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ABSTRACT

We consider the three-dimensional Dirac operator coupled
with a combination of electrostatic and Lorentz scalar δ-shell
interactions. We approximate this operator with general lo-
cal interactions V . Without any hypotheses of smallness on
the potential V , we investigate convergence in the strong re-
solvent sense to the Dirac Hamiltonian coupled with a δ-shell
potential supported on Σ, a bounded smooth surface. How-
ever, the coupling constant depends nonlinearly on the po-
tential V.

RESUMEN

Consideramos el operador de Dirac tridimensional acoplado
con una combinación de interacciones electrostáticas y δ-
cáscara escalar de Lorentz. Aproximamos este operador con
interacciones locales generales V . Sin ninguna hipótesis en la
pequeñez del potencial V , investigamos la convergencia en el
sentido resolvente fuerte del Hamiltoniano de Dirac acoplado
con un potencial δ-cáscara soportado en Σ, una superficie
suave acotada. Sin embargo, la constante de acoplamiento
depende no-linealmente del potencial V .
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1 Introduction

Dirac Hamiltonians of the type Dm + V , where Dm is the free Dirac operator and V represents a

suitable perturbation, are used in many problems where the implications of special relativity play

an important role. This is the case, for example, in the description of elementary particles such

as quarks, or in the analysis of graphene, which is used in research for batteries, water filters, or

photovoltaic cells. For these problems, mathematical investigations are still in their infancy. The

current study focuses on analyzing the three-dimensional Dirac operator with a singular interaction

on a closed surface Σ.

Mathematically, the Hamiltonian of interest is formally represented as

Dη,τ = Dm +Bη,τδΣ = Dm +
(
η I4 + τβ

)
δΣ, (1.1)

where Bη,τ :=
(
η I4+τβ

)
is a combination of electrostatic and Lorentz scalar potentials of strengths

η and τ , respectively. Physically, the Hamiltonian Dη,τ is used as an idealized model for Dirac op-

erators with strongly localized electric and massive potential near an interface Σ (e.g., an annulus),

i.e., it replaces a Hamiltonian of the form

Hη̃,τ̃ = Dm +
(
η̃ I4 + τ̃β

)
BΣ, (1.2)

where BΣ is a regular potential localized in a thin layer containing the interface Σ.

The operators Dη,τ have been studied in detail recently. The initial direct study on the spectral

analysis of the Hamiltonian Dη,τ dates back to Ref. [9], in which the authors treated all self-

adjoint realizations for spherical surfaces. Besides, they also noted that a shell can confine a

particle under the coupling constants assumption: η2 − τ2 = −4, a phenomenon known in physics

as the confinement case, which indicates the stability of a particle (for example, an electron) within

its initial region during time evolution. In other words, if the particle is confined within a region

Ω ⊂ R3 at time t = 0, it cannot cross the boundary ∂Ω and enter the region R3\Ω for all subsequent

times t > 0. Mathematically, this implies that the Dirac operator under consideration can be

decomposed into a direct sum of two Dirac operators acting on Ω and R3\Ω, respectively, each with

appropriate boundary conditions. Subsequently, spectral analyses involving Schrödinger operators

coupled to δ-shell interactions have developed considerably, while research into the spectral aspects

of δ-shell interactions associated with Dirac operators were comparatively inactive. However, in

2014, a resurgence in the spectral study of δ-shell interactions of Dirac operators occurred in [1],

where the authors developed a new technique to characterize the self-adjointness of the free Dirac

operator coupled to a δ-shell potential. In a special case, they treated pure electrostatic δ-shell

interactions (i.e., τ = 0) supported on the boundary of a bounded regular domain and proved

that the perturbed operator is self-adjoint. The same authors continued their investigation into
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the spectral analysis of the electrostatic case, exploring the existence of a point spectrum and

associated issues in works such as [2] and [3].

The approximation of the Dirac operator Dη,τ by Dirac operators with regular potentials with

shrinking support (i.e., of the form (1.2)) provides a justification of the considered idealized model.

In the one-dimensional framework, the analysis is carried out in [17], where Šeba showed that

convergence is true in the norm resolvent sense. Subsequently, Hughes and Tušek established

strong resolvent convergence and norm resolvent convergence for Dirac operators with general

point interactions in [11, 12] and [20], respectively. In the two-dimensional case, [8, Section 8]

addressed the approximation of Dirac operators with electrostatic, Lorentz scalar, and magnetic

δ-shell potentials on closed and bounded curves. A related problem was also considered in [7] for

a straight line scenario. More precisely, taking parameters (η̃, τ̃) ∈ R2 in (1.2) and a potential Bε
Σ

that converges to δΣ when ε tends to 0 (in the sense of distributions), then Dm +
(
η̃ I4 + τ̃β

)
Bε

Σ

converges to the Dirac operator Dη,τ with different coupling constants (η, τ) ∈ R2 that depend

nonlinearly on the potential Bε
Σ. This dependence has been observed in the one-dimensional case,

for example [17,20], and in higher dimensional cases, see [8, 15].

