular mesh, and pencil graph.

3.1 Cyclic hexagonal chain

A catacondensed hexagonal structure known as a hexagonal chain has each hexagon being next

to no more than two other hexagons. The graph representation of linear polyacene is a linear

hexagonal chain, which is a hexagonal chain. A cyclic hexagonal chain is created when the ends

of a linear hexagonal chain are bent to touch. The symbol Hn will be used to represent a cyclic

hexagonal chain of dimension n respectively. We split the vertices of Hn as I and J , where I

and J are the set of all vertices in the inner and outer cycle respectively. The cyclic hexagonal

chain is symmetric in rotation and has 4n vertices in which 2n vertices are in each of the inner

and outer cycles labeled as I = {i1, i2, i3, . . . , i2n} and J = {j1, j2, j3, . . . , j2n} in the clockwise

direction respectively. For example, the labeling of a cyclic hexagonal chain of dimension n is given

in Figure 1.

Figure 1: Labeling of cyclic hexagonal chain Hn
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Theorem 3.1. The metric dimension of the graph of the cyclic hexagonal chain Hn is more than

2 for n ≥ 2.

Proof. Based on Theorem 2.4, suppose that there exists a resolving set T with size 2. There are

two cases for T .

Case 1. Suppose that T = {jk, jl} for some k and l where 1 ≤ k ≤ n+1 (by the symmetry of Hn,

it is enough to consider the first half of the cycle). Then we have r(il+1|T ) = r(jl+2|T ) =
(2, l − k + 2).

Case 2. Suppose that T = {ik, jl} for some k, l = 1, 2, . . . , n + 1. If k = 1, then we have

r(ik−1|T ) = r(ik+1|T ) = (1, 2). If k < l (without loss of generality), then we have two sub-

cases: if l is odd, then r(il|T ) = r(jl−1|T ) = (1, l − k), and if l is even, then r(ik+2|T ) =

r(jk+1|T ) = (2, l − k − 1).

From these two cases, we find two vertices having the same representations. Therefore, T is not a

resolving set of Hn, a contradiction.

Theorem 3.2. The metric dimension of the graph of the cyclic hexagonal chain Hn is 3 for n ≥ 2.

Proof. Let T = {j1, j2, jn+1} be a resolving set of Hn. To prove that T is a resolving set. It is

enough to prove that all the vertices jl, il 1 ≤ l ≤ 2n of Hn have unique representations with

respect to T .

For 1 ≤ l ≤ 2n, the representation jl of Hn with respect to T is given as follows:

r(jl|T ) =


(l − 1, 1, n), if l = 1

(l − 1, l − 2, n− l + 1) if 2 ≤ l ≤ n

(l − 1, l − 2, 0) if l = n+ 1

(2n− l + 1, 2n− l + 2, l − n− 1) if n+ 2 ≤ l ≤ 2n.

For 1 ≤ l ≤ 2n, the representation of il of Hn with respect to T is given as follows:

r(il|T ) =


(3, 2, n+ 1) if l = 1

(l, l − 1, n+ 2− l) if 2 ≤ l ≤ n

(n+ 1, n, 1) if l = n+ 1

(2n− l + 2, 2n− l + 3, l − n) if n+ 2 ≤ l ≤ 2n.

We can see that each vertex of Hn has a distinct representation and satisfies the notion of a

resolving set with regard to T. Hence dim(Hn) = 3.
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3.2 Honeycomb triangular mesh

In this section, we show that the construction and the metric dimension of the honeycomb tri-

angular mesh are discussed. Honeycomb triangular mesh is built recursively using hexagonal

tessellations with three pendant edges. The honeycomb triangular mesh HTM1 is a single vertex.

The honeycomb triangular mesh HTM2 is obtained by adding 3 pendant edges to HTM1. In a

similar manner, the n-dimensional honeycomb triangular mesh HTMn is adding (n− 2) hexagons

to the boundary of HTMn−1 with three pendent edges in the triangular form. The number of

vertices, edges, faces, and diameter of HTMn are n2, 3(n2−n)
2 , n2−3n+4

2 , and (2n− 2) respectively.

A honeycomb triangular mesh HTM1, HTM2, HTM3, and HTM4 are shown in Figure 2.

(a) (b) (c) ���

Figure 2: Honeycomb triangular mesh (a) HTM1, (b) HTM2, (c) HTM3, and (d) HTM4

The strip between two successive lines is marked in Honeycomb Triangular mesh is called the

segments and it is denoted by SL. The representation of any two points p(l1,m1) and q(l2,m2)

in the honeycomb triangular mesh is defined by if l1 = l2, then p and q lies in the same segment,

and if l1 ̸= l2, then p and q are lies in the different segments. The distance between any two

vertices p(l1,m1) and q(l2,m2) is non zero, when p and q lie in the same and different segments.

We partition the vertices of HTMn into n segments, namely S1, S2, S3, . . . , Sn, and the segment

representation of Honeycomb triangular mesh is shown in Figure 3.
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Figure 3: Honeycomb triangular mesh of dimension HTMn with segments S1, S2, . . . , Sn

Theorem 3.3. The metric dimension of the graph of the honeycomb triangular mesh HTMn is 2

for n ≥ 2.

