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ABSTRACT

In this paper, we present semilocal convergence of Steffensen-
like method for approximating zeros of a vector field in
Riemannian manifolds. We establish the convergence of
Steffensen-like method under Lipschitz continuity condition
on first order covariant derivative of a vector field. Finally,
two examples are given to show the application of our theo-
rem.

RESUMEN

En este artículo, presentamos la convergencia semilocal del
método de tipo Steffensen para aproximar los ceros de un
campo de vectores en una variedad Riemanniana. Estable-
cemos la convergencia del método de tipo Steffensen bajo
la condición de continuidad Lipschitz de la derivada cova-
riante de primer orden de un campo de vectores. Finalmente,
damos dos ejemplos para mostrar la aplicabilidad de nuestro
teorema.
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1 Introduction

There are many problems in applied sciences and other including engineering, optimization, dy-

namic economic system, physics, biological problems which is formulated in an equation by using

mathematical modeling to find the zeros of equations (see for example [7, 9, 10, 17, 19] and the

references therein). To solve the nonlinear equations many types of iterative methods have been

studied in Banach spaces. The most famous second order iterative method to solve a non-linear

equation in Banach space is Newton’s method. Recently, attention has been paid in studying

iterative methods in Riemannian manifolds. There are many types of numerical methods that

have been studied in manifolds which arise in many contexts. Some problems including eigen-

value problem, minimization problems with orthogonality constraints, optimization problems with

equality constraints, invariant subspace computations (see for example [1–3,6–8,12–15,21] and the

references therein). To solve this problem, we have to find the zeros of a vector field in Riemannian

manifolds. Generally convergence of iterative methods are usually centered on two types: semilo-

cal and local convergence analysis. The convergence analysis which provides information around

a solution and calculates the radius of convergence, it is local and when the convergence analysis

provides information around an initial point, it is semilocal. The Steffensen-like method [5] which

is second order method in Banach space is defined as:

x0 ∈ Ω,

yn−1 = xn−1 − aM(xn−1), a ∈ R+, n ∈ N,

zn−1 = xn−1 + bM(xn−1), b ∈ R+,

xn = xn−1 − [yn−1, zn−1;M]−1M(xn−1),


(1.1)

where M is a nonlinear operator defined in an open convex subset Ω of a Banach space B into itself

and M is first Fréchet differentiable in Ω. The computational efficiency of Steffensen-like method is

the same as Newton’s method, when it is applied to find the solution of finite dimensional system

of nonlinear equations. The convergence of this second order method in Banach space has been

studied in [5]. As motivation, the numerical solution of the vector field

G(u1, u2, u3) = (−u2, u1 − u1u
2
3, u1u2u3)

using Newton’s and Euler-Chebyshev’s method on R3 is difficult to find as the Jacobian is a non-

invertible matrix at the point (0, 0,−1)T , but using the algorithm given in [11] such singularity is

found on the two-dimensional sphere S2. In this paper, we extend the method (1.1) to the case of

equations in Riemannian manifolds to find the singular point of a vector field.

The paper is organized as follows: Section 2, contains all the necessary background on fundamental

properties and notation of Riemannian manifolds. In Section 3, we present the semilocal conver-
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gence of Steffensen-like method under Lipschitz continuity condition on the first order covariant

derivative of vector field. In Section 4, two examples are given to show the application of our

theorem. Finally, in Section 5, some brief conclusions are given.

2 Preliminaries

In this section, we introduce some basic definitions and properties of Riemannian manifolds (for

more details see [16,18,20]).

Let Q be a real n-dimensional Riemannian manifold, X(Q) be a set of all vector fields of class C∞

on Q, TuQ be a tangent space of Q at u, and TQ be a tangent bundle defined as TQ =
⋃
u∈Q

TuQ.