In the three-dimensional case, the situation seems to be even more complex, as recently shown in

[15]. There, too, the authors were able to show convergence in the strong resolvent sense in the

non-confining case, however, a smallness assumption on the potential Bε
Σ was required to achieve

such a result. On the other hand, this assumption unfortunately prevents us from obtaining an

approximation of the operatorDη,τ with the physically or mathematically more relevant parameters

η and τ . Recognizing this limitation, the authors of the recent paper [4] delved into and verified

the approximation problem for two- and three-dimensional Dirac operators with δ-shell potential

in the norm resolvent sense. Without the smallness assumption on the potential Bε
Σ no results

could be obtained here either. Finally, in [14], the authors of [15] treated the approximation of

the operator (1.2) in the case of the sphere without assuming any hypothesis of smallness on the

potential.

The primary aim of our work is to extend the approximation result explored in [8, Section 8]

to the three-dimensional case. We seek to verify whether the methodologies employed in the

two-dimensional context allow us to establish a comparable approximation in terms of strong

resolvent. Specifically, we aim to achieve this in the non-critical and non-confinement cases (i.e.,

when η2 − τ2 ̸= ±4) without relying on the smallness assumption as stipulated in [15].

Organization of the paper. The present paper is structured as follows. We start with Section

2, where we define the free Dirac operators Dm and the model to be studied in our paper by

introducing the family {Eη̃,τ̃ ,ε}ε, which is the approximate Dirac operators family of operator

Dη,τ . We also discuss our main results by establishing Theorem 2.2. Moreover, in this section we

give some geometric aspects characterizing the surface Σ, as well as some spectral properties of the
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Dirac operator coupled with the δ-shell interaction presented in Lemma 2.6. Section 3 is devoted

to the proof of Theorem 2.2, which approximates the Dirac operator with δ-shell interaction by

sequences of Dirac operators with regular potentials at the appropriate scale in the strong resolvent

sense.

2 Model and main results

First, let me define the free Dirac operator and describe some of its properties. Given m > 0, the

free Dirac operator Dm on R3 is defined by

Dm := −iα · ∇+mβ,

where

αk =

 0 σk

σk 0

 for k = 1, 2, 3, β =

I2 0

0 −I2

 , I2 :=

1 0

0 1

 ,

and

σ1 =

0 1

1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0

0 −1

 ,

is the family of Dirac and Pauli matrices satisfying the anticommutation relations:

{αj , αk} = 2δjkI4, {αj , β} = 0, and β2 = I4, j, k ∈ {1, 2, 3}, (2.1)

where {·, ·} is the anticommutator bracket. We use the notation α · x =
∑3

j=1 αjxj for x =

(x1, x2, x3) ∈ R3. We recall that (Dm,dom(Dm)) is self-adjoint (see, e.g., [18, Subsection 1.4]),

and that

Sp(Dm) = Spess(Dm) = (−∞,−m] ∪ [m,+∞).

Throughout this paper, for Ω ⊂ R3 a C∞-smooth bounded domain with boundary Σ := ∂Ω, we

refer to H1(Ω,C4) := H1(Ω)4 as the first order Sobolev space

H 1(Ω)4 = {φ ∈ L2(Ω,C4) : there exists φ̃ ∈ H 1(R3)4 such that φ̃|Ω = φ}.

We denote by H1/2(Σ,C4) := H1/2(Σ)4 the Sobolev space of order 1/2 along the boundary Σ, and

by tΣ : H1(Ω)4 → H1/2(Σ)4 the classical trace operator. The surface Σ divides the Euclidean space

into the disjoint union R3 = Ω+∪Σ∪Ω−, where Ω+ := Ω is a bounded domain and Ω− = R3 \Ω+.

We denote by ν and dS the unit outward pointing normal to Ω and the surface measure on Σ,

respectively. We also denote by f± := f ⇂ Ω± the restriction of f in Ω±, for all C4–valued functions

f defined on R3. Then, we define the distribution δΣf by
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⟨δΣf, g⟩ :=
1

2

∫
Σ

(tΣf+ + tΣf−) g dS, for any test function g ∈ C∞
0 (R3,C4).

Finally, we define the Dirac operator coupled with a combination of electrostatic and Lorentz scalar

δ-shell interactions of strengths η and τ , respectively, which we will denote Dη,τ in what follows.

