
CUBO, A Mathematical Journal

Vol. 26, no. 3, pp. 541–558, December 2024
DOI: 10.56754/0719-0646.2603.541

Investigating the existence and multiplicity of
solutions to φ(x)-Kirchhoff problem

Abolfazl Sadeghi1

Ghasem Alizadeh Afrouzi1,B

Maryam Mirzapour2

1Department of Mathematics, Faculty of

Mathematical Sciences, University of

Mazandaran, Babolsar, Iran.

sadeghi31587@mail.com

afrouzi@umz.ac.irB

2Department of Mathematics Education,

Farhangian University, P.O. Box

14665-889, Tehran, Iran.

m.mirzapour@cfu.ac.ir

ABSTRACT

In this article, we want to discuss variational methods such
as the Mountain pass theorem and the Symmetric Mountain
pass theorem, without the Ambrosetti-Rabinowitz condition.
We prove the existence and multiplicity of nontrivial weak
solutions for the problem of the following form

−
(
α− β

∫
Ω

1

φ(x)
|∇υ|φ(x)dx

)
∆φ(x)υ + |υ|ψ(x)−2υ

= λη(x, υ),

x ∈ Ω,(
α− β

∫
∂Ω

1

φ(x)
|∇υ|φ(x) dx

)
|∇υ|φ(x)−2 ∂υ

∂ν
= 0

x ∈ ∂Ω,

where α ≥ β > 0, ∆φ(x)υ is the φ(x)-Laplacian operator, Ω
is a smooth bounded domain in RN with smooth boundary
∂Ω and ν is the outer unit normal to ∂Ω, φ(x), ψ(x) ∈ C(Ω̄)

with 1 < φ(x) < N, φ(x) < ψ(x) < φ∗(x) :=
Nφ(x)

N − φ(x)
,

λ > 0 is a real parameter and η(x, t) ∈ C(Ω̄× R,R).
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RESUMEN

En este artículo discutimos métodos variacionales, como el
teorema del paso de la montaña y el teorema simétrico
del paso de la montaña, sin la condición de Ambrosetti-
Rabinowitz. Demostramos la existencia y multiplicidad de
soluciones débiles no triviales para el problema de la siguiente
forma

−
(
α− β

∫
Ω

1

φ(x)
|∇υ|φ(x)dx

)
∆φ(x)υ + |υ|ψ(x)−2υ

= λη(x, υ),

x ∈ Ω,(
α− β

∫
∂Ω

1

φ(x)
|∇υ|φ(x) dx

)
|∇υ|φ(x)−2 ∂υ

∂ν
= 0

x ∈ ∂Ω,

donde α ≥ β > 0, ∆φ(x)υ es el φ(x) operador Laplaciano, Ω
es un dominio acotado y suave en RN con borde suave ∂Ω y
ν es la normal unitaria exterior a ∂Ω, φ(x), ψ(x) ∈ C(Ω̄) con

1 < φ(x) < N, φ(x) < ψ(x) < φ∗(x) :=
Nφ(x)

N − φ(x)
, λ > 0 es

un parámetro real y η(x, t) ∈ C(Ω̄× R,R).

Keywords and Phrases: Generalized Lebesgue-Sobolev spaces, weak solutions, mountain pass theorem, symmet-

ric mountain pass theorem.
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1 Introduction

In this article, we consider the following problem
−
(
α− β

∫
Ω

1

φ(x)
|∇υ|φ(x) dx

)
∆φ(x)υ + |υ|ψ(x)−2υ = λ η(x, υ), x ∈ Ω,(

α− β
∫
∂Ω

1

φ(x)
|∇υ|φ(x) dx

)
|∇υ|φ(x)−2 ∂υ

∂ν
= 0, x ∈ ∂Ω,

(1.1)

where α ≥ β > 0, ∆φ(x)υ is the φ(x)-Laplacian operator, defined as ∆φ(x)υ := div(|∇υ|φ(x)−2∇υ) =∑N
i=1

(
|∇υ|φ(x)−2 ∂υ

∂xi

)
, Ω is a smooth bounded domain in RN with smooth boundary ∂Ω and

ν is the outer unit normal to ∂Ω and φ(x), ψ(x) ∈ C(Ω̄) with 1 < φ(x) < N , φ(x) < ψ(x) <