Suppose Q is equipped with a Riemannian metric ⟨ ., .⟩ with corresponding norm ∥ · ∥. The arc

length of piecewise smooth curve ψ : [0, 1] → Q joining u to v is defined by l(ψ) =
∫ 1

0
∥ψ′(z)∥dz

and the Riemannian distance joining u to v is defined by d(u, v) = infψ l(ψ). Let D(Q) be the ring

of real-valued functions of class C∞ defined on Q. An affine connection ∇ on Q is a map

∇ : X(Q)× X(Q) −→ X(Q)

(X,G) 7−→ ∇XG

which satisfies the properties

(i) ∇fX+gGV = f∇XV+ g∇GV.

(ii) ∇X(G+V) = ∇XG+∇XV.

(iii) ∇X(fG) = f∇XG+X(f)G,

where X,G,V ∈ X(Q) and f, g ∈ D(Q). The covariant derivative of G determined by the connec-

tion ∇ defines at each point u ∈ Q a linear application as

DG(u) : TuQ −→ TuQ

v 7−→ DG(u)(v) = ∇XG(u),

where G ∈ X(Q) of class C1 on Q and X is a vector field that satisfies X(u) = v. We define the

open and closed geodesic ball with centre u and radius v respectively, as

V (u, v) = {t ∈ Q : d(u, t) < v} and V [u, v] = {t ∈ Q : d(u, t) ≤ v}.

A parametrized curve ψ : I → Q is said to be a geodesic at t0 ∈ I if ∇ψ′(t)ψ
′(t) = 0 in the point

t0. If ψ is a geodesic at t, for all t ∈ I, we say that ψ is a geodesic. If [p, q] ⊆ I, the restriction of

ψ to [a, b] is called a geodesic segment joining ψ(p) to ψ(q). By the Hopf-Rinow theorem, if Q is
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complete metric space then for any u, t ∈ Q there exists a geodesic ψ, called minimizing geodesic

joining u to t with

l(ψ) = d(u, t).

Also, if v ∈ TuQ, then there exists a unique minimizing geodesic ψ such that ψ(0) = u and

ψ′(0) = v. The point ψ(1) is called the image of v by the exponential map at u, i.e.

expu : TuQ −→ Q

such that expu(v) = ψ(1) and for all p ∈ [0, 1], ψ(p) = expu(pv). Let ψ be a piecewise smooth

curve, then for any x, y ∈ R, the parallel transport along ψ is a mapping from Tψ(x)Q to Tψ(y)Q.

It is denoted by Mψ,.,. and given by

Mψ,x,y : Tψ(x)Q −→ Tψ(y)Q

v 7−→ V (ψ(y)),

where V is the unique vector field along ψ which satisfies ∇ψ′(t)V = 0 and V (ψ(x)) = v. It is

easy to show that Mψ,x,y is linear and one-to-one. Therefore Mψ,x,y : Tψ(x)Q → Tψ(y)Q is an

isomorphism and inverse of parallel transport is denoted by Mψ,y,x. Thus Mψ,x,y is an isometry

between Tψ(x)Q and Tψ(y)Q. For i ∈ N, we define Mi
ψ as

Mi
ψ,x,y : (Tψ(x)Q)i −→ (Tψ(y)Q)i,

where

Mi
ψ,x,y(u1, u2, . . . , ui) = (Mψ,x,y(u1),Mψ,x,y(u2), . . . ,Mψ,x,y(ui)).

It has the important properties:

M−1
ψ,y,x = Mψ,x,y, Mψ,x,y ◦Mψ,y,z = Mψ,x,z.