Definition 2.1. Let Ω be a bounded domain in R3 with boundary Σ = ∂Ω. Let (η, τ) ∈ R2. Then,

Dη,τ = Dm +Bη,τδΣ := Dm + (ηI4 + τβ)δΣ acting in L2(R3)4 is defined as follows:

Dη,τf = Dmf+ ⊕Dmf−,

∀f ∈ dom(Dη,τ ) := {f = f+ ⊕ f− ∈ H1(Ω)4 ⊕H1(R3 \ Ω)4 :

the transmission condition (T.C) below holds in H1/2(Σ)4}.

Transmission condition:

iα · ν(tΣf+ − tΣf−) +
1

2
(η I4 + τβ)(tΣf+ + tΣf−) = 0, (2.2)

where ν is the outward pointing normal to Ω.

Recall that for η2 − τ2 ̸= 4, the Dirac operator (Dη,τ ,dom(Dη,τ )) is self-adjoint and verifies the

following assertions (see, e.g., [6, Theorem 3.4, 4.1])

(i) Spess(Dη,τ ) = (−∞,m] ∪ [m,+∞).

(ii) Spdis(Dη,τ ) ∩ (−m,m) is finite.

Now, we explicitly construct regular symmetric potentials Vη̃,τ̃ ,ε ∈ L∞(R3,C4×4) supported on a

tubular ε-neighbourhood of Σ and such that

Vη̃,τ̃ ,ε −−−→
ε→0

(η̃ I4 + τ̃β)δΣ in the sense of distributions.

To explicitly describe the approximate potentials Vη̃,τ̃ ,ε, we will introduce some additional nota-

tions. For γ > 0, we define Σγ := {x ∈ R3, dist(x,Σ) < γ} a tubular neighborhood of Σ with

width γ. For γ > 0 small enough, Σγ is parametrized in a similar way as in [5, 15], given by

Σγ = {xΣ + pν(xΣ), xΣ ∈ Σ and p ∈ (−γ, γ)}. (2.3)

For 0 < ε < γ, let hε(p) :=
1

ε
h
(p
ε

)
, for all p ∈ R, with the function h verifies the following

h ∈ L∞(R,R), supph ⊂ (−1, 1) and
∫ 1

−1

h(t) dt = 1.
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Thus, we have:

supphε ⊂ (−ε, ε),
∫ ε

−ε

hε(t) dt = 1, and lim
ε→0

hε = δ0 in the sense of distributions, (2.4)

where δ0 is the Dirac δ-function supported at the origin. Finally, for any ε ∈ (0, γ), we define the

symmetric approximate potentials Vη̃,τ̃ ,ε ∈ L∞(R3,C4×4), as follows:

Vη̃,τ̃ ,ε(x) :=

Bη̃,τ̃hε(p), if x = xΣ + pν(xΣ) ∈ Σε,

0, if x ∈ R3 \ Σε.
(2.5)

It is easy to see that limε→0 Vη̃,τ̃ ,ε = Bη̃,τ̃δΣ, in D′
(R3,C4×4). For 0 < ε < γ, we define the family

of Dirac operators {Eη̃,τ̃ ,ε}ε as follows:

dom(Eη̃,τ̃ ,ε) := dom(Dm) = H1(R3)4,

Eη̃,τ̃ ,εψ = Dmψ + Vη̃,τ̃ ,εψ, for all ψ ∈ dom(Eη̃,τ̃ ,ε).
(2.6)

The main purpose of the present manuscript is to study the strong resolvent limit of Eη̃,τ̃ ,ε at

ε→ 0. The following theorem is the main result of this paper.

Theorem 2.2. Let (η̃, τ̃) ∈ R2 such that d̃ := η̃2 − τ̃2. Let (η, τ) ∈ R2 be defined as follows:

• if d̃ < 0, then (η, τ) =
tanh

(√
−d̃/2

)
√
−d̃/2

(η̃, τ̃),

• if d̃ = 0, then (η, τ) = (η̃, τ̃),

• if d̃ > 0 such that d ̸= (2k + 1)2π2, k ∈ N ∪ {0}, then (η, τ) =
tan

(√
d̃/2
)

√
d̃/2

(η̃, τ̃).

Now, let Eη̃,τ̃ ,ε be defined as in (2.6) and Dη,τ as in Definition 2.1. Then,

Eη̃,τ̃ ,ε −−−→
ε→0

Dη,τ in the strong resolvent sense. (2.7)

Remark 2.3. We mention that in this work we find approximations by regular potentials in the

sense of strong resolvent for the Dirac operator with δ-shell potentials Eη̃,τ̃ ,ε in the non-critical

case (i.e., when d ̸= 4) and the non-confining case, (i.e., when d ̸= −4) everywhere on Σ. This is

what we will show in the proof of Theorem 2.2.

