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ABSTRACT

Büchi sequences are sequences whose second difference
of squares is the sequence (2, . . . , 2), like for instance
(6, 23, 32, 39) — so they can be seen as a generalization of
arithmetic progressions. No (non-trivial) length 5 Büchi se-
quence is known to exist. Length four Büchi sequences were
parameterized by D. A. Buell in 1987. We revisit his theo-
rem, fixing the statement (about 26% of the Büchi sequences
from R. G. E. Pinch’s 1993 table were missed), and giving a
much simpler proof.

RESUMEN

Las secuencias de Büchi son secuencias para las cuales la
segunda diferencia de sus cuadrados es la sucesión (2, . . . , 2),
como por ejemplo (6, 23, 32, 39) — luego pueden ser vistas
como una generalización de las progresiones aritméticas. No
se sabe de la existencia de ninguna secuencia de Büchi (no-
trivial) de largo 5. Las secuencias de Büchi de largo 4 fueron
parametrizadas por D. A. Buell en 1987. Revisitamos este
teorema, corrigiendo el enunciado (faltan alrededor del 26%
de las secuencias de Büchi de la tabla de R. G. E. Pinch de
1993), y dando una demostración bastante más simple.
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1 Introduction and result

Recall that the first (forward) difference of a sequence (yn)n is the sequence (yn+1 − yn)n, so the

second difference is ((yn+2 − yn+1)− (yn+1 − yn))n = (yn+2 − 2yn+1 + yn)n. A Büchi sequence is a

sequence (x1, . . . , xM ) whose second difference of its sequence of squares is the constant sequence

(. . . , 2, . . . ), namely, it is a sequence which satisfy the system of Büchi equations x2
n+2 − 2x2

n+1 +

x2
n = 2, for n = 1, . . . ,M − 2. We call trivial Büchi sequence any such sequence such that

x2
n+1 = (xn±1)2 for every n = 1, . . . ,M−1. Büchi’s problem asks whether there exists an M such

that every Büchi sequence of integers of length M is trivial. It is not known whether any such M

exists, and actually no non-trivial length 5 Büchi sequence of integers is known to exist. However,

Büchi’s problem has a positive answer, namely, an M can be proved to exist, under some classical

conjectures in Number Theory — see [11] and [6]. For a general survey on Büchi’s problem and

variations, see [5] and the references therein.

Length 3 Büchi sequences of integers were characterized by D. Hensley [2,3] through a parametriza-

tion in two variables coming from the line and circle method, and later by P. Sáez and the sec-

ond author [8] using matrices. In [1], D. A. Buell builds on Hensley’s parametrization to find a

parametrized family, say by a pair (k, ℓ) of integers, of quadratic equations whose solutions corre-

spond to length 4 Büchi sequences of integers (BS4 in the sequel) — see Equation (1.1) below. As

J. Lipman pointed out in [4, page 4], it is not clear how to characterize the pairs (k, ℓ) for which

the equation is solvable.

See [7], [10] and [9] for other approaches to the problem of understanding the BS4.

In this short note, we fix two mistakes in the statement of the original theorem — see the comments

before the proof — and give a much simpler and more transparent proof.

Theorem 1.1 (D. A. Buell, 1987, revisited). A sequence σ = (x1, . . . , x4) is a Büchi sequence of

integers if and only if there exist coprime integers k and ℓ of opposite parity, an integer x, and a

rational number y such that 3y ∈ Z, which satisfy

x1 = x(−2ℓ+ 3k) + y(−3ℓ+ 6k)

x2 = x(−ℓ+ 2k) + y(−2ℓ+ 3k)

x3 = xk + yℓ

x4 = xℓ+ 3yk

and

(ℓ− k)2x2 + (2ℓ2 − 6kℓ+ 6k2)xy + (ℓ− 3k)2y2 = 1. (1.1)

The proof below allows to find easily some of the possible parameters k and ℓ from a given BS4
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— this was our original motivation, as this is not clear how to do it from [1]. This is also how we

realized that the possibility of having a 3 in the denominator of the y cannot be dropped, as can

be seen with the Büchi sequence (16, 87, 122, 149), for which yk = − 40
3 . Indeed, about 26% of the

sequences with some entry at most 1000 need a 3 in the denominator (see [7] for the list). This

phenomenon was overlooked in Buell’s statement, though one could detect it while going through

his intricate proof: his quotient a+t
ℓ−3k , line 4 before the Theorem, can actually have a 3 in the

denominator. The other issue in Buell’s original statement has to do with trivial sequences, which

cannot be put aside in the statement, as our proof shows.