Definition 2.1. Let G ∈ X(Q) of class Ck on Q and j ∈ N. The covariant derivative of order j

of G is denoted by DjG and defined as:

DjG : Ck(TQ)× Ck(TQ)× · · · × Ck(TQ)︸ ︷︷ ︸
j-times

−→ Ck−j(TQ),

where
DjG(A1, A2, . . . , Aj−1, A) = ∇AD

j−1G(A1, A2, . . . , Aj−1)

−
j−1∑
i=1

Dj−1G(A1, A2, . . . ,∇AAi, . . . , Aj−1)
(2.1)

for all A1, A2, . . . , Aj−1 ∈ Ck(TQ).
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Definition 2.2. Let 0 ⊆ Q be an open convex set and G ∈ X(Q). The covariant derivative

DG = ∇(.)G is Lipschitz with constant E > 0, if for any geodesic ψ and x, y ∈ R such that

ψ[x, y] ⊆ 0, and it holds the inequality

∥Mψ,y,xDG(ψ(y))Mψ,x,y −DG(ψ(x))∥ ≤ E

∫ y

x

∥ψ′(t)∥dt,

and we write DG ∈ LipE(0). If Q is finite dimensional Euclidean space, then it coincides with

Lipschitz condition for DG : Q→ Q.

Definition 2.3. Let 0 ⊆ Q, be an open convex set. Suppose ψ is a curve in Q, [t, t+δe] ⊂ Dom(ψ)

and G ∈ X(Q) of class C0 on Q. The divided difference of first order for G on the points ψ(t) and

ψ(t+ δe) in the direction ψ′(t), is defined by

[ψ(t+ δx), ψ(t);G]ψ′(t) =
1

δe
(Mψ,t+δe,tG(ψ(t+ δe))−G(ψ(t))). (2.2)

When Q is a Banach space, if ψ is the geodesic joining u1 and u2, such that

ψ(t) = u1 + t(u2 − u1), t ∈ R,

then from (2.2), we obtain

[u2, u1;G](u2 − u1) = G(u2)−G(u1).

Also if DG(u) exists, then DG(u) = [u, u;G].

Proposition 2.4. The covariant derivative of G in the direction of ψ′(t) is defined as:

DG(ψ(t))ψ′(t) = ∇ψ′(t)Gψ(t)

= lim
δe→0

1

δe
(Mψ,t+δe,tG(ψ(t+ δe))−G(ψ(t))),

where ψ is a curve on Q and G ∈ X(Q) of class C1 on Q. If Q is finite dimensional Euclidean

space, then it coincides with the directional derivative in finite dimensional Euclidean space.

Next, we will show Taylor-type expansions in Riemannian manifolds which will be used in the

proof of the convergence of our iterative method.

Theorem 2.5. Let ψ be a geodesic in Q and G ∈ X(Q) of class C1 on Q. Then

Mψ,t,0G(ψ(t)) = G(ψ(0)) +

∫ t

0

Mψ,e,0DG(ψ(e))ψ
′(e)de. (2.3)

Proof. See [4].
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3 Steffensen-like method in Riemannian manifolds

In this section, we will prove convergence and uniqueness of Steffensen-like method in Riemannian

manifolds. The method (1.1) in Riemannian manifolds has the form

u0 ∈ 0,

Ln−1 = −aG(un−1), a ∈ R+, n ∈ N,

vn−1 = expun−1
(Ln−1),

ψn−1(t) = expun−1
(tLn−1),

Mn−1 = bG(un−1), b ∈ R+,

wn−1 = expun−1
(Mn−1),

Nn = −Mψn−1,1,0[vn−1, wn−1;G]
−1Mψn−1,0,1G(un−1),

un = expun−1
(Nn).



(3.1)

Assume that G(u) satisfies the following conditions:

(1) ∥G(u0)∥ ≤ ξ,

(2) ∥DG(u0)−1∥ ≤ ζ0,

(3) ∥Mϕ,j,iDG(ϕ(j))Mϕ,i,j − DG(ϕ(i))∥ ≤ K
∫ j
i
∥ϕ′(x)∥dx, where ϕ is a geodesic such that

ϕ[i, j] ⊆ 0.