Now, we will introduce some notations and geometrical aspects which we will use in the rest of the

paper.
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2.1 Notations and geometric aspects

Let Σ be parametrized by the family {ϕj , Uj , Vj , }j∈J with J a finite set, Uj ⊂ R2, Vj ⊂ R3, Σ ⊂⋃
j∈J Vj and ϕj(Uj) = Vj ∩ Σ ⊂ Σ ⊂ R3 for all j ∈ J. We set s = ϕ−1

j (xΣ) for any xΣ ∈ Σ.

Definition 2.4 (Weingarten map). For xΣ = ϕj(s) ∈ Σ ∩ Vj with s ∈ Uj , the Weingarten map

(arising from the second fundamental form) is defined as the following linear operator

WxΣ
:=W (xΣ) : TxΣ

→ TxΣ

∂iϕj(s) 7→ W (xΣ)[∂iϕj ](s) := −∂iν(ϕj(s)),

where TxΣ denotes the tangent space of Σ on xΣ and {∂iϕj(s)}i=1,2 are the basis vectors of TxΣ .

Proposition 2.5 ([19, Chapter 9 (Theorem 2), 12 (Theorem 2)]). Let Σ be an n−surface in Rn+1,

oriented by the unit normal vector field ν, and let x ∈ Σ. The principal curvatures of Σ at x (i.e.,

the eigenvalues k1(x), . . . , kn(x) of the Weingarten map Wx) are uniformly bounded on Σ.

2.1.1 Tubular neighborhood of Σ

Recall that for Ω ⊂ R3 a bounded domain with smooth boundary Σ parametrized by ϕ ∈ {ϕj}j∈J .

Let {ϕ,Uϕ, Vϕ} belong to {ϕj , Uj , Vj}j∈J and set νϕ = ν ◦ϕ : Uϕ ⊂ R2 −→ R3, with ν the outward

pointing unit normal to Ω.

For γ > 0, Σγ (2.3) is a tubular neighborhood of Σ with width γ. We define the diffeomorphism

Φϕ as follows:

Φϕ : Uϕ × (−γ, γ) −→ R3

(s, p) 7−→ Φϕ(s, p) = ϕ(s) + pν(ϕ(s)).

For sufficiently small γ, Φϕ is a smooth parametrization of Σγ . Moreover, the matrix of the

differential dΦϕ of Φϕ in the canonical basis of R3 is given by

dΦϕ(s, p) =
(
∂1ϕ(s) + p dν(∂1ϕ)(s) ∂2ϕ(s) + p dν(∂2ϕ)(s) νϕ(s)

)
. (2.8)

Thus, the differential on Uϕ and the differential on (−γ, γ) of Φϕ are respectively given by

dsΦϕ(s, p) = ∂iϕj(s)− pW (xΣ)∂iϕj(s) for i = 1, 2 and xΣ = ϕ(s) ∈ Σ,

dpΦϕ(s, p) = νϕ(s),
(2.9)

where ∂iϕ, νϕ should be understood as column vectors, and W (xΣ) is the Weingarten map defined
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in Definition 2.4. Next, we define

Pϕ :=
(
Φ−1

ϕ

)
1
: Σγ −→ Uϕ ⊂ R2; Pϕ

(
ϕ(s) + pν(ϕ(s))

)
= s ∈ R2,

P⊥ :=
(
Φ−1

ϕ

)
2
: Σγ −→ (−γ, γ); P⊥

(
ϕ(s) + pν(ϕ(s))

)
= p.

(2.10)

Using the inverse function theorem and equation (2.8), for x = ϕ(s) + pν(ϕ(s)) ∈ Σγ , we obtain

the following differential

∇Pϕ(x) =
(
JΦ−1

ϕ

)
1
:=


1 0 0

0 1 0

0 0 0

 JΦ−1
ϕ

and ∇P⊥(x) = νϕ(s), (2.11)

with JΦ−1
ϕ

the Jacobian matrix of the diffeomorphism Φ−1
ϕ given by the following formula:

JΦ−1
ϕ

=
1

det(JΦϕ
)
×Adj(JΦϕ

).

Here Adj(JΦϕ
) is expressed in terms of the partial derivatives of ϕ, JΦϕ

is the Jacobian matrix

of the diffeomorphism Φϕ and det(JΦϕ
) = 1 + pκ1 + p2κ2 (see, for example [13, Lemma 2.3 (1)]),

where κ1 and κ2 depend on the principal curvatures k1, . . . , kn of Σ.

2.2 Preparations for the proof

Before presenting the tools for the proof of Theorem 2.2, we state several properties satisfied by the

operator Dη,τ , which appeared in almost the same form in several papers, for example, [8, Section

5] and [6, Section 3].

