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1 Introduction

The following inequality, which is known in the literature as the Hermite-Hadamard inequality,

holds for any convex function f defined on R and all a,b € R:

f(a+b)(ba)é/abf(t)dtéw(ba)- (1.1)

2 2

Let a,b € R with a < b, f: [a,b] — R be a differentiable mapping on (a,b) with M > 0 such that
|f'(z)| < M for all « € (a,b). Then the following inequality, known as the Ostrowski inequality:

s i [ s <

holds for all = € [a,b]. The constant % is best possible in the sense that it cannot be replaced by

( L+b

(b—a)?

>2] (b—a)M, (1.2)

a smaller constant. Note that when f is convex and xz = (a + b)/2, the Ostrowski inequality (1.2)

provides a sharp bound for the midpoint difference

/f £ dt — <a+b>(b—a), (1.3)

in view of the middle and the left-hand terms of (1.1). The following result provides some sharp

bounds for the midpoint difference (¢f. [5, Corollary 2.3]). We note the use of the notation f} to

denote the right-hand and left-hand derivatives of f, which exist for any convex function f.

Proposition 1.1. Let f : [a,b] = R be a convex function on [a,b]. Then we have the inequality

() (Dot [ (o o

/2 (0) = £ (@)] (b —a)”.

oo\»—*

The constant % s sharp in both inequalities.

In what follows, a similar result provides some sharp bounds for the trapezoid difference (cf.

|6, Corollary 2.3]):
b
M (b—a) —/a () dt, (1.5)

in view of the middle and the right-hand terms of (1.1).
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Proposition 1.2. Let f : [a,b] = R be a convex function on [a,b]. Then we have the inequality

osé{fi (a;b> - <“;b)] (ba)2§W(ba)/abf(t)dt (L6)
< LU0 - L @] 6 o),

The constant % 18 sharp in both inequalities.

There are many results in the literature which provide bounds for both midpoint and trapezoids

differences. We refer the readers to the survey paper [9].

Let X be a real linear space, x, y € X, x # y and let [z,y] := {(1 — Az + Ay, A € [0,1]} be the
segment generated by x and y. We consider the function f : [z,y] — R and the associated function
g(z,y):[0,1] =R,

g(z,y) ()= flA-t)z+ty], tel0,1].

It is well known that f is convex on [z, y] if and only if g (z,y) is convex on [0, 1], and the following

lateral derivatives exist and satisfy the following properties:

(1) g4 (z,y) (s) = (V£f[(1 = s)z+sy]) (y — z), s € [0, 1);
(i) g% (z,9) (0) = (V4 f (2) (y — 2);

(iii) g~ (z,9) (1) = (V-f () (y — 2);
where (V4 f (2)) (y) are the Gdteaux lateral derivatives, i.e.

(V+f(2)(y) := lim f(z+hy) - f(x)

h—0% h ’

for z,y € X.

Now, assume that (X, ]|-]|) is a normed linear space. The function fy(s) = %HI”Q, x e X, is

convex and thus the following limits exist

() (@), = (V4fo W) (@) = lim ly + t“!t — |yl

() {eg)y o= (7 fo ) () = tim | W=

for any z,y € X. They are called the lower and upper semi-inner products associated to the norm
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In [14] Kikianty et al. obtained, among others, the following midpoint p-norm inequalities:

1
os/‘M1—ww+wwm—
0

r+y P
2

T max{|lz (P~ [y [P~}

1

q(p—1) a(p—1)\ 4

< plly — 2| - (|33|| + [yl ) s,
2(q'+1) 7 2

TP~ + llylP=1),

that hold for any z,y € X. The constants in the first and second cases of (1.7) are sharp.

Furthermore, in [13], the following trapezoid p-norm inequalities are obtained:

o< Lllety|P Y\ aty
S 8p B) Yy 1T . Y 1T )
p p
1 —2 —2
gyﬂmw @*%@yﬂﬂﬁ —a.),]

that hold for any z, y € X whenever p > 2; otherwise, they hold for linearly independent z, y € X.
The constant % is best in (1.8).

