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ABSTRACT

In this work, we prove the existence and uniqueness
of µ-pseudo almost automorphic solutions for a class
of semilinear nonautonomous evolution equations of
the form: u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R where
(A(t))t∈R is a family of closed linear operators act-
ing in a Banach space X that generates an evolu-
tion family having an integrable dichotomy on R and
f : R × X −→ X is µ-pseudo almost automorphic
with respect to t and Lipshitzian in the second vari-
able. Moreover we provide an application illustrating
our results.

RESUMEN

En este trabajo, demostramos la existencia y unicidad
de soluciones µ-pseudo casi automorfas para una clase
de ecuaciones de evolución semilineales no autónomas
de la forma: u′(t) = A(t)u(t)+f(t, u(t)), t ∈ R donde
(A(t))t∈R es una familia de operadores lineales cerra-
dos actuando en un espacio de Banach X que genera
una familia de evolución que posee una dicotomía in-
tegrable en R y f : R × X −→ X es µ-pseudo casi
automorfa con respecto a t y Lipschitziana en la se-
gunda variable. Más aún presentamos una aplicación
ilustrando nuestros resultados.
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1 Introduction

The current paper deals with the existence and uniqueness of µ-pseudo almost automorphic solu-

tions for the following evolution equations:

u′(t) = A(t)u(t) + f(t), t ∈ R (1.1)

and

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (1.2)

and the perturbed delay system

u′(t) = A(t)u(t) + f(t, u(t), u(t− τ)), t ∈ R, (1.3)

where (A(t), D(A(t))), t ∈ R is a family of closed linear operators that generates a strongly

continuous evolution family (U(t, s))t≥s on a Banach space X which has an integrable dichotomy

on R. The function f is µ-pseudo almost automorphic in t for each x ∈ X and Lipschitzian with

respect to the second and third arguments, τ > 0 is a fixed constant . This work is a continuation

of the works done in [21,22].

In the theory of differential equations, exponential dichotomy is a classical concept and it plays a

central role for getting important results. So, there exist many researchs on this topics see [15,20]. It

is well-known that the concept of integrable dichotomy is a generalization of exponential dichotomy

[1, 21, 22]. This concept was introduced by Pinto et al. [21], they proved the existence and

uniqueness of bounded periodic solutions of nonlinear integro-differential equations with infinite

delay. In [22], the authors proved the existence and uniqueness of almost periodic and pseudo-

almost periodic mild solutions of equations (4.1) and (4.2) under the light of integrable bi-almost

periodic Green’s functions. In fact, the authors established some examples of purely integrale

dichotomy (i.e., which is not necessarily of exponential type). Recently, in [1], Abadias et al.

investigate the semi-linear differential equation x′(t) = A(t)x(t) + f(t, x(t), φ[α(t, x(t))]), t ∈ R,

where (A(t), D(A(t))), t ∈ R, generate an evolution family which has an integrable dichotomy.

They obtained several results of existence and uniqueness of (ω, c)-periodic mild solutions under

some assumptions on the nonlinear term. To our knowledge in the literature, there are few papers

which deal with integrable dichotomy.

The concept of almost periodic functions is introduced by H. Bohr [12]. This notion has been much

invested before being generalized by the concept of almost automorphic functions introduced by S.

Bochner [8–11]. In [24], the authors introduced the notion of pseudo almost automorphic functions

which is more general than the notion of almost automorphic functions. Moreover, they proved that

the space (PAA(R, X), ∥ · ∥0) is complete and they obtained an existence and uniqueness result
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of pseudo almost automorphic mild solutions to equation (4.1) in Banach spaces. In [4], Blot et

al. introduced the notion of weighted pseudo almost automorphic functions which generalizes the

concept of pseudo almost automorphic functions. For more details on these topics, one can see

[19, 26]. More recently, the concept of µ-pseudo almost automorphy due to Ezzinbi et al. [5, 16]

generalizes both notions of pseudo almost automorphy and weighted pseudo almost automorphy.

For more details, one can see [4, 14,17,24].