Lemma 2.6. Let (η, τ) ∈ R2, and let Dη,τ be defined as in Definition 2.1. Then, the following

hold:

(i) If η2 − τ2 ̸= −4, there exists an invertible matrix Rη,τ such that a function f = f+ ⊕ f− ∈
H1(Ω+)

4 ⊕H1(Ω−)
4 belongs to dom(Dη,τ ) if and only if tΣf+ = Rη,τ tΣf−, with Rη,τ given

by

Rη,τ :=

(
I4 −

iα · ν
2

(η I4 + τβ)

)−1(
I4 +

iα · ν
2

(η I4 + τβ)

)
. (2.12)

(ii) If η2 − τ2 = −4, then a function f = f+ ⊕ f− ∈ H1(Ω+)
4 ⊕H1(Ω−)

4 belongs to dom(Dη,τ )

if and only if(
I4 −

iα · ν
2

(η I4 + βτ)

)
tΣf+ = 0 and

(
I4 +

iα · ν
2

(η I4 + βτ)

)
tΣf− = 0.
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Proof. Let us show (i). Using the transmission condition in equation (2.2), we find that for all

f = f+ ⊕ f− ∈ dom(Dη,τ ),(
iα · ν + 1

2
(ηI4 + τβ)

)
tΣf+ =

(
iα · ν − 1

2
(ηI4 + τβ)

)
tΣf−.

Thanks to properties in (2.1) and the fact that (iα · ν)−1 = −iα · ν, we have

(
I4 −M

)
tΣf+ =

(
I4 +M

)
tΣf−, (2.13)

with M a 4× 4 matrix having the following form

M =
iα · ν
2

(η I4 + βτ),

thus (2.12) is established.

Now, using the anticommutation relations from (2.1), we have:

M2 = −d
4
I4 and (I4 −M)(I4 +M) =

4 + d

4
I4,

where d := η2 − τ2. When d ̸= −4, then I4 −M is invertible with (I4 −M)−1 =
4

4 + d
(I4 +M).

Consequently, using (2.13) we obtain that tΣf+ = Rη,τ tΣf−, where Rη,τ has the explicit form

Rη,τ =
4

4 + d

(
4− d

4
I4 + iα · ν(ηI4 + τβ)

)
. (2.14)

For assertion (ii), we multiply (2.13) by (I4 ±M), giving

(I4 +M)2tΣf− = 0 and (I4 −M)2tΣf+ = 0.

Moreover, we mention that in the case d = −4, we have (I4 ±M)2 = 2(I4 ±M). This completes

the proof of Lemma 2.6.

3 Proof of Theorem 2.2

Proof. Following the ideas in [8, Section 8], the key step in proving Theorem 2.2 is to establish the

convergence (2.7) in the strong graph limit sense. Let {Eη̃,τ̃ ,ε}ε∈(0,γ) and Dη,τ be as defined in (2.6)

and Definition 2.1, respectively. Since the singular interactions Vη̃,τ̃ ,ε are bounded and symmetric,

the Kato-Rellich theorem implies that the operatorsEη̃,τ̃ ,ε are self-adjoint in L2(R3,C4). Moreover,

we know that Dη,τ is self-adjoint, with dom(Dη,τ ) ⊂ H1(R3 \ Σ)4. Thus, the convergence of

{Eη̃,τ̃ ,ε}ε∈(0,γ) to Dη,τ in the strong resolvent sense as ε → 0 holds if and only if it converges in
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the strong graph limit sense, as shown in [16, Theorem VIII.26]. This means we must show the

following:

For ψ ∈ dom(Dη,τ ), there is a family of vectors {ψε}ε∈(0,γ) ⊂ H1(R3)4 such that

(a) lim
ε→0

ψε = ψ and (b) lim
ε→0

Eη̃,τ̃ ,εψε = Dη,τψ in L2(R3)4, (3.1)

with H1(R3)4 = dom(Eη̃,τ̃ ,ε) for all ε ∈ (0, γ).

Let ψ ≡ ψ+ ⊕ ψ− ∈ dom(Dη,τ ). From Theorem 2.2, we have that

d = η2 − τ2 = −4 tanh2
(√

−d̃/2
)
, if d̃ < 0,

d = η2 − τ2 = 4 tan2
(√

d̃/2
)
, if d̃ > 0,

d = η2 − τ2 = 0, if d̃ = 0.

(3.2)

In all cases, we have that d > −4 (in particular d ̸= −4). Then, by Lemma 2.6 (i),

tΣψ+ = Rη,τ tΣψ−,

where Rη,τ is given in (2.14). Moreover, using Definition 2.1, we obtain that tΣψ± ∈ H1/2(Σ)4.