In this paper, we provide bounds for the term

1 p p
[+ B - e

which can be seen as a combination of both the midpoint and the trapezoid p-norm inequalities.

x—!—y

This is done via a series of results on twice differentiable convex functions and we take integrals

with respect to a weight function as outlined in Section 2.

2 Main results

Let ¢ be a twice differentiable convex function on [0,1], w integrable and non-negative on [0, 1],

and A € (0,1). In this section, we establish bounds for the following

(/}\1“’(8)(18)@(1)—0— (A’\w(s)d3>@(0)—/01w(t)<p(t)dt

W/A (1t)w(t)dt+w/o tw (t) dt,

using Ostrowski’s and CebySev’s inequalities (¢f. Propositions 2.1 and 2.4 below).
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Recall the following inequality by Ostrowski [16], which was proven in 1970.

Proposition 2.1 (Ostrowski). Let h be integrable and n < h < N for some constants n, N on

[a,b], while g is absolutely continuous and its derivative is essentially bounded. Then,

b b b
= [sonma— = [gwa= [ @< o-ag@-nlgl.. e

The constant é is best possible in the general case.

We derive the first set of inequalities.

Theorem 2.2. Let ¢ be a twice differentiable convex function on [0,1], w integrable and non-

negative on [0,1] and A € (0,1). Then
1 A 1
0<(/>\ w(s)ds)go(l)—i—(/o w(s) ) -/Ow
_ 1 ,\

(1—A>2(/:w<s>ds)+v(/(fw<s>ds>]||so“| o

Proof. Let A € [0,1]. By using integration by parts, we have

and

Then we have the following identity of interest

/01 (/:w(s)ds> s@'(t)dt/: </:w(s)ds)<p’(t)dt/0A (/jmgw) o (t)dt  (2.3)
= <//\1w(5)ds)<,0(1)+ (A/\w(s)ds>@(O)—/Olw(t)g;(t)dt

for A € [0,1]. If we use (2.1) for h (¢ f)\ s)ds and g (t) = ¢’ (t) on the interval [\, 1], then we
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get

o< [/ ([ roe tom- 245 P ([t
:/: (/:w(s)ds> ¢’(t)dt—WAl(l—t)w(t)dt
g;(l—)\f(/:w() )”90 [SNTE

We also have, again using (2.1) for h (t) = — j? w(s)ds and g (t) = ¢’ (t) on the interval [0, A],
that

A A _ A A
Og—/o (/t w(s)ds)gp’(t)dt+wv/o (/t w(s)ds)dt
o o ) =) [ Lo
LL<A1M$@>¢@MHAAtwmms8v<4w<>>|woM

If we add these inequalities, then we get

0<//\1 </}\tw(s)ds><p’(t)dt—/0)\ (/jw(s)ds) o' (t)dt

_(p(li:fmAl(l—t)w(t)dt+¢(A);¢(o) ' w (t)dt

<;(1—A)2</:w() )II@ oo, 1y + A2(/ )HSD [SSOWY
S;[(l)\f(//\lw(s)ds)Jr/\z( )]Ilw lloo0,1]

and by (2.3) we obtain (2.2). O

When A =1/2 in Theorem 2.2, we have the following corollary.

Corollary 2.3. With the assumptions of Theorem 2.2, we have

<< @) (/%@mﬁw@—lﬁwwww
[ 11 (1 — ) w () dt — [(p (;) - 90(0)} /Oétw (t) dt] (2.4)
gé(fw@mﬂwmmw
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The following result obtained by éebyéev in 1882, [2]. For a function ¢ with a bounded derivative,

we use the following notation

¢l = sup [¢" ()]
t€la,b]

Proposition 2.4. Let g, h be differentiable functions such that g', h' exist and are continuous on

[a,b]. Then,

b b b
bia/a g(t)h(t)dt—ﬁ/a ()dtb%/ h(t) dt| <

The constant % cannot be improved in the general case.