φ∗(x) :=
Nφ(x)

N − φ(x)
, λ > 0 is a real parameter. We define φ

l
and φs for convenience as follows:

φ
l
:= infΩ φ(x) and φs := supΩ φ(x), for all φ(x) ∈ C(Ω̄). The function η(x, t) ∈ C(Ω̄ × R,R)

satisfies:

(η1) |η(x, t)| ≤ c(1 + |t|r(x)−1), ∀(x, t) ∈ Ω× R, where c > 0 and φ(x) < r(x) < φ∗(x),

(η2) lim
t→0

η(x, t)

|t|φ(x)−2t
= 0, uniformly a.e. x ∈ Ω,

(η3) lim
|t|→∞

η(x, t)

|t|φs
= +∞, uniformly a.e. x ∈ Ω,

(η4) there exists a constant c0 > 0 such that Ĥ(x, t) ≤ Ĥ(x, s) + c0 for each x ∈ Ω, 0 < |t| < s,

where Ĥ(x, t) := t η(x, t)− φsH(x, t) and H(x, t) :=
∫ t
0
η(x, s)ds,

(η5) η(x,−t) = −η(x, t) for all (x, t) ∈ Ω× R.

In addition to the conditions given for η, the functions φ(x), ψ(x), r(x) must satisfy the following

condition, which we call the (φψr)-condition:

1 < φ
l
< φ(x) < φs < ψ

l
< ψ(x) < ψs < 2φ

l
< r

l
< r(x) < rs < φ∗(x).

Sobolev spaces are essential in contemporary analysis, especially in the study of partial differential

equations (PDEs) and functional analysis. These spaces generalize the classical concepts of dif-

ferentiability and integrability, offering a more adaptable structure for analyzing functions whose

derivatives might not be classically well-defined. By incorporating weak derivatives, Sobolev spaces

allow for the examination of broader issues in areas such as mathematical physics, fluid dynamics,

and engineering applications, see [1, 4, 5, 7–9,12,20,21,26,27,32,34,38].

The necessity of Sobolev spaces arises from their ability to handle irregularities and discontinuities

in functions that appear naturally in real-world problems. For instance, solutions to PDEs often

lack classical differentiability but possess weak derivatives that allow their analysis within Sobolev
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spaces. This makes them indispensable in addressing variational problems and boundary value

problems.

Kirchhoff’s problems, named after the German physicist Gustav Kirchhoff [28], are fundamental in

the study of mechanics and mathematical physics, particularly in understanding wave propagation

and elasticity theory. Kirchhoff’s equations describe the motion of elastic surfaces and play a key

role in modeling vibrating systems, such as strings, membranes, and plates. Recent research in this

field has focused on nonlinear versions of Kirchhoff’s equations, particularly in higher dimensions,

where the complexity of the problem increases, see [2, 6, 10,11,14,17–19,24,25,31,34,37].

Variational methods have a relatively long history. Many scientists have studied in this field and

have achieved many successes. Due to the applicability of this method in experimental sciences, it

has always been of interest [?, 3, 8, 13, 15, 16, 22, 23, 26, 29, 33, 35, 36]. In these methods, especially

those used to solve boundary value problems, the Palais-Smale condition ((PS)-condition in short)

plays a crucial role in ensuring the existence of critical points, which correspond to solutions of the

problem. This condition provides a framework for the analysis of functionals in infinite-dimensional

spaces, such as Sobolev spaces. On the other hand, the Cerami condition ((C)-condition in short)

is a variation of the (PS)-condition that is particularly useful in dealing with problems where the

(PS)-condition might not hold. This modified condition is often more applicable in certain classes

of problems, particularly those involving non-compact domains or complex geometries.

Now we state our main results.

Theorem 1.1. Suppose (η1)− (η4) and the (φψr)-condition hold. Then problem (1.1) has at least

a nontrivial weak solution for all λ < λ0 (λ0 which has been given in Section 3).