Show that

eiα·νBη̃,τ̃ = Rη,τ . (3.3)

Recall the definition of the family Eη̃,τ̃ ,ε and the potential Vη̃,τ̃ ,ε defined in (2.6) and (2.5),

respectively. We have that

(iα · νBη̃,τ̃ )
2 = (iα · ν(η̃I4 + τ̃β))2 = −(η̃2 − τ̃2) =: D̃2, with D̃ =

√
−(η̃2 − τ̃2) =

√
−d̃.

Using this equality, we can write: eiα·νBη̃,τ̃ = e−D̃Π− + eD̃Π+, with ±D̃ the eigenvalues of

iα · νBη̃,τ̃ , and Π± the eigenprojections are given by:

Π± :=
1

2

(
I4 ±

iα · νBη̃,τ̃

D̃

)
.

Therefore,

e(iα·νBη̃,τ̃ ) =

(
eD̃ + e−D̃

2

)
I4 +

iα · νBη̃,τ̃

D̃

(
eD̃ − e−D̃

2

)

= cosh(D̃)I4 +
sinh(D̃)

D̃
(iα · ν(η̃I4 + τ̃β)).



CUBO
26, 3 (2024)

Approximation of the δ-shell interaction 499

Now, the idea is to show (3.3), i.e., that it remains to show

4

4 + d

(
4− d

4
I4 + iα · ν(ηI4 + τβ)

)
= cosh(D̃)I4 +

sinh(D̃)

D̃
(iα · ν(η̃I4 + τ̃β)) . (3.4)

To this end, set U =
4− d

4 + d
−cosh(D̃) and V =

4

4 + d
− sinh(D̃)

D̃
. If we apply (3.4) to the unit

vector e1 = (1 0 0 0)t, and, since the matrices I4 and α ·ν(ηI2+ τβ) are linearly independent

for (η, τ) ̸= (0, 0), then we find that U = V = 0. Hence, (3.4) makes sense if and only if

cosh(D̃) =
4− d

4 + d
and

sinh(D̃)

D̃
(η̃, τ̃) =

4

4 + d
(η, τ).

Consequently, we have Rη,τ = eiα·νBη̃,τ̃ .

Dividing
sinh(D̃)

D̃
by (1 + cosh(D̃)) we obtain (η, τ) =

sinh(D̃)

1 + cosh(D̃)

1

D̃/2
(η̃, τ̃).

Now, applying the elementary identity tanh

(
θ

2

)
=

sinh(θ)

1 + cosh(θ)
, for all θ ∈ C \ {i(2k + 1)π,

k ∈ Z}. We conclude that

tanh(
√

−d̃/2)√
−d̃/2

(η̃, τ̃) = (η, τ), if d̃ < 0,

and so, for d̃ > 0 we apply the elementary identity −i tanh(iθ) = tan(θ) for all θ ∈ C \{
π

(
k +

1

2

)
, k ∈ Z

}
, and then we get that

tanh
(√

−d̃/2
)

√
−d̃/2

=
tan

(√
d̃/2
)

√
d̃/2

.

Hence, for d̃ > 0 such that d̃ ̸= (2k + 1)2π2, we obtain (η, τ) =
tan(

√
d̃/2)√

d̃/2
(η̃, τ̃). Conse-

quently, the equality eiα·νBη̃,τ̃ = Rη,τ is shown, with the following parameters satisfying:

•
tanh(

√
−d̃/2)√

−d̃/2
(η̃, τ̃) = (η, τ), if d̃ < 0,

•
tan(

√
d̃/2)√

d̃/2
(η̃, τ̃) = (η, τ), if d̃ > 0,

• (η̃, τ̃) = (η, τ), if d̃ = 0.

Moreover, the fact that
∫ ε

−ε
hε(t)dt = 1 (see, (2.4)) with the statement (3.3) make it possible

to write

exp

[(
− i

∫ 0

−ε

hε(t) dt
)
(α · νBη,τ )

]
tΣψ+ = exp

[(
i

∫ ε

0

hε(t) dt
)
(α · νBη,τ )

]
tΣψ−. (3.5)
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Remark 3.1. We mention that, in the case where D̃ = 0, the phenomenon of renormalization

of the coupling constants does not arise. This was already observed in the one-dimensional

setting in [20]. Indeed, using (3.2) and equation (3.4), we find that (η̃, τ̃) = (η, τ), where
sinh(D̃)

D̃
is taken to be equal to 1 when D̃ = 0.

Construction of the family {ψε}ε∈(0,γ). Proceeding as in the construction of [8, Section 8],

one can construct the following family. The reader should look at that paper for the details.