Firstly, we shall show that a operator [v0, w0;G]
−1 is bounded. Let Iu0

: Tu0
Q → Tu0

Q be a

identity operator, ψn and αn be a family of minimizing geodesics such that ψn(0) = un, ψn(1) = vn,

αn(0) = wn, αn(1) = vn for each n = 0, 1, 2, . . . , we have

∥DG(u0)−1Mψ0,1,0[v0, w0;G]Mψ0,0,1 − Iu0
∥ ≤ ∥DG(u0)−1Mψ0,1,0([v0, w0;G]−DG(v0))Mψ0,0,1∥

+ ∥DG(u0)−1(Mψ0,1,0DG(v0)Mψ0,0,1 −DG(u0))∥

≤ ∥DG(u0)−1∥
∫ 1

0

∥Mα0,1,0DG(α0(t))Mα0,0,1 −DG(v0)∥dt

+ ∥DG(u0)−1∥∥Mψ0,1,0DG(v0)Mψ0,0,1 −DG(u0)∥

≤ ζ0

(
Kd(v0, u0) +

K

2
d(v0, w0)

)
≤ (3a+ b)

2
Kζ0ξ,

if (3a+ b)Kξζ0 < 2, then the operator Mψ0,1,0[v0, w0;G]Mψ0,0,1 is invertible and

∥[v0, w0;G]
−1∥ ≤ 2ζ0

2− (3a+ b)Kξζ0
= c.
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Now, we define the polynomial

z(f) =
L

2
f2 − f

c
+ ξ, L = K

(
1 +

3a+ b

c

)
, f ∈ [0, f ′]. (3.2)

Let f∗ =
1−

√
1− 2Lξc2

Lc
and f∗∗ =

1 +
√
1− 2Lξc2

Lc
be two positive roots of z(f) such that

0 < f∗ ≤ f∗∗ < f ′ if Lξc2 ≤ 1
2 . Also for all n ≥ 0, define the sequences

fn+1 = fn − z(fn)

z′(fn)
, f0 = 0,

ζn+1 =
ζ0

1− ζ0Kd(un+1, u0)
.

(3.3)

Before proving the convergence of iterative method firstly we will prove some lemmas which will

be used to prove the theorem.

Lemma 3.1. Let G ∈ X(Q) of class C1 on Q, then for any n ∈ N, we have

Mϕ,1,0G(un) =
(∫ 1

0

(
Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(un−1)

)
dt

+
(
DG(un−1)−Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1

))
Nn,

where ϕ is a family of minimizing geodesics such that ϕ(0) = un−1, ϕ(1) = un.

Proof. We know that

[ϕ(s+ h), ϕ(s);G]ϕ
′
(s) =

1

h

(
Mϕ,s+h,sG(ϕ(s+ h))−G(ϕ(s))

)
,

put s = 0 and h = 1 in above equality, we get

[un, un−1;G]ϕ
′
(0) = Mϕ,1,0G(un)−G(un−1).

Since ϕ(t) = expun−1
(tNn), we have ϕ

′
(0) = Nn.

We obtain that

[un, un−1;G]Nn = Mϕ,1,0G(un)−G(un−1). (3.4)

By (3.1), we have

Nn = −Mψn−1,1,0[vn−1, wn−1;G]
−1Mψn−1,0,1G(un−1)

or

G(un−1) = −Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1Nn. (3.5)
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By (3.4) and (3.5), we obtain

Mϕ,1,0G(un) =
(
[un, un−1;G]−Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1

)
Nn

=

(∫ 1

0

(
Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(un−1)

)
dt

+
(
DG(un−1)−Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1

))
Nn.

Lemma 3.2. Suppose the sequence {fn} is generated by (3.3). If Lξc2 ≤ 1
2 and f ∈ [0, f∗], then

the sequence {fn} is increasing and bounded above. Hence converges to f∗.

Proof. We define the function h by

h(f) = f − z(f)

z′(f)
.

Then differentiating both sides, we get

h′(f) =
z(f)z′′(f)(
z′(f)

)2 ,

as z(f) ≥ 0, z′′(f) > 0, z′(f) < 0 in [0, f∗]. We have

h′(f) =
z(f)z′′(f)(
z′(f)

)2 ≥ 0, ∀f ∈ [0, f∗].