Theorem 1.2. Suppose (η1), (η2), (η4), (η5) and the (φψr)-condition hold. Then problem (1.1) has

infinitely many weak solutions for all λ < λ0 (λ0 which has been given in Section 3).

To prove our results, we will use inequalities and applied theorems such as Hölder and Poincaré

inequalities and the embedding, Mountain pass and Symmetric Mountain pass theorems.

2 Preliminary results

In this section, we recall some important definitions and essential characteristics of the generalized

Lebesgue-Sobolev spaces Lφ(x)(Ω) and W 1,φ(x)(Ω) where Ω ⊂ RN is an open set. In this regard,

we refer readers to the book of Musielak [32] and the papers [20,21]. Set

C+(Ω̄) := {h : h ∈ C(Ω̄), h(x) > 1 for all x ∈ Ω̄},

and for each φ(x) ∈ C+(Ω̄)
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Lφ(x)(Ω) =

{
υ : a measurable real-valued function such that

∫
Ω

|υ(x)|φ(x) dx <∞
}
,

is the definition of variable exponent Lebesgue space, that by mentioned the following norm (so-

called Luxemburg norm) is reflexive and separable Banach space

∥υ∥φ(x) := inf

{
µ > 0;

∫
Ω

∣∣∣∣υ(x)µ
∣∣∣∣φ(x) dx ≤ 1

}
.

These spaces are similar to classical Lebesgue spaces in many aspects [35]:

a) If 0 < |Ω| < ∞ and φ1(x), φ2(x) are variable exponents so that φ1(x) ≤ φ2(x) a.e. x ∈ Ω,

then there is a continuous embedding

Lφ2(x)(Ω) ↪→ Lφ1(x)(Ω).

b) The Hölder inequality holds, i.e., if Lφ
′(x)(Ω) is a conjugate of Lφ(x)(Ω), where

1

φ(x)
+

1

φ′(x)
= 1, we have

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ (
1

φ
l

+
1

φ′
l

)
∥u∥φ(x)∥v∥φ′(x), ∀u ∈ Lφ(x)(Ω), ∀v ∈ Lφ

′(x)(Ω).

The modular plays an essential role in manipulating the Lφ(x) spaces and is defined by the

following relation, ρφ(x) : Lφ(x) → R;

ρφ(x)(υ) =

∫
Ω

|υ|φ(x)dx.

Proposition 2.1 ([20]). If υ, υn ∈ Lφ(x)(Ω) and φs < +∞, then the following relations hold

(1) ∥υ∥φ(x) > 1 =⇒ ∥υ∥φlφ(x) ≤ ρφ(x)(υ) ≤ ∥υ∥φsφ(x);

(2) ∥υ∥φ(x) < 1 =⇒ ∥υ∥φsφ(x) ≤ ρφ(x)(υ) ≤ ∥υ∥φlφ(x);

(3) ∥υ∥φ(x) < 1 (respectively, = 1; > 1) ⇐⇒ ρφ(x)(υ) < 1 (respectively, = 1; > 1);

(4) ∥υn∥φ(x) → 0 (respectively, → +∞) ⇐⇒ ρφ(x)(υ) = 0 (respectively, → +∞);

(5) lim
n→∞

∥υn − υ∥φ(x) = 0 ⇐⇒ lim
n→∞

ρφ(x)(υn − υ) = 0;

(6) For υ ̸= 0, ∥υ∥φ(x) = λ ⇐⇒ ρ
(υ
λ

)
= 1.

Definition 2.2 ([21]). If Ω ⊂ RN , the Sobolev space with variable exponent W 1,φ(x)(Ω) is defined

as

W 1,φ(x)(Ω) := {υ : Ω → R : υ ∈ Lφ(x)(Ω), |∇υ| ∈ Lφ(x)(Ω)},



546 A. Sadeghi, G. A. Afrouzi & M. Mirzapour CUBO
26, 3 (2024)

endowed with the following norm

∥υ∥W 1,φ(x) := |||υ||| = ∥υ∥φ(x) + ∥∇υ∥φ(x),

or equivalently

|||υ||| = inf

µ > 0,

∫
Ω

∥∇υ(x)∥φ(x)φ(x) + ∥υ∥φ(x)φ(x)

µφ(x)
dx ≤ 1

 .