In this work, our main results are Theorems 3.1 and 4.3. We show that equations (4.1) and

(4.2) have respectively, unique bounded almost automorphic and µ-pseudo almost automorphic

solutions. It should be noted that we obtained these results under light of integrable dichotomy,

dominated convergence Theorem, Banach fixed point, standard and locally Lipschitz conditions.

The nonlinear term f is in PAA(R, X, µ).

The rest of this paper is organized as follows. Section 2 is devoted to some preliminaries. In

sections 3 and 4, we present some criteria ensuring the existence of µ-pseudo almost automorphic

mild solutions to equations (4.1) and (4.2). An example is given to illustrate our theoretical result

in section 5.

2 Almost automorphic functions and integrable dichotomy

This section is concerned with some notations and preliminary facts that are used in the sequel of

this work.

Definition 2.1 ([12]). A continuous function f : R → X is to be almost periodic if for every

ε > 0, there exists lε > 0, such that for every a ∈ R, there exists τ ∈ [a, a+ lε] satisfying:

∥f(t+ τ)− f(t)∥ < ε for all t ∈ R

The space of all such functions is denoted by AP(R, X).

Definition 2.2 ([9]). A continuous function f : R → X is called almost automorphic if for every

sequence (s′n)n≥0 of real numbers, there exist a subsequence (sn)n≥0 ⊂ (s′n)n≥0 and a measurable

function g : R → X, such that

g(t) = lim
n→∞

f(t+ sn) and f(t) = lim
n→∞

g(t− sn) for all t ∈ R.

The space of all such functions is denoted by AA(R, X).
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Remark 2.3 ([3]). An almost automorphic function may not be uniformly continuous. Indeed,

the real function f(t) = sin

(
1

2 + cos(t) + cos(
√
2t)

)
for t ∈ R, belongs to AA(R,R), but is not

uniformly continuous. Hence, f does not belong to AP (R,R).

Then, we have the following inclusions:

AP (R, X) ⊂ AA(R, X) ⊂ BC(R, X).

Definition 2.4 ([3]). A bounded continuous function f : R×X → Y is called almost automorphic

if for each bounded set K ⊂ X and for every sequence of real numbers {τ ′n}n≥0, there exist a

subsequence {τn}n≥0 ⊂ {τ ′n}n≥0 and a mesurable function f̃ : R×X → Y , such that

f̃(t, x) = lim
n→∞

f(t+ τn, x) and f(t, x) = lim
n→∞

f̃(t− τn, x)

are well defined in t ∈ R and x ∈ K ⊂ X.

Definition 2.5 ([3]). A continuous function F : R× R → X is said to be bi-almost automorphic

if for every sequence (s′n)n≥0 of real numbers, there exist a subsequence (sn)n≥0 ⊂ (s′n)n≥0 and a

measurable function G : R× R → X, such that

G(t, s) = lim
n→∞

F (t+ sn, s+ sn) and F (t, s) = lim
n→∞

G(t− sn, s− sn) for all t, s ∈ R.

The space of all such functions is denoted by bAA(R, X).

2.1 µ-pseudo almost automorphic functions

This section is devoted to properties of µ-ergodic and µ-pseudo almost automorphic functions. In

the sequel, we denote by B(R) the Lebesgue σ-field of R and by M the set of all positive measures

µ on B(R) satisfying µ(R) = +∞ and µ([a, b]) < +∞ for all a, b ∈ R with (a ≤ b), we denote also

by Y any other Banach space. We assume the following hypothesis.

(M) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A}) ≤ βµ(A) where A ∈ B(R) and A ∩ I = ∅.

Definition 2.6 ([6]). Let µ ∈ M. A continuous bounded function f : R −→ X is called µ-ergodic,

if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t)∥dµ(t) = 0.

The space of all such functions is denoted by E(R, X, µ).



CUBO
27, 1 (2025)

Almost automorphic solutions for some nonautonomous... 33

Proposition 2.7 ([6]). Let µ ∈ M. Then,

(i) (E(R, X, µ), ∥ · ∥∞) is a Banach space.

(ii) If µ satisfies (M), then E(R, X, µ) is translation invariant.

Example 2.8. (1) An ergodic function in the sense of Zhang [25] is a µ-ergodic function in the

particular case where the measure µ is the Lebesgue measure.