Proof. Based on Theorem 2.3, we have dim(HTMn) ≥ 2. Next, we will show that dim(HTMn) ≤ 2.

Let A = {x : deg(x) = 1} and T = {a, b} where a, b ∈ A. We will show that T is a resolving set or

not.

Now, we have the following cases.

Let p = (l1,m1) and q = (l2,m2) be any two distinct vertices in HTMn.

Case 1: If l1 = l2 and m1 ̸= m2, then p and q are resolved by either a or b. Suppose that,

if d(p, a) = d(q, b), then p and q are resolved by either a or b, i.e., d(p, a) ̸= d(q, a) or

d(p, b) ̸= d(q, b).
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Case 2: If l1 ̸= l2 and m1 = m2, then both p and q are resolved by a and b.

Case 3: If l1 ̸= l2 and m1 ̸= m2, then p and q are resolved by either a or b. Suppose that, if p

and q are at equal distance to a, then p and q must be resolved by b, i.e., if d(p, a) = d(q, a),

then d(p, b) ̸= d(q, b).

From the above cases if we take any two vertices in a honeycomb triangular mesh are resolved by

a and b. Therefore dim(HTMn) ≥ 2. Hence, dim(HTMn) = 2

3.3 Pencil graph

In this section, we determine the pencil graph’s metric dimension. In 2015, Simamora and Salman

[23] introduced and studied vertex rainbow connection numbers for a new cubic graph called pencil

graph. Pencil graph are a specific type of graph in graph theory that consist of a central hub vertex

connected to a set of outer vertices called spokes. Pencil graphs have applications in various areas,

including network topology, and algorithm design.

Definition 3.4. Suppose that n is a positive integer with n ≥ 2. The graph PCn is a pencil graph

with 2n+ 2 vertices and the vertex and edge sets are as follows: V (PCn) = {a} ∪ {b} ∪ {xi : 1 ≤
i ≤ n}∪{yi : 1 ≤ i ≤ n} and E(PCn) = {(ax1), (ay1), (ab), (bxn), (byn)}∪{(xixi+1), (yiyi+1) : 1 ≤
i ≤ n− 1} ∪ {(xiyi) : 1 ≤ i ≤ n}

For n ≥ 2, the pencil graph PCn is a 3-regular graph with diameter ⌈n/2⌉+ 1 and 3(n+ 1).

ba

Figure 4: Labeling of pencil graph of dimension n

Theorem 3.5. The metric dimension of the graph of the pencil graph PCn, for n ≥ 1 is

dim(G) =

 2 if n is even

3 if n is odd
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Proof. Case 1 (For n even):

Let T = {a, xn
2
} be a resolving set of PCn. To prove that T is a resolving set, it is enough to prove

all the vertices a, b, x1, x2, x3, . . . , xn and y1, y2, y3, . . . , yn of PCn have distinct representations

with respect to T .

The representation of a and b in PCn with respect to T as r(a|T ) = (0, n
2 ) and r(b|T ) = (1, n

2 +1).

For 1 ≤ i ≤ n, the representation of xi in PCn with respect to T is given as follows:

r(xi|T ) =

 (i, n−i
2 ) if 1 ≤ i ≤ n

2

(n− i+ 2, 2i−n
2 ) if n

2 + 1 ≤ i ≤ n

For 1 ≤ i ≤ n, the representation of yi in PCn with respect to T is given as follows:

r(yi|T ) =

 (i, n−2i+2
2 ) if 1 ≤ i ≤ n

2

(n− i+ 2, 2i−n+2
2 ) if n

2 + 1 ≤ i ≤ n

Since all vertices have distinct representations we obtain dim(PCn) = 2 in this case.

Case 2 (For n odd): Let T = {a, xn+1
2
, yn−1

2
} be a resolving set of PCn. To prove that T is a

resolving set, it is enough to prove all the vertices a, b, x1, x2, x3, . . . , xn and y1, y2, y3, . . . , yn of

PCn have distinct representations with respect to T .

The representation of a and b in PCn with respect to T as r(a|T ) = (0, n+1
2 , n−1

2 ) and r(b|T ) =
(1, n+1

2 , n+1
2 ).

For 1 ≤ i ≤ n, the representation of xi in PCn with respect to T as follows

r(xi|T ) =


(i, n+1−2i

2 , n+1−2i
2 ) if 1 ≤ i ≤ n−1

2

(i, 0, 2) if i = n+1
2

(n− i+ 2, 2i−n−1
2 , 2i−n+3

2 ) if n+3
2 ≤ i ≤ n

For 1 ≤ i ≤ n, the representation of yi in PCn with respect to T as follows

r(yi|T ) =


(i, n+3−2i

2 , n−1−2i
2 ) if 1 ≤ i ≤ n−1

2

(i, 1, 1) if i = n+1
2

(n− i+ 2, 2i−n+1
2 , 2i−n+1

2 ) if n+3
2 ≤ i ≤ n

It is clear that every vertex of PCn has a unique representation with repect to T . Therefore

dim(PCn) ≤ 3.