Proposition 2.3 ([20]). The Poincaré inequality in W 1,φ(x)(Ω) holds, that is, there exists a positive

constant c so that

∥υ∥φ(x) ≤ c∥∇υ∥φ(x), ∀υ ∈W 1,φ(x)(Ω). (2.1)

Proposition 2.4 (Sobolev embedding [21]). If φ(x), ψ(x) ∈ C+(Ω̄) and 1 ≤ ψ(x) ≤ φ∗(x) for

each x ∈ Ω̄, then there exists a continuous embedding

W 1,φ(x)(Ω) ↪→ Lψ(x)(Ω). (2.2)

If 1 < ψ(x) < φ∗(x), the continuous embedding is compact.

In the sequel, the constant cemb represents the Sobolev embedding quantity, and we denote by

X :=W 1,φ(x)(Ω);X∗ = (W 1,φ(x)(Ω))∗, the dual space and ⟨·, ·⟩, the dual pair.

Lemma 2.5 ([21]). Suppose

J(υ) =

∫
Ω

1

φ(x)
|∇υ|φ(x) dx, ∀υ ∈ X,

then J(υ) ∈ C1(X,R) and the derivative operator J ′ of J is

⟨J ′(υ), ϑ⟩ =
∫
Ω

|∇υ|φ(x)−2∇υ∇ϑ dx, ∀υ, ϑ ∈ X

and the following relations hold:

(1) J is a convex functional,

(2) J ′ : X → X∗ is a strictly monotone operator and bounded homeomorphism,

(3) J ′ is a mapping of type (S+), it means, υn ⇀ υ (weakly) and lim
n→+∞

sup⟨J ′(υ), υn − υ⟩ ≤ 0,

imply υn → υ (strongly) in W
1,φ(x)
0 (Ω).
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Definition 2.6. υ ∈ X is a weak solution of problem (1.1), if

(
α− β

∫
Ω

1

φ(x)
|∇υ|φ(x) dx

)∫
Ω

|∇υ|φ(x)−2∇υ∇ν dx+

∫
Ω

|υ|ψ(x)−2υν dx = λ

∫
Ω

η(x, υ)ν dx,

∀ν ∈ X.

The energy functional related to our problem, Jλ : X → R such that

Jλ(υ) = α

∫
Ω

1

φ(x)
|∇υ|φ(x) dx− β

2

(∫
Ω

1

φ(x)
|∇υ|φ(x) dx

)2

+

∫
Ω

1

ψ(x)
|υ|ψ(x) dx− λ

∫
Ω

H(x, υ) dx, ∀υ ∈ X, (2.3)

which is also well defined and of class C1 in (X,R).

Now we define J ′
λ as the derivative operator of Jλ in the weak sense, by the following formula,

⟨J ′
λ(υ), ν⟩ =

(
α− β

∫
Ω

1

φ(x)
|∇υ|φ(x) dx

)∫
Ω

|∇υ|φ(x)−2∇υ∇ν dx

+

∫
Ω

|υ|ψ(x)−2υν dx− λ

∫
Ω

η(x, υ)ν dx, ∀υ, ν ∈ X. (2.4)

A critical point of Jλ is clearly a weak solution of problem (1.1).

Definition 2.7. If (X, ∥ · ∥) is a real Banach space and J ∈ C1(X,R), then we can say that

J ensures Cerami-condition in level c ((C)c-condition in short), if for all sequence {υn} ⊂ X

satisfying

J(υn) → c and ∥J ′(υn)∥X∗(1 + ∥υn∥X) → 0, (2.5)

then, {υn} contains a convergent subsequence.

If this condition holds for each c ∈ R, it can be called (C)-condition.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we will use the following Mountain pass theorem.

Theorem 3.1 (Mountain pass theorem [8]). Let X be a real Banach space, let Jλ : X → R as

Jλ ∈ C1(X,R) that ensures the (C)c-condition and Jλ(0) = 0, such that

(a) there exists R > 0 and α > 0, so that Jλ(υ) ≥ α for each υ ∈ X with |||υ||| = R,

(b) there is a function e ∈ X such that |||e||| > R and Jλ(e) ≤ 0.