(2) Let ρ : R −→ [0,+∞) be a B(R)-measurable function. We define the positive measure µ on

B(R) by

µ(A) =

∫
A

ρ(t)dt for A ∈ B(R),

where dt denotes the Lebesgue measure on B(R). The measure µ is absolutely continuous

with respect to dt and the function ρ is called the Radon-Nikodym derivative of µ with respect

to dt. In this case µ ∈ M if and only if the function ρ is locally Lebesgue-integrable on R

and it satisfies ∫
R
ρ(t)dt = +∞.

(3) In [18], the authors considered the space of bounded continuous functions f : R −→ X

satisfying

lim
r→+∞

1

2r

∫
[−r,r]

∥f(t)∥dt = 0 and lim
N→+∞

1

2N + 1

N∑
n=−N

∥f(n)∥ = 0.

This space coincides with the space of µ-ergodic functions where µ is defined in B(R) by the

sum µ(A) = µ1(A) + µ2(A) with µ1 is the Lebesgue measure on (R,B(R)) and

µ2(A) =

card(A ∩ Z) if A ∩ Z is finite,

∞ if A ∩ Z is infinite.

Definition 2.9 ([5]). Let µ ∈ M. A continuous function f : R −→ X is said to be µ-pseudo

almost automorphic if f is written in the form:

f = g + φ,

where g ∈ AA(R, X) and φ ∈ E(R, X, µ).

The space of all such functions is denoted by PAA(R, X, µ).
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Proposition 2.10 ([5]). Let µ ∈ M satisfy (M). Then the following are true:

(i) The decomposition of a µ-pseudo almost automorphic in the form f = g + φ where g ∈
AA(R, X) and φ ∈ E(R, X, µ), is unique.

(ii) PAA(R, X, µ) equipped with the supnorm is a Banach space.

Definition 2.11 ([7]). A continuous function f : R×X −→ Y is said to be almost automorphic

in t uniformly with respect to x ∈ X if the following two conditions hold:

(i) For all x ∈ X, f(·, x) ∈ AA(R, Y ),

(ii) f is uniformly continuous on each compact K ⊂ X with respect to the second variable x,

namely, for each compact K ⊂ X, for all ϵ > 0, there exists δ > 0 such that all x1,x2 ∈ K,

one has ∥x1 − x2∥ ≤ δ ⇒ supt∈R ∥f(t, x1)− f(t, x2)∥ ≤ ϵ.

Denote by AAU(R×X,Y ) the set of all such functions.

Definition 2.12. Let µ ∈ M. A continuous function f : R×X −→ Y is said to be µ-ergodic in t

uniformly with with respect to x ∈ X, if the following two conditions hold:

(i) For all x ∈ X, f(·, x) ∈ E(R, Y, µ),

(ii) f is uniformly continuous on each compact K ⊂ X with respect to the second variable x.

Denote by EU(R×X,Y, µ) the set of all such functions.

Definition 2.13. Let µ ∈ M. A continuous function f : R × X −→ Y is said to be µ-pseudo

almost automorphic in t uniformly with with respect to x ∈ X, if f is written in the form:

f = g + h

where g ∈ AAU(R×X,Y ) and h ∈ EU(R×X,Y, µ).

PAAU(R×X,Y ) denotes the set of such functions. We have

AAU(R×X,Y ) ⊂ PAAU(R×X,Y ).

Proposition 2.14 ([5]). Let µ ∈ M and f : R×X −→ Y be a µ-pseudo almost automorphic in t

uniformly with with respect to x ∈ X. Then

(i) For all x ∈ X, f(·, x) ∈ PAA(R, Y, µ),

(ii) f is uniformly continuous on each compact K ⊂ X with respect to the second variable x.
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Theorem 2.15 ([5]). Let µ ∈ M, f ∈ PAAU(R×X,Y, µ) and x ∈ PAA(R, X, µ). Assume that

the following hypothesis holds:

(C) For all bounded subset K of X, f is bounded on R×K.

Then [t 7→ f(t, x(t))] ∈ PAA(R, Y, µ).