1
5 0= Mgl - (25)

We now derive the second set of inequalities.

Theorem 2.5. Let ¢ be a twice differentiable convexr function on [0,1], w bounded and non-

negative on [0,1] and A € (0,1). Then

og(xiu@@)wn+(éﬁw ) Aﬂu

() -0 [ o) [,
-2 - pemas EEE2E g a

1
= [0Vl AH+FHM|WAMWW o)

1 1\’ ”
Z+3 )\—5 Hw||oo,[o,1] 16"l J[0,1] -

Proof. If we use (2.5) for h (¢ f)\ s)ds and g (t) = ¢’ (t) on the interval [A, 1], then we get

([ ()
:/: (/:w(s)ds> gp’(t)dt—W//\l(l—t)w(t)dt

1
ﬁ(l—A)3 sup w () [l¢" [l oo,(p1) -
sEN1]

IN

1
12

IN

Again, by (2.5) for h(t) = — ftAw (s)ds and g (t) = ¢’ (t) on the interval [0, \], we get

0<—/0A (/tAw(S)ds> <p’(t)dt+“’(A);“"(O)/OA </jw(8)ds> dt
=— w(s)ds | ¢’ e =»(0) /\tw (t)dt
AA<KA ) (wﬁ+¢<>Awwa

1
< =\ sup w 4
5 5 W) 1 o



514 S. S. Dragomir & E. Kikianty CUBO

26, 3 (2024)

If we add these inequalities, then we get

og/: (/}\tw(s)d8> cp’(t)dt—/o/\ </t/\w(s)ds) o' (t)dt
RO [ yw s POy

1
<= [(1—A> sup w (5) ¢ oo oy + A° sup w0 (s) [l [OA],
s€[M] s€[0,A]

which proves (2.6). O

When A = 1/2 in Theorem 2.5, we have the following corollary.

Corollary 2.6. With the assumptions of Theorem 2.5, we have

|
[\
| — |
| p— |
AS)
—~
—
S—
|
©
/N
o |

1)} /él(l—t)w(t)dt— [gﬁ (;) —<p(0)] /O%tw(t)dt] (2.7)

//H //||

1
< o5 [l 3.0 + 10l o] 19" e o < 5 I loc o0y 10”0

3 Symmetrical weight functions

Simpler forms of the inequalities in Theorems 2.2 and 2.5 (also, Corollaries 2.3 and 2.6) are obtained

when we consider the case that the weight w is symmetrical on [0, 1]. Assume that w is symmetrical

on [0,1]. Then,

1

l[%1—wwuyu=17wqoa.

2

By assuming the symmetry of w on [0, 1] in Corollary 2.3, we have

0§¢“%?“®<AZM@@)_/2MU@@ﬁ (3.1)

0

4{¢“);¢“”¢<;)]A muﬂdtgé;(élw@%ﬁ)ﬂ¢ww@ﬂ,

and similarly in Corollary 2.6, we get

ng(/Olw(s)ds>—/01w(t)<p(t)dt (3.2)

[P0 (D) [P @t < K Mol 19

N|=
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We give now some examples for simple symmetrical weights.

Example 3.1. First, consider the weight w (t) = |t — %

, t €1[0,1]. Observe that

1

1 1
1 1 : /1 1
/é(lt)(tQ)dtZIS, /Ot(2t>dt48
1 AW 3 /1 ol
40—2)t—%;(2—0 =1

and

From (3.1) we obtain

1 1 ! 1 1
< — 1 - _ _ = < " )
0< 35 [w( )+¢(0)+¢<2)} /0 t 2‘<ﬂ(t)dt_ 128 19" e 0,11 (3.3)
while from (3.2)
0< - (1) +¢(0) + : _/1t—1 (t)dt<*1 1" (3.4)
S5 |% 2 ¢\ 3 ; 5% =96 17 Nloo,f0,1] '

which is not as good as (3.3).