So, Jλ has a critical value c ≥ α, that is υ ∈ X, such that Jλ(υ) = c and J ′
λ(υ) = 0 in X∗.
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First, we prove that Jλ has the geometry of the above Mountain pass theorem.

Lemma 3.2. (a) Under the condition (η3) the functional Jλ is unbounded from below.

(b) Under the conditions (η1) and (η2), υ = 0 is a strict local minimum for Jλ.

Proof. (a) By (η3), we have

∀M > 0, ∃cM > 0; η(x, t) ≥M |t|φs − cM , ∀x ∈ Ω, t ∈ R. (3.1)

If v ∈ X for v > 0, and (3.1), we have

Jλ(tv) = α

∫
Ω

tφ(x)

φ(x)
|∇v|φ(x) dx− β

2

(∫
Ω

tφ(x)

φ(x)
∇v|φ(x) dx

)2

+

∫
Ω

tψ(x)

ψ(x)
|v|ψ(x) dx

− λ

∫
Ω

H(x, tv) dx

≤ αtφs
∫
Ω

1

φ(x)
|∇v|φ(x) dx− β

2
t2φl

(∫
Ω

1

φ(x)
|∇v|φ(x) dx

)2

+ tψs
∫
Ω

1

ψ(x)
|v|ψ(x) dx

−Mλtφs
∫
Ω

|v|φ(x) dx+ λcM |Ω| → −∞, as t→ +∞,

since φs < ψs < 2φ
l
, thus, Jλ is unbounded from below.

(b) According to the conditions (η1) and (η2), we have

∀ε > 0, ∃cε > 0; H(x, t) ≤ ε|t|φ(x) + cε|t|r(x), ∀(x, t) ∈ Ω× R.

Therefore, if υ ∈ X with |||υ||| ≤ 1, by Poincaré inequality and Sobolev embedding (2.2), we

have

Jλ(υ) = α

∫
Ω

1

φ(x)
|∇υ|φ(x) dx− β

2

(∫
Ω

|∇υ|φ(x) dx
)2

+

∫
Ω

1

ψ(x)
|υ|ψ(x) dx− λ

∫
Ω

H(x, υ) dx,

≥ α

φs

∫
Ω

|∇υ|φ(x)dx− β

2φ2
l

(∫
Ω

|∇υ|φ(x) dx
)2

− ελ

∫
Ω

|υ|φ(x) dx− cελ

∫
Ω

|υ|r(x) dx

≥
(
α

φs
− c2λε

)∫
Ω

|∇υ|φ(x) dx− β

2φ
l

(∫
Ω

|∇υ|φ(x) dx
)2

− cελ
(
∥υ∥rlr(x) + ∥υ∥rsr(x)

)
≥

(
α

φs
− c2ελ

)
|||υ|||φs − β

2φ2
l

|||υ|||2φl − cελ
(
c
r
l

emb|||υ|||
r
l + crsemb|||υ|||

rs
)

≥
(
α

φs
− c2ελ

)
|||υ|||φs − β

2φ2
l

|||υ|||2φl − cελ
(
c
r
l

emb + crsemb

)
|||υ|||rl ,

where embedding constant cemb > 0. By selecting ε ≤ α

2c2φsλ
, we have

Jλ(υ) ≥
α

2φs
|||υ|||φs − β

2φ2
l

|||υ|||2φl − cελ
(
c
r
l

emb + crsemb

)
|||υ|||rl .
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By dividing the previous inequality sides on the positive value |||υ|||φs and since, we know

that φs < 2φ
l
< r

l
, we have

Jλ(υ) ≥ |||υ|||φs
[
α

2φs
− β

2φ2
l

|||υ|||2φl−φs − cελ
(
c
r
l

emb + crsemb

)
|||υ|||rl−φs

]
,

now, we can choose |||υ||| = R > 0, such that

α

2φs
− β

2φ2
l

R2φ
l
−φs − cελ

(
c
r
l

emb + crsemb

)
Rrl−φs > 0. (3.2)