It shows that the function h is increasing on [0, f∗]. So, if fk ∈ [0, f∗] for some k ∈ N, then

fk ≤ fk −
z(fk)

z′(fk)
= fk+1

and

fk+1 = fk −
z(fk)

z′(fk)
≤ f∗ − z(f∗)

z′(f∗)
= f∗.

Thus, it completes the proof of Lemma 3.2.

Now we can demonstrate the convergence of our method.

Theorem 3.3. Let Q be a complete Riemannian manifold, 0 ⊆ Q be an open convex set and

G ∈ X(Q) satisfies the conditions (1)− (3) with:

(3a+ b)ξKζ0 < 2, Lξc2 ≤ 1

2
, ζ0Kf

∗ < 1, Kζ0(3f
∗ + ξ + f∗∗) < 2, V (u0, f

∗) ⊆ 0.

Then, the method given by (3.1) converges to a singular point u∗ of the vector field G in V [u0, f
∗]

and the solution u∗ is unique in V [u0, f
∗∗ + ξ].
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Proof. To prove the theorem, at first we shall prove some conditions for all i = 0, 1, 2, . . .

(C1) ui ∈ V [u0, f
∗],

(C2) vi ∈ V [u0, f
∗],

(C3) wi ∈ V [u0, f
∗],

(C4) ∥DG(ui)−1∥ ≤ ζi.

For i = 0, (C1) and (C4) are trivial and since

d(v0, u0) = aξ ≤ f∗, d(w0, u0) = bξ ≤ f∗,

therefore (C1)− (C4) are true for i = 0. Now we will prove for i ∈ N. We have

d(u1, u0) ≤ ∥[v0, w0;G]
−1∥∥G(u0)∥ ≤ cξ = f1 − f0 ≤ f∗,

therefore u1 ∈ V [u0, f
∗]. By Lemma 3.1, we have

Mϕ,1,0G(un) =

(∫ 1

0

(
Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(un−1)

)
dt

+
(
DG(un−1)−Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1

))
Nn.

For n = 1, we obtain that

∥G(u1)∥ = ∥Mϕ,1,0G(u1)∥ =

∥∥∥∥∥
(∫ 1

0

(
Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(u0)

)
dt

+
(
DG(u0)−Mψ0,1,0[v0, w0;G]Mψ0,0,1

))
N1

∥∥∥∥∥
≤
∫ 1

0

∥Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(u0)∥∥N1∥dt

+ ∥DG(u0)−Mψ0,1,0[v0, w0;G]Mψ0,0,1

+Mψ0,1,0DG(v0)Mψ0,0,1 −Mψ0,1,0DG(v0)Mψ0,0,1∥∥N1∥

≤ K

2
d(u1, u0)

2 + ∥Mψ0,1,0DG(v0)Mψ0,0,1 −DG(u0)∥∥N1∥

+ ∥[v0, w0;G]−DG(v0)∥∥N1∥

=
K

2
d(u1, u0)

2 + ∥Mψ0,1,0DG(v0)Mψ0,0,1 −DG(u0)∥∥N1∥

+

∫ 1

0

∥
(
Mα0,1,0DG(α0(t))Mα0,0,1 −DG(v0)

)
∥∥N1∥dt

≤ K

2
d(u1, u0)

2 +
K(3a+ b)

2
∥G(u0)∥d(u1, u0)

≤ K

2
(f1 − f0)

2 +
K(3a+ b)

2
z(f0)(f1 − f0) ≤

L

2
(f1 − f0)

2 = z(f1).
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As the sequence (3.3) is increasing and the polynomial (3.2) is decreasing in [0, f∗], we have

d(v1, u0) ≤ d(u1, u0) + d(v1, u1) = d(u1, u0) + ∥L1∥ = d(u1, u0) + a∥G(u1)∥ ≤ f∗,

d(w1, u0) ≤ d(u1, u0) + d(w1, u1) = d(u1, u0) + ∥M1∥ = d(u1, u0) + b∥G(u1)∥ ≤ f∗,

so that v1, w1 ∈ V [u0, f
∗]. We suppose that ui, vi−1, wi−1 ∈ V [u0, f

∗], for i = 2, 3, 4, . . . , n. Then

we will prove for i = n+ 1. Since

z(fn) =

∫ 1

0

(
z′
(
fn−1 + x(fn − fn−1)