For all 0 < ε < γ, we define the function Hε : R \ {0} → R as follows:

Hε(p) :=



∫ ε

p

hε(t) dt, if 0 < p < ε,

−
∫ p

−ε

hε(t) dt, if − ε < p < 0,

0, if |p| ≥ ε.

Clearly, Hε ∈ L∞(R) and is supported in (−ε, ε). Since ||Hε||L∞ ≤ ||h||L1 , we get that {Hε}ε
is bounded uniformly in ε. For all ε ∈ (0, γ), the restrictions of Hε to R± are uniformly

continuous, with finite limits at p = 0 exist, and are differentiable a.e., with a bounded

derivative, since hε ∈ L∞(R,R). Using these functions, we set the matrix functions Uε :

R3 \ Σ → C4×4 such that

Uε(x) :=

e
(iα·ν)Bη̃,τ̃Hε(P⊥(x)), if x ∈ Σε \ Σ,

I4, if x ∈ R3 \ Σε,
∈ L∞(R3,C4×4), (3.6)

where the mapping P⊥ is defined as in (2.10). The functions Uε are bounded, uniformly in

ε, and uniformly continuous in Ω±, with a jump discontinuity across Σ. Then, ψε can be

constructed by

ψε = ψε,+ ⊕ ψε,− := Uεψ ∈ L2(R3,C4), where ∀xΣ ∈ Σ, y± ∈ Ω± :

Uε(x
−
Σ) := lim

y−→xΣ

Uε(y−) = exp

[
i

(∫ ε

0

hε(t) dt

)
(α · ν(xΣ))Bη̃,τ̃

]
,

Uε(x
+
Σ) := lim

y+→xΣ

Uε(y+) = exp

[
−i
(∫ 0

−ε

hε(t) dt

)
(α · ν(xΣ))Bη̃,τ̃

]
.

(3.7)

Since Uε are bounded, uniformly in ε, using the construction of ψε we get that ψε−ψ := (Uε−
I4)ψ. Then, by the dominated convergence theorem and the fact that supp (Uε − I4) ⊂ |Σε|
with |Σε| → 0 as ε→ 0, it is easy to show that

ψε −−−→
ε→0

ψ in L2(R3,C4). (3.8)

This proves assertion (a).
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Show that ψε ∈ dom(Eη̃,τ̃ ,ε) = H1(R3)4. This means that we must show, for all 0 < ε < γ,

(i)ψε,± ∈ H1(Ω±)
4 and (ii) tΣψε,+ = tΣψε,− ∈ H1/2(Σ)4.

Let us show point (i). By the construction of ψε, we have ψε ∈ L2(R3,C4). It remains

to show that ∂jUε ∈ L∞(R3,C4×4), for j = 1, 2, 3. To do so, recall the parametrization

ϕ of Σ defined at the beginning of Subsection 2.1 and let A ∈ C∞(R2,C4×4) such that

A(s) := iα · ν(ϕ(s))Bη̃,τ̃ , for s = (s1, s2) ∈ U ⊂ R2. Thus, the matrix functions Uε in (3.6)

can be written

Uε(x) =

e
A(Pϕ(x))Hε(P⊥(x)), if x ∈ Σε \ Σ,

I4, if x ∈ R3 \ Σε,
∈ L∞(R3,C4×4),

where Pϕ is defined as in (2.10).

For j = 1, 2, 3, we have supp ∂jUε ⊂ Σε. By the Wilcox formula as used in [8, Eq. 8.12], we

obtain that

∂jUε(x) =

∫ 1

0

[
exp
(
zA(Pϕ(x))Hε(P⊥(x))

)
∂j

(
A(Pϕ(x))Hε(P⊥(x))

)
×

exp
(
(1− z)A(Pϕ(x))Hε(P⊥(x))

)]
dz.

Based on the quantities (2.11), for x = ϕ(s)+pν(ϕ(s)) ∈ Σγ , and for s = Pϕ(x), p = P⊥(x),

with Pϕ(x) and P⊥(x) the mappings introduced in (2.10), together with

∂j

(
A(Pϕ(x))Hε(P⊥(x))

)
= ∂j

(
A(Pϕ(x)

)
Hε(p)−A(s)hε(p)(νϕ(s))j ,

yields that ∂jUε has the following form

∂jUε(x) = −A(s)hε(p)(νϕ(s))jUε(x)+

∫ 1

0

ezA(s)Hε(p)
[
∂j

(
A(Pϕ(x)

)
Hε(p)

]
e(1−z)A(s)Hε(p) dz, (3.9)

with

∂j

(
A(Pϕ(x)

)
=

2∑
k=1

∂A(s)

∂sk
(JΦ−1

ϕ
)kj ,

where (JΦ−1
ϕ
)kj is the coefficient of the k-th row and j-th column of the matrix

(
JΦ−1

ϕ

)
given

in (2.11).