We can infer that

cελ
(
c
r
l

emb + crsemb

)
Rrl−φs <

α

2φs
− β

2φ2
l

R2φl−φs =
αφ2

l − βφsR
2φl−φs

2φsφ2
l

,

since cε and cemb > 0, we can infer that

λ <
αφ2

l − βφsR
2φl−φs

2cε

(
c
r
l

emb + crsemb

)
φsφ2

lR
rl−φs

:= λ0, (3.3)

therefore, by (3.2) and (3.3) we have

α

2φs
− β

2φ2
l

R2φ
l
−φs − cελ

(
c
r
l

emb + crsemb

)
Rrl−φs > 0, ∀λ ∈ (0, λ0).

So, there exists δ > 0 so that Jλ(υ) ≥ δ > 0 for all υ ∈ X with |||υ||| = R. Thus, the proof

is complete.

Now, we prove that Jλ ensures the (C)c-condition.

Lemma 3.3. If (η1) − (η4) hold, then for all λ ≥ 0, Jλ ensures the (C)c-condition at any level

c ∈
(
−∞,

α2

2β

)
.

Proof. At the beginning, we consider the boundary condition for {υn}, let {υn} ⊂ X be a (C)c

sequence related to the Jλ, such that

Jλ(υn) → c and ∥J ′
λ(υn)∥X∗(1 + |||υn|||) → 0. (3.4)

Using (η3) and (3.4), we can write

φsc+On(1) ≥ φsJλ(υn)− ⟨J ′
λ(υn), υn⟩

= α

∫
Ω

(
φs
φ(x)

− 1

)
|∇υn|φ(x) dx+

∫
Ω

(
ψs
ψ(x)

− 1

)
|υn|ψ(x) dx

+ λ

∫
Ω

Ĥ(x, υn) dx− β

(∫
Ω

1

φ(x)
|∇υn|φ(x) dx

)(∫
Ω

[
φs

2φ(x)
− 1

]
|∇υn|φ(x) dx

)
.
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Since α ≥ β and 2φ
l
> φs we have

φsc+On(1) ≥ β

(
1

φs
− 1

2φ
l

)(∫
Ω

|∇υn|φ(x) dx
)2

+

∫
Ω

(
ψs
ψ(x)

− 1

)
|υn|ψ(x) dx

+ λ

∫
Ω

(Ĥ(x, 0)− c0) dx

≥ β

(
1

φs
− 1

2φ
l

)
|||υn|||2φl +

∫
Ω

(
ψs
ψ(x)

− 1

)
|υn|ψ(x) dxa+ λ

∫
Ω

(Ĥ(x, 0)− c0) dx,

therefore

φsc+On(1) ≥ β

(
1

φs
− 1

2φ
l

)
|||υn|||2φl +

∫
Ω

(
ψs
ψ(x)

− 1

)
|υn|ψ(x) dx+ λ

∫
Ω

(Ĥ(x, 0)− c0) dx.

Since λ ≥ 0, we have

φsc+On(1) ≥ β

(
1

φs
− 1

2φ
l

)
|||υn|||2φl − λc0|Ω|,

thus

β

(
1

φs
− 1

2φ
l

)
|||υn|||2φl ≤ φsc+On(1) + λc0|Ω|.

Since φs < 2φ
l
, β > 0 and λ ≥ 0, it is clear that {υn} is bounded in X. Then

υn ⇀ υ weakly in X. (3.5)

By Sobolev embedding (2.2), we have the following compact embedding

X ↪→ Ls(x)(Ω) for 1 ≤ s(x) < φ∗(x). (3.6)

From (3.5) and (3.6), we can infer that

υn ⇀ υ in X, υn → υ in Ls(x)(Ω), υn(x) → υ(x), a.e. in Ω. (3.7)

Using Hölder inequality and (3.7), we have

∣∣∣∣∫
Ω

|υn|ψ(x)−2υn(υn − υ) dx

∣∣∣∣ ≤ ∫
Ω

|υn|ψ(x)−1|υn − υ| dx

≤ ∥|υn|ψ(x)−1∥ ψ(x)
ψ(x)−1

∥υn − υ∥ψ(x) → 0 as n→ ∞,

thus ∫
Ω

|υn|ψ(x)−2υn(υn − υ) dx→ 0, as n→ ∞. (3.8)
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By (η1) and (η2), we have that for each ε ∈ (0, 1), there is cε > 0 so that

|η(x, υn)| ≤ ε|υn|φ(x)−1 + cε|υn|r(x)−1. (3.9)