)
− z′(fn−1)

)
dx(fn − fn−1)

= L

∫ 1

0

x(fn − fn−1)
2dx =

L

2
(fn − fn−1)

2,

we have ∥G(un)∥ ≤ z(fn), for all n ∈ N, as

∥G(un)∥ = ∥Mϕ,1,0G(un)∥ =

∥∥∥∥∥
(∫ 1

0

(
Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(un−1)

)
dt

+
(
DG(un−1)−Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1

))
Nn

∥∥∥∥∥
≤
∫ 1

0

∥Mϕ,1,0DG(ϕ(t))Mϕ,0,1 −DG(un−1)∥∥Nn∥dt

+ ∥DG(un−1)−Mψn−1,1,0[vn−1, wn−1;G]Mψn−1,0,1

+Mψn−1,1,0DG(vn−1)Mψn−1,0,1 −Mψn−1,1,0DG(vn−1)Mψn−1,0,1∥∥Nn∥

≤ K

2
d(un, un−1)

2 + ∥Mψn−1,1,0DG(vn−1)Mψn−1,0,1 −DG(un−1)∥∥Nn∥

+ ∥[vn−1, wn−1;G]−DG(vn−1)∥∥Nn∥

=
K

2
d(un, un−1)

2 + ∥Mψn−1,1,0DG(vn−1)Mψn−1,0,1 −DG(un−1)∥∥Nn∥

+

∫ 1

0

∥
(
Mαn−1,1,0DG(αn−1(t))Mαn−1,0,1 −DG(vn−1)

)
∥∥Nn∥dt

≤ K

2
d(un, un−1)

2 +
K(3a+ b)

2
∥G(un−1)∥d(un, un−1)

≤ K

2
(fn − fn−1)

2 +
K(3a+ b)

2
z(fn−1)(fn − fn−1) ≤

L

2
(fn − fn−1)

2 = z(fn).

We have

d(vn, u0) ≤ d(un, u0) + d(vn, un) = d(un, u0) + a∥Ln∥ = d(un, u0) + a∥G(un)∥ ≤ f∗,

d(wn, u0) ≤ d(un, u0) + d(wn, un) = d(un, u0) + b∥Mn∥ = d(un, u0) + b∥G(un)∥ ≤ f∗,

so that vn, wn ∈ V [u0, f
∗]. Now we will show that the operator [vn, wn;G]

−1 is bounded. Let π



CUBO
26, 3 (2024)

Steffensen-like method in Riemannian manifolds 535

be a minimizing geodesic such that π(0) = u0, π(1) = vn. We have

∥DG(u0)−1Mπ,1,0[vn, wn;G]Mπ,0,1 − Iu0∥ ≤ ∥DG(u0)−1Mπ,1,0([vn, wn;G]−DG(vn))Mπ,0,1∥

+ ∥DG(u0)−1(Mπ,1,0DG(vn)Mπ,0,1 −DG(u0))∥

≤ ∥DG(u0)−1∥
∫ 1

0

∥Mαn,1,0DG(αn(t))Mαn,0,1 −DG(vn)∥dt

+ ∥DG(u0)−1∥∥Mπ,1,0DG(vn)Mπ,0,1 −DG(u0)∥

≤ Kζ0
2

(
2(fn − f0) + (3a+ b)z(fn)

)
< 1,

therefore Mπ,1,0[vn, wn;G]Mπ,0,1 is invertible and

∥[vn, wn;G]−1∥ = ∥Mπ,1,0[vn, wn;G]
−1Mπ,0,1∥

≤ ∥DG(u0)−1∥
1− ∥DG(u0)−1∥∥Mπ,1,0[vn, wn;G]−1Mπ,0,1 −DG(u0)∥

≤ −1

z′(fn)
.