Next we show that dim(PCn) ≥ 3. We suppose on contrary that dim(PCn) = 2. Now we have

the following cases.



484 R. N. Raj, R. S. Rajan & I. N. Cangul CUBO
26, 3 (2024)

Subcase 2.1: For 1 ≤ i ≤ n, let T = {a, b} be a resolving set, then r(xi|T ) = r(yi|T ), which is a

contradiction to our assumption.

Subcase 2.2: Let T = {a, x1} be a resolving set, then r(xn|T ) = r(yn|T ), which leads to a

contradiction.

Subcase 2.3: For 2 ≤ i ≤ n+1
2 , let T = {a, xi} be a resolving set, then r(xn+3

2
|T ) = r(yn+1

2
|T ),

which is a contradiction to our assumption.

Subcase 2.4: For n+3
2 ≤ i ≤ n, let T = {a, xi} be a resolving set, then r(xn+1

2
|T ) = r(yn+3

2
|T ),

which is a contradiction to our assumption.

Subcase 2.5: For 2 ≤ i ≤ n+1
2 , let T = {x1, xi} be a resolving set, then r(xi+1|T ) = r(yi|T ),

which is a contradiction to our assumption.

Subcase 2.6: For n+3
2 ≤ i ≤ n, let T = {x1, xi} be a resolving set, then r(xi+1|T ) = r(yi−1|T ),

which is a contradiction to our assumption.

Subcase 2.7: Let T = {x1, y1} be a resolving set, then r(xn|T ) = r(yn|T ), which leads to a

contradiction.

Subcase 2.8: For 2 ≤ i ≤ n+3
2 , let T = {x1, yi} be a resolving set, then r(xn+3

2
|T ) = r(yn+5

2
|T ),

which is a contradiction to our assumption.

Subcase 2.9: For n+5
2 ≤ i ≤ n, let T = {x1, yi} be a resolving set, then r(xn+3

2
|T ) = r(yn+1

2
|T ),

which is a contradiction to our assumption.

By the symmetrical nature of the pencil graph the remaining possibility of resolving sets for

1 ≤ i ≤ n, T = {{a, b}, {a, yi}, {b, xi}, {b, yi}, {yi, xi}} is ruled out. From all the above cases it is

clear that dim(PCn) ≥ 3. Hence dim(PCn) = 3.

4 Significance and contributions of the results

This research offers valuable insights into the metric dimension of cyclic hexagonal chains, hon-

eycomb triangular meshes, and pencil graphs, with direct applications in modern network design,

particularly in the field of robot navigation for smart home environments. The primary significance

and contributions are as follows:

Novel Metric Dimension Analysis: This study presents a detailed investigation of the met-

ric dimension of three distinct graph structures: cyclic hexagonal chains, honeycomb triangular

meshes, and pencil graphs. The results contribute to expanding the mathematical foundation of

graph theory, particularly in relation to chemical, geometric, and computational networks.
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Applications in Robot Navigation: By determining the metric dimension of these structures,

the research provides optimized strategies for robot navigation. The results are critical for local-

ization and pathfinding within networks like smart homes, where robots or autonomous agents

need precise positioning with minimal sensors.

Insights for Chemical Graph Theory: Cyclic hexagonal chains represent fundamental struc-

tures in chemical graph theory, modeling molecular systems. Understanding their metric dimension

helps chemists analyze molecular distances and design efficient chemical compounds or materials

with predictable properties.

Optimizing Network Design: The honeycomb triangular mesh and pencil graphs offer useful

models for wireless networks and sensor systems. Analyzing their metric dimension improves

the efficiency of node placement and minimizes redundancy, supporting the development of more

reliable and cost-effective communication networks.

Bridging Theory and Practical Applications: This work bridges theoretical graph metrics

with real-world applications, especially in robot-assisted smart homes. The findings enable better

design of indoor networks, where efficient navigation plays a critical role in tasks such as surveil-

lance, cleaning, and elderly assistance.

Framework for Future Studies: The approach and results of this research provide a basis

for future investigations into other graph families with similar structures. Researchers working

on emerging technologies, such as smart cities or the Internet of Things (IoT), can build on the

analytical methods presented here.

In summary, this study significantly advances the understanding of the metric dimension in three

important graph classes, contributing to both theory and practice. It offers practical solutions for

smart environments while enriching the field of graph theory with new perspectives and methods.

5 Concluding remarks

In this paper, we investigated the metric dimension of three significant graph structures: cyclic

hexagonal chains, honeycomb triangular meshes, and pencil graphs. Metric dimensions of honey-

comb networks and hexagonal-type derived networks have constant metric dimensions, according

to research by Manuel et al. [15]. In this article, a different kind of honeycomb network known

as a triangular honeycomb mesh was created and it was demonstrated that its metric dimension

is 2. This research also looked at pencil graphs and the metric dimension of cyclic hexagonal

chains. Further obtaining the metric dimensions for symmetric types of honeycomb and hexago-

nal networks is under investigation. Moreover, computing the metric dimension of the triangular

honeycomb network is still an open problem.
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