By Sobolev embedding (2.2), Hölder inequality and (3.9), we have

∣∣∣∣∫
Ω

η(x, υn)(υn − υ) dx

∣∣∣∣ ≤ ∫
Ω

(ε|υn|φ(x)−1|υn − υ|+ cε|υn|r(x)−1|υn − υ|) dx

≤ ε∥|υn|φ(x)−1∥ φ(x)
φ(x)−1

∥υn − υ∥φ(x) + cεε∥|υn|r(x)−1∥ r(x)
r(x)−1

∥υn − υ∥r(x) → 0,

as n→ ∞. Therefore ∫
Ω

η(x, υn)(υn − υ) dx→ 0, as n→ ∞. (3.10)

From (3.4), we have ⟨J ′
λ(υn), υn − υ⟩ → 0, as n→ ∞, so, we can infer that

(
α− β

∫
Ω

1

φ(x)
|∇υn|φ(x) dx

)∫
Ω

|∇υn|φ(x)−2∇υn(∇υn −∇υ) dx

+

∫
Ω

|υn|ψ(x)−2υn(υn − υ) dx− λ

∫
Ω

η(x, υn)(υn − υ) dx→ 0. (3.11)

From (3.8), (3.10), (3.11), we can write(
α− β

∫
Ω

1

φ(x)
|∇υn|φ(x) dx

)∫
Ω

|∇υn|φ(x)−2∇υn(∇υn −∇υ) dx→ 0, as n→ ∞. (3.12)

Since {υn} is bounded in X, therefore, it is necessary for the following positive sequence to converge

to a non-negative value such as υp, which means,∫
Ω

1

φ(x)
|∇υn|φ(x) dx→ υp ≥ 0, as n→ ∞.

Similar to the proof of Lemma 3.1 in [23], we have the sequence
{
α− β

∫
Ω

1

φ(x)
|∇υn|φ(x) dx

}
is

bounded, when n is large enough. So, it follows from (3.12) that∫
Ω

|∇υn|φ(x)−2∇υn(∇υn −∇υ) dx→ 0,

as n → ∞. So, by the (S+) property (see Lemma 2.5), we get |||υn||| → |||υ||| (strongly) in X,

that means Jλ ensures the (C)c-condition. Moreover, considering the proof of Lemma 3.1, Lemma

3.2 and Remark 3.1 in [23], we deduce that the (C)c-condition is satisfied for c <
α2

2β
.
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3.1 Proof of Theorem 1.1

Proof. It is clear that Jλ(0) = 0, by Lemma 3.3, Jλ ensures the (C)c-condition where c ∈(
−∞,

α2

2β

)
. Considering Lemma 3.2, we prove that Jλ has the geometry of the Mountain pass

theorem, thus, all the assumptions of Mountain pass theorem are satisfied, therefore, for each

λ < λ0, our problem has at least a nontrivial weak solution in X.

4 Proof of Theorem 1.2

In this section, we will prove that problem (1.1) has many pairs of solutions by using the following

Symmetric Mountain pass theorem.

Theorem 4.1 ([8]). Let X be a real Banach space, and Jλ ∈ C1(X,R) that ensures the (C)c-

condition and Jλ(0) = 0 and Jλ be an even functional, such as

(A) there exist two constants a,R > 0, so that Jλ(υ) ≥ a for each u ∈ X with |||υ||| = R,

(B) for each finite dimensional subspace E ⊂ X, there exists RE > 0 so that Jλ(υ) ≤ 0 on E\BR.

Then Jλ has a sequence of critical points {υn} such that Jλ(υn) → +∞.