2.2 Integrable dichotomy

Let X and Y be any Banach spaces with norms ∥ · ∥ and ∥ · ∥Y respectively. Throughout this work

we will assume that Y is densely and continuously imbedded in X i.e., Y is a dense subspace of

X and there is a constant C such that

∥ξ∥ ≤ C∥ξ∥Y for ξ ∈ Y.

Consider the following linear evolution equation:u
′(t) = A(t)u(t), t ≥ s,

u(s) = x ∈ X,
(2.1)

The associated inhomogeneous equation is given by:

d

dt
u(t) = A(t)u(t) + f(t), t ∈ R, (2.2)

where f : R −→ X is continuous and bounded.

Definition 2.16 ([20]). Let X be a Banach space. The family (A(t))t≥0 of infinitesimal generators

of C0-semigroup on X is called stable if there are constants M ≥ 1 and ω ∈ R such that

(ω,∞) ⊂ ρ(A(t)) for t ≥ 0

and ∥∥∥∥∥∥
k∏

j=1

R(λ,A(tj))

∥∥∥∥∥∥ ≤M(λ− ω)−k

for λ > ω and for every finite sequence {t}kj=1 with 0 ≤ t1 ≤ · · · ≤ tk <∞ and k = 1, 2, . . .

Definition 2.17. For each t ∈ R, let A(t) be the infinitesimal generator of a C0 semigroup Tt(s),

s ∈ R, on X. A subspace Y of X is called A(t)-admissible if it is an invariant subspace of Tt(s),

s ∈ R, and the restriction of Tt(s) to Y is a C0 semigroup in Y (i.e. it is strongly continuous in

the norm ∥ · ∥Y ).
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We will make the following assumptions.

(A1) (A(t))t∈R is a stable family with stability constants M , ω.

(A2) Y is A(t)-admissible for t ∈ R and the family (Ã(t))t∈R of parts Ã(t) of A(t) in Y , is a stable

family in Y with stability constants M̃ , ω̃.

(A3) For each t ∈ R, D(A(t)) ⊃ Y , A(t) is a bounded operator from Y into X and t → A(t) is

continuous in the B(Y,X) norm ∥ · ∥Y→X .

It is well known that if a family (A(t))t∈R satisfies conditions (A1)-(A3), then one can associate a

unique evolution family (U(t, s))s≤t with the equation (2.1), (see [15, 20]). Throughout this work

(A(t), D(A(t))), t ∈ R satisfies conditions (A1)-(A3).

Definition 2.18 ([15,20]). An evolution family (U(t, s))s≤t on a Banach space X is said to have

an exponential dichotomy (or hyperbolic) in R if there exists a family of projections P (t) ∈ L(X),

t ∈ R, being strongly continuous with respect to t, and constants δ,M > 0 such that

(i) U(t, s)P (s) = P (t)U(t, s),

(ii) U(t, s) : Q(s)X → Q(t)X is invertible with the inverse Ũ(t, s),

(iii) ∥U(t, s)P (s)∥ ≤Me−δ(t−s) and ∥Ũ(t, s)Q(t)∥ ≤Me−δ(t−s),

for all t, s ∈ R with s ≤ t, where, Q(t) = I − P (t).

Definition 2.19. Let (U(t, s))s≤t have an exponential dichotomy. We define the Green function

by:

G(t, s) =

 U(t, s)P (s), t, s ∈ R, s ≤ t

−Ũ(t, s)Q(s), t, s ∈ R, s > t.

For a given evolution family (U(t, s))s≤t associated to equation (2.1), that has an dichotomy

exponential, the Green function associated to the evolution family satisfies

∥G(t, s)∥ =

 Me−δ(t−s), if t ≥ s

Me−δ(s−t), if s > t.

where M > 0 and δ > 0 are positive constant.

Definition 2.20 ([22]). We say that equation (2.1) has an integrable dichotomy with data (λ, P )

if there are projections P (t), t ∈ R, uniformly bounded and strongly continuous in t satisfying (i)

and (ii), with Q(t) = I − P (t) and there exists a function λ : R2 → (0,∞) such that

∥G(t, s)∥ ≤ λ(t, s), for all t, s ∈ R, (2.3)
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and

sup
t∈R

∫
R
λ(t, s)ds ≤ L <∞. (2.4)

In the pseudo almost automorphic context, we will make the following additional assumption for

the function λ(t, s) in Definition 2.20.