In the above example, we choose a weight function w for which the bound obtained from Corollary
2.3 (and thus Theorem 2.2) is better than that obtained from Corollary 2.6 (and thus Theorem
2.5). Is this always the case? In what follows, we choose a weight function for which we obtain

identical bounds.

Example 3.2. Consider the weight w (t) =t (1 —t), ¢t € [0,1]. Observe that

1 1
/ (17t)2tdt:i, /2t2(17t)dt:i
1 1927 J, 192

2

and

1 3 1
t(l—t)dt:/ F(1—t)dt = 1.
0

o

From (3.1) we get

1
0< 5 Bl e +100 (3)] - [ta-000d < G Iy, G
while from (3.2)
0< % [3 [ (1) 4+ ¢ (0)] + 10 (;)] - /0 t(1—t)p(t)dt < F}2 ||%0”Hoo,[0,1] ) (3.6)

which is the same as (3.5).
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In other cases, the bound obtained from Theorem 2.2 is better than that of Theorem 2.5, as

outlined in the next two examples.

Example 3.3. If w=1 in Theorem 2.2, then

0<

N =

for all A € (0,1) . Since

then (3.7) can be written as

1

2
1 1(1 1
03l +1-NpW 0]~ [ parsg|i+3(r-3) ] "o o (35)
In particular, we derive the inequality
1 [e(1)+¢(0) 1 /1 1 "
< - | ==L _r — — < — . .
0< 5 B ' 5 ; p(t)dt < 39 16" | 0, 0,11 (3.9)
Example 3.4. If w=1 in Theorem 2.5, then
1 ! 1 (1 1\?
05l +0-NpW a0 [ e g5 |7+3(x-3) ] "oy (3:10)
0
for all X € (0,1). In particular, we have
1[e1)+¢(0) 1 /1 L
< - | —— - = < — . A1
0<3 5 +tels ; P () dt < o 119"l oo o, (3.11)
These inequalities are better than the ones in Example 3.5.
4 Applications for norms
We assume that (X, || - ||) is a real normed space throughout the sequel.

4.1 Smoothness of the norms and semi-inner products

The terminologies, definitions, and results in this subsection follow those of [7]. Let =,y € X with

x # 0, then the following limits exist

2 2
ety — ||
0% 2t '
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The mapping [,-] : X x X — R given by

- tyl® — =)
=1 -
oals= Iy

is called the T-semi-inner-product.

Definition 4.1. The T-semi-inner-product [-,-] is said to be continuous on X if
lim [y, x + ty] = [y,z], forallz,y € X.
t—0

Proposition 4.2. The normed space X is smooth if and only if

ol tyll ==l eyl =l
lim ————=lim ———
t—0+ t t—0— t

for all z,y € X with x # 0.

Proposition 4.3. The normed space X is smooth if and only if the T-semi-inner-product is

continuous.

Definition 4.4. A smooth normed space (X,|| <) is of (D)-type if the following limit

t —
lim ly,  +ty] — [y, 7]
t—0 t

exists for all x,y € X, in which case the above limit is denoted as [y, x|’
Every inner product space is a smooth normed space of (D)-type. Every (P space is a smooth
normed space of (D)-type when p > 2.

Proposition 4.5. Let (X, | ‘]|) be a smooth normed space of (D)-type and x,y € X. Then, the
mapping @z ,: R = R given by
2
Pay(t) = |lz+ty|

is twice differentiable on R,
Oryt) =2y, x+tyl, @ () =2y, z+ tyl', forallt€R,

and wg)y s non-negative on R.

Definition 4.6. A smooth normed space of (D)-type is of (BD)-type if there exists a real number
k > 1 such that
v,z <k |lyll*, for allz,y € X. (4.1)

The least number k such that (4.1) holds will be called the boundedness modulus of [-,-] and we

denote such a number by kg.
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Example 4.7. Every inner product space is of (BD)-type. In fact, X is an inner product space if

and only if its boundedness modulus ko is ezactly 1. For all z,y € X, we have [y,z] = ||y||* .