It is clear that for the even functional Jλ, we have Jλ(0) = 0 and by Lemma 3.3, Jλ ensures the

(C)c-condition where c ∈
(
−∞,

α2

2β

)
. Therefore, it suffices to prove that the two conditions (A)

and (B) of the Theorem 4.1 are true for the functional Jλ. On the other hand by the proof of

Lemma 3.2 (a), where

a0 =
αφ2

l − βφsR
2φl−φs

2cε

(
c
r
l

emb + crsemb

)
φsφ2

lR
rl−φs

and a = a0R
φs for each λ ∈ (0, a0), there is a > 0 so that for each υ ∈ X with |||υ||| = R, we have

Jλ(υ) ≥ a > 0. Thus, it suffices to consider only the condition (B).

We use the indirect proof method, thus assume that {υn} ⊂ E such that if |||υn||| → +∞ as

n→ +∞, then there is M ∈ R so that it is a fixed constant, then

Jλ(υn) ≥M, ∀n ∈ N. (4.1)

Now, for any υn ∈ E ⊆ X, put Vn :=
υn

|||υn|||
. It is clear that |||Vn||| = 1. On the other hand, since

dim E < +∞, we have

∃V ∈ E\{0}; |||Vn − V ||| → 0.

We can infer that

Vn(x) → V (x) a.e. x ∈ Ω, as n→ ∞,
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since V (x) ̸= 0 → |υn(x)| → +∞, as n→ +∞, (by (4.1)).

By (η3), we can infer that

lim
n→+∞

H(x, υn(x))

|||υn|||φs
= lim
n→+∞

H(x, υn(x))

|υn(x)|φs
|Vn(x)|φs = +∞,

for all x ∈ Ω0 := {x ∈ Ω : V (x) ̸= 0} and by (η4), there is s0, such that

H(x, s)

|s|φs
> 1, ∀x ∈ Ω and |s| > s0. (4.2)

Now by (η1), we can write

∃C2 > 0; |H(x, s)| ≤ C2, ∀(x, s) ∈ Ω× [−s0, s0]. (4.3)

Using (4.2) and (4.3), we conclude that

∃C4 ∈ R, H(x, s) ≥ C4, ∀(x, s) ∈ Ω× R. (4.4)

Thus
H(x, υn)− C4

|||υn|||φs
≥ 0, ∀x ∈ Ω, ∀n ∈ N.

Then, we have
H(x, υn)

|υn(x)|φs
|Vn(x)|φs −

C4

|||υn|||φs
≥ 0, ∀x ∈ Ω, ∀n ∈ N. (4.5)

Thus, by Poincaré inequality, (4.1) and (4.5), we can infer that

0 ≤ lim
n→+∞

Jλ(υn)

|||υn|||φs

≤ lim
n→+∞

[
α
∫
Ω

1
φ(x) |∇υn|

φ(x) dx+
∫
Ω

1
ψ(x) |υn|

ψ(x) dx

|||υn|||φs
− λ

∫
Ω

H(x, υn)

|||υn|||φs
dx

]
.

Since ψs > φs, and λ > 0, we have

0 ≤ lim
n→+∞

[
α
∫
Ω

1
φ(x) |∇υn|

φ(x) dx

|||υn|||φs
+

∫
Ω

1
ψ(x) |υn|

ψ(x) dx

|||υn|||ψs
− λ

∫
Ω

H(x, υn)

|||υn|||φs
dx

]

≤ α

φ
l

+
C5

ψs
− λ lim

n→+∞

∫
Ω

H(x, υn)− C4

|||υn|||φs
dx

≤ α

φ
l

+
C5

ψs
− λ lim inf

n→+∞

∫
Ω0

H(x, υn)− C4

|||υn|||φs
dx

≤ α

φ
l

+
C5

ψs
− λ lim inf

n→+∞

∫
Ω0

H(x, υn)

|υn(x)|φs
|Vn(x)|φs dx→ −∞,

which is a contradiction. Then, the proof of (B) in the Theorem 4.1 is complete.
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4.1 Proof of Theorem 1.2

Proof. Now, by Theorem 4.1, we can deduce that Jλ has a sequence of critical points {υn} such

that Jλ(υn) → +∞, thus, we prove that our problem has infinitely many weak solutions and the

Theorem 1.2 is proven.
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