(A) Let λ1 : (−∞,−T ) → (0,∞) and λ2 : (T,∞) → (0,∞) defined by λ1(s) =
∫ T

−T
λ(t, s)dµ(t),

λ2(s) =
∫ T

−T
λ(t, s)dµ(t) for all T > 0. We assume that there exists a constant C > 0 such

that for all T > 0,

∫ T

s

λ(t, s)dµ(t) ≤ C, and
∫ s

−T

λ(t, s)dµ(t) ≤ C, (2.5)∫ −T

−∞
λ1(s)ds ≤ C, and

∫ ∞

T

λ2(s)ds ≤ C. (2.6)

Remark 2.21. We notice that some differences between exponential dichotomy and integrable

dichotomy. In the case of exponential dichotomy, if we consider the Lebesgue mesure on B(R), the

constante C quoted in (A) is equal to max{M
δ ,

M
δ2 } and L = 2M

δ . Indeed, for T > 0, we have

∫
R
G(t, s)ds =M

∫ t

−∞
e−δ(t−s)ds+M

∫ ∞

t

e−δ(s−t)ds = 2
M

δ
= L, (2.7)

for t ≥ s, M

∫ T

s

e−δ(t−s)dt =
M

δ

[
−e−δ(T−s) + 1

]
≤ M

δ
, (2.8)

for t ≥ s, M

∫ −T

−∞

∫ T

−∞
e−δ(t−s)dtds =

M

δ

(
eδT − e−δT

) ∫ −T

−∞
eδsds ≤ M

δ2
. (2.9)

If t < s, we obtain the same results. Moreover a system that admits integrable dichotomy is

not necessarily exponentially stable what means that integrable dichotomy is more general than

exponential dichotomy. For more details, one can see [13,22].

Theorem 2.22 ([21]). Assume that equation (2.1) has an integrable dichotomy and f is a bounded

function. Then equation (2.2) has a unique bounded integral solution given by

u(t) =

∫
R
G(t, s)f(s)ds, t ∈ R. (2.10)



38 A. A. K. Dianda & K. Ezzinbi CUBO
27, 1 (2025)

3 Almost automorphic and pseudo almost automorphic solu-

tions in the nonhomogeneous linear case

(H1) We assume that (A(t))t∈R generates an evolution family {U(t, s)}(s≤t∈R), onX i.e. (A(t), D(A(t))),

t ∈ R satisfy conditions (A1)-(A3).

(H2) The evolution family U(t, s) generated by A(t) has an integrable dichotomy satisfying (2.3)

with function λ, dichotomy projections P (t), t ∈ R, and Green’s function G(t, s).

(H3) The Green’s function G(t, s)x function is bi-almost automorphic in t, s ∈ R, for all x ∈ X.

We first consider the nonhomogeneous linear case

u′(t) = A(t)u(t) + f(t), (3.1)

where f : R → X is a function.

3.1 Almost automorphic solutions of equation (3.1)

Theorem 3.1. Assume that (H1), (H2) hold and f ∈ AA(R, X). Then equation (3.1) has a

unique almost automorphic mild solution given by

u(t) =

∫
R
G(t, s)f(s)ds, t ∈ R. (3.2)

Proof. By the Theorem 2.22, u is a unique mild solution to equation (3.1). Now, it remains to

show that u ∈ AA(R, X). Let {τ ′n} be a sequence of real numbers. Since f ∈ AA(R, X), there

exists a subsequence {τn} of {τ ′n} such that

lim
n
G(t+ τn, s+ τn) = G̃(t, s), and lim

n
G̃(t− τn, s− τn) = G(t, s),

f̃(t) = limn→∞ f(t+ sn) and f(t) = limn→∞ f̃(t− sn) for each t, s ∈ R. Now, we define

ũ(t) =

∫
R
G̃(t, s)f̃(s)ds, t ∈ R.