We have

d(un+1, un) ≤ ∥[vn, wn;G]−1∥∥G(un)∥ ≤ −z(fn)
z′(fn)

= fn+1 − fn (3.6)

and

d(un+1, u0) ≤ d(un+1, un) + d(un, u0) ≤ fn+1 − fn + fn − f0 = fn+1 − f0 ≤ f∗.

So that un+1 ∈ V [u0, f
∗]. Suppose (C4) holds for i = 1, 2, . . . , n and then we will prove for

i = n+1. Let δ be a minimizing geodesic δ from [0, 1] to Q such that δ(0) = u0, δ(1) = un+1, and

∥δ′(0)∥ = d(un+1, u0).

We obtain that

∥Mδ,1,0DG(un+1)Mδ,0,1 −DG(u0)∥ ≤ K

∫ 1

0

∥δ′(0))∥ds = Kd(un+1, u0) ≤ Kf∗

and

∥DG(u0)−1∥∥Mδ,1,0DG(un+1)Mδ,0,1 −DG(u0)∥ ≤ ζ0Kf
∗ < 1,

as ζ0Kf∗ < 1. Therefore Mδ,1,0DG(un+1)Mδ,0,1 is invertible by Banach’s lemma and

∥DG(un+1)
−1∥ = ∥Mδ,1,0DG(un+1)

−1Mδ,0,1∥ ≤ ∥DG(u0)
−1∥

1− ∥DG(u0)−1∥∥Mδ,1,0DG(un+1)Mδ,0,1 −DG(u0)∥

≤ ζ0
1− ζ0Kd(un+1, u0)

= ζn+1,

therefore it holds for i = n+ 1. Thus (C1)− (C4) hold for all i ∈ N.

Now we will prove the Theorem. Since {fn} is a convergent sequence and hence it is a Cauchy

sequence therefore from (3.6) the sequence {un} is also a convergent sequence and let the sequence
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{un} converges to u∗ ∈ V [u0, f
∗]. Now we will show that u∗ is a singularity of G. As for all n ∈ N,

∥G(un)∥ ≤ z(fn),

taking n→ ∞ both sides, we get

∥G(u∗)∥ ≤ z(f∗) = 0.

Then, we have G(u∗) = 0. Finally, we will show that the singularity is unique in V [u0, f
∗∗ + ξ].

Let v∗ be another singularity of G in V [u0, f
∗∗ + ξ]. Let ρ be a minimizing geodesic from [0, 1] to

Q such that ρ(0) = u∗, ρ(1) = v∗, and ∥ρ′(0)∥ = d(u∗, v∗).

We obtain

∥Mρ,t,0DG(ρ(t))Mρ,0,t −DG(u∗)∥ ≤ K

∫ t

0

∥ρ′(0)∥ds = Ktd(u∗, v∗) ≤ Kt (d(u0, u
∗) + d(u0, v

∗))

and

∥DG(u∗)−1∥
∫ 1

0

∥Mρ,t,0DG(ρ(t))Mρ,0,t −DG(u∗)∥dt ≤
(

1

ζ0
−Kf∗

)−1 ∫ 1

0

Kt (d(u0, u
∗) + d(u0, v

∗)) dt

≤
(

1

ζ0
−Kf∗

)−1
K

2
(f∗ + f∗∗ + ξ) < 1.

It shows that the operator

T =

∫ 1

0

Mρ,t,0DG(ρ(t))Mρ,0,tdt

is invertible by Banach’s lemma and we have

0 = Mρ,1,0G(v
∗)−G(u∗) =

∫ 1

0

Mρ,t,0DG(ρ(t))Mρ,0,t(ρ
′(0))dt.

So that ρ′(0) = 0. We have 0 = ∥ρ′(0)∥ = d(u∗, v∗), implies that u∗ = v∗. Thus it completes the

proof.