We denote by Eε,j the second term of the right-hand side of the equality (3.9), i.e.,

Eε,j =

∫ 1

0

ezA(s)Hε(p)

[
∂sA(s)×

2∑
k=1

∂A(s)

∂sk
(JΦ−1

ϕ
)kj ×Hε(p)

]
e(1−z)A(s)Hε(p) dz. (3.10)



502 M. Zreik CUBO
26, 3 (2024)

Thanks to Proposition 2.5, the matrix-valued functions Eε,j are bounded, uniformly for

0 < ε < γ, and suppEε,j ⊂ Σε. Moreover, we have Uε and ∂jUε ∈ L∞(Ω±,C4×4), and we

deduce that for all ψ± ∈ H1(Ω±)
4 we have that ψε,± = Uεψ± ∈ H1(Ω±)

4 and statement (i)

is verified.

Let us now check point (ii). Since ψε,± ∈ H1(Ω±)
4, we get that tΣψε,± ∈ H1/2(Σ)4. On the

other hand, as Uε is continuous in Ω±, we get

tΣψε,±(xΣ) = Uε(x
±
Σ)tΣψ±(xΣ) for a.e. xΣ ∈ Σ;

see [10, Chapter 4 (p.133)] and [8, Section 8] for a similar argument.

Consequently, (3.5) with (3.7) give us that tΣψε,+ = tΣψε,− ∈ H1/2(Σ)4. With this, (ii) is

valid and ψε ∈ dom(Eη̃,τ̃ ,ε).

To complete the proof of Theorem 2.2, it remains to show the property (b), mentioned in

(3.1). Since (Eη̃,τ̃ ,εψε −Dη,τψ) belongs to L2(R3,C4), it suffices to prove the following:

Eη̃,τ̃ ,εψε,± −Dη,τψ± −−−→
ε→0

0 in L2(Ω±,C4). (3.11)

To do this, let ψ ≡ ψ+ ⊕ ψ− ∈ dom(Dη,τ ) and ψε ≡ ψε,+ ⊕ ψε,− ∈ dom(Eη̃,τ̃ ,ε). We have

Eη̃,τ̃ ,εψε,± −Dη,τψ± = −iα · ∇ψε,± +mβ(ψε,± − ψ±) + Vη̃,τ̃ ,εψε,± + iα · ∇ψ±

= −iα · ∇(Uεψ±) + iα · ∇ψ± +mβ(Uε − I4)ψ± + Vη̃,τ̃ ,εψε,±

= −i
3∑

j=1

αj

[
(∂jUε)ψ± + (Uε − I4)∂jψ±

]
+mβ(Uε − I4)ψ± + Vη̃,τ̃ ,εψε,±.

(3.12)

Using the form of ∂jUε given in (3.9), the quantity −i
∑3

j=1 αj(∂jUε)ψ± yields

−i
3∑

j=1

αj(∂jUε)ψ± = −i
3∑

j=1

αj

[
− iα · νVη̃,τ̃ ,ενjUεψ± + Eε,jψ±

]
= −(α · ν)2Vη̃,τ̃ ,εψε,± − i

3∑
j=1

αjEε,jψ± = −Vη̃,τ̃ ,εψε,± + Rεψ±,

where Eε,j is given in (3.10) and Rε = −i
∑3

j=1 αjEε,j , a matrix-valued function in L∞(R3,C4×4),

verifies the same property of Eε,j for all ε ∈ (0, γ). Thus, (3.12) becomes

Eη̃,τ̃ ,εψε,± −Dη,τψ± = −i
3∑

j=1

αj

[
(Uε − I4)∂jψ±

]
+mβ(Uε − I4)ψ± + Rεψ.

Since ψ± ∈ H1(Ω±)
4, (Uε − I4) and Rε are bounded, uniformly in ε ∈ (0, γ) and supported

in Σε, and |Σε| tends to 0 as ε → 0. By the dominated convergence theorem, we conclude
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that

Eη̃,τ̃ ,εψε,± −Dη,τψ± −−−→
ε→0

0, holds in L2(Ω±,C4), (3.13)

and this achieves the assertion (3.11).

Thus, both conditions mentioned in (3.1)
(
i.e., (a) and (b)

)
of the convergence in the strong

graph limit sense are proved (see, (3.8) and (3.13)). Hence, the family {Eη̃,τ̃ ,ε}ε∈(0,γ) con-

verges in the strong resolvent sense to Dη,τ as ε → 0. The proof of the Theorem 2.2 is

complete.
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