Note that

∥u(t+ τn)− ũ(t)∥ =

∥∥∥∥∫
R
G(t+ τn, s)f(s)ds−

∫
R
G̃(t, s)f̃(s)ds

∥∥∥∥
=

∥∥∥∥∫
R
G(t+ τn, s+ τn)f(s+ τn)ds−

∫
R
G̃(t, s)f̃(s)ds

∥∥∥∥
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≤
∫
R

∥∥∥G(t+ τn, s+ τn)
[
f(s+ τn)− f̃(s)

]∥∥∥ ds
+

∫
R

∥∥∥[G(t+ τn, s+ τn)− G̃(t, s)
]
f̃(s)

∥∥∥ ds.
Let

I1,n :=

∫
R
G(t+ τn, s+ τn)

[
f(s+ τn)− f̃(s)

]
ds

and

I2,n :=

∫
R

[
G(t+ τn, s+ τn)− G̃(t, s)

]
f̃(s)ds.

We have

I1,n ≤
∫
R
λ(t, s)

[
f(s+ τn)− f̃(s)

]
ds.

Since f ∈ AA(R, X) and by the dominated convergence Theorem, it follows that I1,n → 0 as

n→ ∞.

For I2,n since G(t, s) is bi-almost automorphic, given ε > 0, there is N > 0 such that for n ≥ N ,

we have

∥G(t+ τn, s+ τn)f̃(s)− G̃(t, s)f̃(s)∥ < ε∥f∥∞, t, s ∈ R,

so for n ≥ N ,

I2,n ≤
∫
R
∥G(t+ τn, s+ τn)f̃(s)− G̃(t, s)f̃(s)∥ds

Thus, by the dominated convergence Theorem we have that I2,n → 0 as n→ ∞. Thus limn u(t+

τn) = ũ(t). We can show in a similar way that limn ũ(t− τn) = u(t). Hence, limn u(t+ τn) = ũ(t)

and limn ũ(t− τn) = u(t), for t ∈ R. Therefore, we conclude that u ∈ AA(R, X).

Theorem 3.2. Let µ ∈ M. Assume that (H1)-(H3) are satisfied and f ∈ PAA(R, X, µ). Let u

be a bounded solution of equation (3.1). Then u ∈ PAA(R, X, µ).

Proof. Let f = g + h ∈ PAA(R, X, µ), where g ∈ AA(R, X) and h ∈ E(R, X, µ). Then u has a

unique decomposition:

u = u1 + u2

where, for all t ∈ R, we have

u1(t) =

∫
R
G(t, s)g(s)ds

and

u2(t) =

∫
R
G(t, s)h(s)ds

Using Theorem 3.1, we obtain that u1 ∈ AA(R, X). It remains to show that u2 ∈ E(R, X, µ). Let
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r > 0. Then,

1

µ([−r, r])

∫ r

−r

∥u2(t)∥ dµ(t) =
1

µ([−r, r])

∫ r

−r

∥∥∥∥∫
R
G(t, s)h(s)ds

∥∥∥∥ dµ(t)
≤ 1

µ([−r, r])

∫ r

−r

∥∥∥∥∫ t

−∞
G(t, s)h(s)ds

∥∥∥∥ dµ(t)
+

1

µ([−r, r])

∫ r

−r

∥∥∥∥∫ ∞

t

G(t, s)h(s)ds

∥∥∥∥ dµ(t).
For any fixed r > 0, we have

1

µ([−r, r])

∫ r

−r

∥∥∥∥∫ t

−∞
G(t, s)h(s)ds

∥∥∥∥ dµ(t) ≤ 1

µ([−r, r])

∫ r

−r

∫ −r

−∞
∥G(t, s)h(s)∥ds dµ(t)

+
1

µ([−r, r])

∫ r

−r

∫ t

−r

∥G(t, s)h(s)∥ds dµ(t)

≤ 1

µ([−r, r])

∫ r

−r

∫ −r

−∞
λ(t, s)∥h(s)∥ds dµ(t)

+
1

µ([−r, r])

∫ r

−r

∫ t

−r

λ(t, s)∥h(s)∥ds dµ(t).