Theorem 3.4. Suppose that u∗ is a singular point of G in V [u0, f
∗], if V (u0, f

∗∗) ⊆ 0, then the

only singular point of G in V [u0, r] is u∗, where f∗ < r ≤ f∗∗.

Proof. Let v∗ be a singular point of G in V [u0, r]. Let Λ be a minimizing geodesic such that

Λ(0) = u0, Λ(1) = v∗. Then by (2.3), we have

MΛ,1,0G(v
∗) = MΛ,1,0G(v

∗)−G(u0) +G(u0) +DG(u0)Λ
′(0)−DG(u0)Λ

′(0)

=

∫ 1

0

MΛ,t,0DG(Λ(t))MΛ,0,tΛ
′(0)dt−DG(u0)Λ

′(0) +G(u0) +DG(u0)Λ
′(0)

=

∫ 1

0

(
MΛ,t,0DG(Λ(t))MΛ,0,t −DG(u0)

)
Λ′(0)dt+G(u0) +DG(u0)Λ

′(0).
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Thus, we have

Ld(u0, v
∗)2

2
≥Kd(u0, v

∗)2

2
≥ ∥G(u0) +DG(u0)Λ

′(0)∥ ≥ 1

∥DG(u0)−1∥
∥DG(u0)−1G(u0) + Λ′(0)∥

≥ 1

ζ0

(
∥Λ′(0)∥ − ∥DG(u0)−1G(u0)∥

)
≥
(
d(u0, v

∗)

ζ0
− ξ

)
≥
(
d(u0, v

∗)

c
− ξ

)
.

Therefore

z(d(u0, v
∗)) =

Ld(u0, v
∗)2

2
− d(u0, v

∗)

c
+ ξ ≥ 0.

Since d(u0, v∗) ≤ r ≤ f∗∗, we have d(u0, v∗) ≤ f∗, hence by Theorem 3.3, u∗ = v∗.

4 Numerical examples

In this section, two examples are given to show the application of our theorem.

Example 4.1. Let us consider the vector field G from 0 = (−1, 1)3 ⊆ Q = R3 to 0 = (−1, 1)3

given by

G


u1

u2

u3

 =


eu1 − 1

u22 + u2

u3


with the max norm ∥ · ∥∞. For the point u = (u1, u2, u3)

T , the first and second Fréchet derivatives

of G are:

DG(u) =


eu1 0 0

0 2u2 + 1 0

0 0 1

 , D2G(u) =


eu1 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0

 .
Initially for u0 = (−0.005,−0.005,−0.005)T , we obtain

∥G(u0)∥ = max(| − 0.005|, | − 0.005|, | − 0.005|) = 0.005 = ξ,

∥DG(u0)
−1∥ = 1.0101 = ζ0, ∥D2G(u)∥ = max(0.995, 2, 0) = 2 = K.

Now, for a = 1, b = 1, all the assumptions of the convergence theorem are satisfied and the

Steffensen-like method can be applied to get the desired singular point.

Example 4.2. Let us consider the vector field G from R2 to R2 given by

G

u1
u2

 =

 cosu1+4u1

4

u2


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with the max norm ∥ · ∥∞. For the point u = (u1, u2)
T , the first and second Fréchet derivatives of

G are:

DG(u) =

− sinu1+4
4 0

0 1

 , D2G(u) =

− cosu1

4 0 0 0

0 0 0 0

 .
Initially for u0 = (0, 0)T , we obtain

∥G(u0)∥ =
1

4
= ξ, ∥DG(u0)−1∥ = 1 = ζ0, ∥D2G(u)∥ ≤ 1

4
= K.

Now, for a = 1, b = 1, all the assumptions for convergence are satisfied and the Steffensen-like

method can be applied to get the desired singular point.

5 Conclusion

In this paper, we have studied the semilocal convergence of Steffensen-like method for approximat-

ing the zeros of a vector field in Riemannian manifolds and established convergence theorem under

Lipschitz continuity condition on the first order covariant derivative of a vector field. Finally, two

examples are given to show the application of our theorem.
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