Proof. If direction. When computing the second difference of squares of the xi, one obtains the

left hand-side of Equation (1.1) multiplied by two. So σ is a Büchi sequence. If y is an integer,

there is nothing else to prove. Otherwise, replacing y by y′

3 in Equation (1.1), then multiplying by

9 and taking modulo 3, we see that 3 divides ℓ, so the xi are indeed integers.

Only if direction. Assume that (x1, . . . , x4) is a Büchi sequence of integers. The idea is to pretend

that ω1 := xk is a variable, as well as ω2 := xℓ, ω3 := yk and ω4 := yℓ, so that the system of the

statement can be seen as a linear system:
x1

x2

x3

x4

 =


3 −2 6 −3

2 −1 3 −2

1 0 0 1

0 1 3 0




xk

xℓ

yk

yℓ

 . (1.2)

By inverting the system we get: 

2ω1 = −x1 + 2x2 + x3

2ω2 = −2x1 + 3x2 + x4

6ω3 = 2x1 − 3x2 + x4

2ω4 = x1 − 2x2 + x3.

(1.3)

Observe that, since xi and xi+1 have opposite parity for each i (which can be easily seen from the

Büchi equations), ω1, ω2, 3ω3 and ω4 are integers.

If ω1 = ω2 = 0, then one can choose x = 0, and y = 1, ℓ = x3, k = x4

3 if 3 divides x4, and

y = 1
3 , ℓ = 3x3 and k = x4 if not. From (1.3), we get x2 + 2x3 − x4 = 0, which, together with the

Büchi equation x2
4 = 2x2

3 − x2
2 + 2 gives (x2 + x3)

2 = 1, hence the sequence is trivial. Similarly,

if ω3 = ω4 = 0, then one can choose y = 0, x = 1, k = x3 and ℓ = x4, and again the sequence is

trivial. Since in both cases the sequence is trivial, we have x4 = ±x3 ± 1, so in particular, k and

ℓ are coprime and of opposite parity. One readily checks that (1.2) and (1.1) are satisfied in both

cases.
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We assume now that (ω1, ω2) ̸= (0, 0) and (ω3, ω4) ̸= (0, 0). A direct computation gives

12(ω1ω4 − ω2ω3) = x2
1 − 3x2

2 + 3x2
3 − x2

4 = (x2
1 − 2x2

2 + x2
3)− (x2

2 − 2x2
3 + x2

4) = 0,

so we have

ω1ω4 = ω2ω3. (1.4)

Hence ω1 = 0 if and only if ω3 = 0, in which case we choose k = 0, ℓ = 1, x = ω2 and y = ω4, so

that xk = ω1, xℓ = ω2, yk = ω3 and yℓ = ω4. Similarly, ω2 = 0 if and only if ω4 = 0, in which

case we choose ℓ = 0, k = 1, x = ω1 and y = ω3, so that xk = ω1, xℓ = ω2, yk = ω3 and yℓ = ω4.

Assume that ω1ω2ω3ω4 ̸= 0. Let ε be the sign of ω1ω3. Choose x = ε gcd(ω1, ω2), k = ω1

x , ℓ = ω2

x

(so k and ℓ are coprime integers), and y = y′

3 , where y′ = gcd(3ω3, 3ω4). Note that if both ω1 and

ω3 are positive, then we obtain

3ω3 gcd(ω1, ω2) = gcd(3ω1ω3, 3ω2ω3) = gcd(3ω1ω3, 3ω1ω4) = ω1 gcd(3ω3, 3ω4).

In general, we have 3ω3 gcd(ω1, ω2) = εω1 gcd(3ω3, 3ω4), hence

3ω3 =
εω1

gcd(ω1, ω2)
× gcd(3ω3, 3ω4) = ky′

hence ω3 = yk. Since ω1 ̸= 0, we have ω4 = ω2ω3

ω1
= xℓ·yk

xk = yℓ. By inverting the system (1.3), we

see that the system (1.2) is satisfied.

Equation (1.1) comes from replacing the xi in x2
4 − 2x2

3 + x2
2 = 2 (for instance) by their expression

in terms of x, y, k and ℓ. Equation (1.1) implies immediately that k and ℓ cannot have the same

parity.

While working on this note, we realized that the solutions of (1.1) with k = ℓ + 1, described in

Section 5 of [1], are precisely the BS4 that were found by the second author in [10] with a different

method.
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