By assumption (H3) and by changing the order of integration, we have

∫ r

−r

∫ −r

−∞
λ(t, s)∥h(s)∥dsdµ(t) :=

∫ −r

−∞

(∫ r

−r

λ(t, s)dµ(t)

)
∥h(s)∥ds ≤ ∥h∥∞

∫ −r

−∞
λ1(s)ds ≤ C∥h∥∞,

and ∫ r

−r

∫ t

−r

λ(t, s)∥h(s)∥ds dµ(t) :=
∫ r

−r

(∫ r

t

λ(t, s)dµ(t)

)
∥h(s)∥ds ≤ C

∫ r

−r

∥h(s)∥ds.

By a similary way, we have

1

µ([−r, r])

∫ r

−r

∥∥∥∥∫ ∞

t

G(t, s)h(s)ds

∥∥∥∥ dµ(t) ≤ 1

µ([−r, r])

∫ r

−r

∫ ∞

t

∥G(t, s)h(s)∥ds dµ(t)

≤ 1

µ([−r, r])

∫ r

−r

∫ ∞

t

λ(t, s)∥h(s)∥ds dµ(t)

≤ 1

µ([−r, r])

∫ r

−r

∫ r

t

λ(t, s)∥h(s)∥ds dµ(t)

+
1

µ([−r, r])

∫ r

−r

∫ ∞

r

λ(t, s)∥h(s)∥ds dµ(t).

By assumption (H3) and by changing the order of integration, we have∫ r

−r

∫ r

t

λ(t, s)∥h(s)∥ds dµ(t) :=
∫ r

−r

(∫ s

−r

λ(t, s)dµ(t)

)
∥h(s)∥ds ≤ C

∫ r

−r

∥h(s)∥ds,



CUBO
27, 1 (2025)

Almost automorphic solutions for some nonautonomous... 41

and∫ r

−r

∫ ∞

r

λ(t, s)∥h(s)∥ds dµ(t) =
∫ ∞

r

(∫ s

−r

λ(t, s)dµ(t)

)
∥h(s)∥ds ≤ ∥h∥∞

∫ ∞

r

λ2(s)ds ≤ C∥h∥∞.

Thus, we have

1

µ([−r, r])

∫ r

−r

∥u2(t)∥dµ(t) ≤
2C

µ([−r, r])

(
∥h∥∞ +

∫ r

−r

∥h(s)∥ds
)
. (3.3)

From (3.3), we claim that

lim
r→∞

1

µ([−r, r])

∫ r

−r

∥u2(t)∥dµ(t) = 0.

Hence, u2 ∈ PAA(R, X, µ). We obtain the proof of the theorem.

4 µ-pseudo almost automorphic solutions of equations (4.1)

and (4.2)

Let X and Y be Banach spaces and BC(R×X,Y ) be the Banach space of all bounded continuous

functions from R × X in Y with the supremum norm of ∥ · ∥∞. In this section, we consider

the nonlinear differential equation (4.1), where f : R × X → X is a function under convenient

conditions,

u′(t) = A(t)u(t) + f(t, u(t)), t ∈ R, (4.1)

and we analyze the delay case, were τ > 0 is fixed,

u′(t) = A(t)u(t) + f(t, u(t), u(t− τ)), t ∈ R. (4.2)

Definition 4.1. A bounded continuous function u : R → X is called a mild solution of equation

(4.1) if

u(t) =

∫
R
G(t, s)f(s, u(s), u(s− τ))ds, t ∈ R. (4.3)

Definition 4.2. A bounded continuous function u : R → X is called a mild solution of equation

(4.2) if

u(t) =

∫
R
G(t, s)f(s, u(s))ds, t ∈ R. (4.4)
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4.1 Existence of almost automorphic solutions to equation (4.1)

We need the following additional assumption:

(H4) There exists κ > 0 constant such that

∥f(t, u1)− f(t, u2)∥ ≤ κ∥u1 − u2∥, for all t ∈ R, u1, u2 ∈ X. (4.5)

Theorem 4.3. Let µ ∈ M satisfy (M). Asumme that (H1)-(H4) hold and f ∈ PAA(R×X,X, µ)
with

κ <
1

L

Then, equation (4.1) has a unique mild solution u ∈ PAA(R, X, µ) given by

u(t) =

∫
R
G(t, s)f(s, u(s))ds, t ∈ R.