Example 4.8. Fvery P space is a smooth normed space of (BD)-type when p > 2. In particular,
for all x,y € P, x # 0, we have
2
[y, 2] < (4k +1) |1yl

with k = (p — 2)/2.

4.2 Convex functions on normed spaces

Let (X, | -||) be a smooth normed space of (D)-type and z,y € X. Let f;,: R — R be given by
Fay(®) = [[(1 = Oz + ty||* = &+ t(y — )|

By Proposition 4.5, f is convex and twice differentiable on R, and

fr,®)=2[y—=,(1—-tz+ty], and [, (t):=2[y—=z (1—-t)z+ty],

for all t € R.

Let (X, ] -]|) be a smooth normed space of (D)-type, z,y € X, and 1 <p < co. Let g5, R - R
be given by

(SIS

Goap(®) = (1= )z + ty]” = (I(1 = )z + ty*) "

Then, for all ¢t € R, we have

’ _p 2\21 d 2 p—2
Goyp® =5 (I =Dz +1y1?) " 2L =D +tyl* = pllL = Do+ tyl” > [y — 2, (1 =+ ty],
and

1 d — - d
Goyp(t) =D [[y —a, (1= z+ty] 2 (0= + 7 + (10 = e+ )" 2 [y — 2, (1= )z + ty]

=p[(p =21 =tz +tyll" [y — 2, (1 = )z + ty]* + (|1 = )+ ty[)** [y — 2, (1 = )z + ty]']

=pll (L =tz +ty|" " [(p—2) [y — &, (1 = )z +ty]* + (|(1 = )z + tyl)* [y — 2, (1 - )z + ty]'] -

Note that since [y —z, (1 —-)z +-y]’ is non-negative, then g ,  is also non-negative and thus g, , ,
is convex. If we assume further that X is (BD)-smooth with constant k& > 1, then, for all ¢t € R,

we have

9y =21 =z +ty" (0= 2) [y — 2, (1= )z + ty]* + (11— )z +tyl)* [y — 2, (1 — )z + ty]]

<plld =t +tyl”* [0 = 2) ly — 2l 11 = )+ ty]* + & (|1 = )z + ty ) |y — z]|”]
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=p(p =2+ k) (1 =t + ty " |ly — ||
Consequently,

2 2 2
19 0 0ll o g < 20 = 2+ K2) ly = all® max ]2 1yl } (4.2)

Remark 4.9. Recall that when X = (P with p > 2, we have that
[y, 2]}, < (4k +1) [y,

with k = (p — 2)/2, that is
[y, 2]}, < (2p = 3) Iyl ,

for all z,y € P with x # 0. We use the subscripts p in the notation for the norms and semi-inner
products here to highlight the fact that we consider the special case of P spaces. Therefore (4.2)

becomes
2 —2 -2
19 yoll o g0y < 20 =2+ @0 = 3)2) 1y — 2]} max {2122 yll5 >}

(4.3)
2 —2 —2
= (p* = 119% + 7p) lly — @y max { 2572, Jyl2~* }

4.3 Application of Theorem 2.2

Let w be a non-negative, bounded, integrable weight on [0,1] and A € (0,1). Then, applying

Theorem 2.2 to the function g, , ,, we have

os(Aﬂwﬁdﬁnmv+(Aﬁugdanﬂv—ﬂfwwnu—wx+wWﬁ

P B p sl _ P _ P pA
iyl ||(11 i)m—f—)\yH / (1= 1) (8)di + (1= Nz +/\AyH &3] / f (£) dt
_ A 0

1 1 A
<3 l(l_A)Q (/ w(s)ds) 42 (/ w(s)d )] (7
A 0
When the weight w is symmetrical on [0,1] and A = 1/2, we have
P P 1 1
0< M (/ w(s)ds) —/ w(t) (1= D)z + ty|? dt
0 0

el + gl " L[

2
We obtain a simple inequality when w = 1 and we assume further that X is (BD)-smooth

P p

r+y
2

x—l—y

— 32”911/10” ,[0,1]
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1 2 2 2
< ggp (0 =2+ k) Iy — )P max {[lal” 2 y)”*}

4.4 Application of Theorem 2.5

Let w be a non-negative, bounded, integrable weight on [0,1] and A € (0,1). Then, applying

Theorem 2.5 to the function g , ,, we have

0< (/:w(s> ) Iyl + (/OAw@) ds> ol —/Olwu) 11— by + ] de

p_ _ p 1 _ P _ P rA
iyl ||(11 i\\)x—k)\yH / (1— 1) (£)dt + (1= Nz +/\>\yH &3] / f (£) dt
_ A 0

1
5 [ = 2 0l oy A% 10l o] 19500l o

11 1\
12[4+3(/\—2>]||w| 01]||9x7yp|| J[0.1]°

When the weight w is symmetrical on [0,1] and A = 1/2, we have

p p 1 1
OSW(/O w(s)ds)/o w(t) (1= t)a + ty|” dt

p P
_4[|$II |1

IN

r+y P
2

%
. ]/o tw(t)dt< ||wH [0,1/2] HgmypH 0,11

We obtain a simple inequality when w = 1 and we assume further that X is (BD)-smooth

01[

:c—!—y

IN

&\Hw‘

p_|_ p
Lzl |y||} /” e+ tyl bt < 1= okl o

—2 -2
p(p— 2+ k) Iy — > max { 2”2 "}

4.5 Case of inner product spaces
In the case that (X, (-,-)) is an inner product space, we have

Iy =L =tz +ty|" " [(p = 2) (y — 2, (1 = )z + ty)” + (|(1 = )z + ty])* (y — 2, (1 — D)z + ty)’]
<pll =tz +tyl” [0 = 2) ly = 2l* 11 = e+ ty]” + 11 = )+ ty]* [ly — z]|*]

=p(p— ) (L -t +ty|"~* |y — 2|,

and specifically when p = 2,

2
g.'/r/,y,2(t) < 2 ”y - I” )
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We obtain simple inequalities when w = 1, from (3.9) and (3.11),

1 z||? —|— Y p 1
=3 [H + 2L ol / I =)z +tyl|"dt < oop(p — 1) ) [ly — «[|* max {|=|["~, [ly||”~*}
(4.4)
and
1 z||P + P 1
0< 3 [H H I Iyl } / (1 —t)z + ty||” dt < @p( p—1) |y —z|? max { ||z||"~ 2 wlP™ 2}
(4.5)

In particular, when p = 2

os;[ oty ol *'y”] [ra-nesmias w-or 0o
and
og;Ux; e R L P P S
This last inequality is, in fact, an equality, since
3 I BT e = [ 0? + hol? +2 ) +

- / (1= 02 >+ 260 — 1) () + 2 ]t
S G l2l® + 31yl +2 (@) — 5l + Iyl + {z,0))
= ol + Iyl = 2@, 9)) = 57 ly = all*
The above shows that (4.5) is sharp, and consequently (2.6), (2.7), (3.2), (3.10), and (3.11), are

also sharp.

We again consider p = 2, and we further consider the weight w () = ‘t — %|7 t € [0,1], as in

_/01

We conjecture that the above bound is not sharp.

Example 3.1, then (3.3) becomes

+y

0= 2

~ 64

£ H

1
= 5|10 = Bl e < ol

We again consider p = 2 with the weight w (t) =¢(1 —t¢), t € [0,1], as in Example 3.2, then (3.5)

becomes

1 2

1
0< L [(Hxﬂ ) +10H = [ a0 - el i< oyl
0

— 96

We conjecture that the above bound is not sharp.
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