Proof. Let define the functional Λ on PAA(R, X, µ) by

(Λϕ)(t) =

∫
R
G(t, s)f(s, ϕ(s))ds, t ∈ R.

By the composition Theorem 2.15 and Theorem 3.2, one has Λ(PAA(R, X, µ)) ⊂ PAA(R, X, µ).

Moreover we prove existence and uniqueness of solution to equation (4.1). Considering the fact

that ∥f∥∞ <∞, for all t ∈ R, we have

∥(Λϕ)(t)∥ ≤
∫ ∞

−∞
∥G(t, s)f(s, ϕ(s))∥ds ≤

∫ ∞

−∞
λ(t, s)∥f(s, ϕ(s))∥ds ≤ ∥f∥∞

∫ ∞

−∞
λ(t, s)ds ≤ L∥f∥∞.

This proves that Λϕ is bounded. Now, we will prove that Λ is a contraction.

∥(Λϕ)(t)− (Λφ)(t)∥ ≤
∫ ∞

−∞
∥G(t, s)∥∥f(s, ϕ(s))− f(s, φ(s))∥ds

≤
∫ ∞

−∞
λ(t, s)∥f(s, ϕ(s))− f(s, φ(s))∥ds

≤ κ∥ϕ− φ∥∞
∫
R
λ(t, s)ds ≤ κL∥ϕ− φ∥∞.

Therefore, by the Banach fixed point theorem, Λ has a unique fixed point such that Λϕ = ϕ, which

is a µ-pseudo almost automorphic mild solution of equation (4.1).
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4.2 Existence of almost automorphic solutions to equation (4.2)

We need the following additional assumption:

(H5) The function f(t, u, v) is locally Lipschitz in u, v ∈ X i.e. for each positive number θ, for

all, u1, u2, v1, v2 with ∥ui∥ ≤ θ, ∥vi∥ ≤ θ, i = 1, 2

∥f(t, u1, v1)− f(t, u2, v2)∥ ≤ k1(θ)∥u1 − u2∥+ k2(θ)∥v1 − v2∥, (4.6)

where k1, k2 : [0,∞) → [0,∞) are functions and there is a positive constant ρ, such that

2max(k1(ρ), k2(ρ)) <
1
L and supt∈R ∥f(t, 0, 0)∥ ≤ ρ

L [1− 2Lmax(k1(ρ), k2(ρ))] .

Theorem 4.4. Assume that (H1)-(H3) and f hold (H5). Then, equation (4.2) has a unique

bounded solution u(t), t ∈ R, with ∥u∥∞ ≤ ρ.

Proof. Let G(t, s) be the Green’s function associated with the equation (4.2) and we define the

functional on X by

(Γϕ)(t) =

∫ ∞

−∞
G(t, s)f(s, ϕ(s), ϕ(s− τ))ds, t ∈ R.

We show that Γ has a fixed point. First, we prove that Γ is bounded. There are ρ constant positive

and a ball B(0, ρ) which satisfies assumption (H5). Thus, we have,

∥(Γϕ)(t)∥ ≤
∫ ∞

−∞
∥G(t, s)f(s, ϕ(s), ϕ(s− τ))∥ds ≤

∫ ∞

−∞
λ(t, s)∥f(s, ϕ(s), ϕ(s− τ))∥ds

≤ (k1(ρ) + k2(ρ))

∫ ∞

−∞
λ(t, s)∥ϕ(s)∥ds+

∫ ∞

−∞
λ(t, s)∥f(s, 0, 0)∥ds

≤ L(k1(ρ) + k2(ρ))∥ϕ∥∞ + L sup
t∈R

∥f(t, 0, 0)∥

≤ 2Lmax(k1(ρ), k2(ρ))ρ+ ρ [1− 2Lmax(k1(ρ), k2(ρ))] ≤ ρ

This proves that Γϕ ∈ B(0, ρ) for all ϕ ∈ B(0, ρ). Finally, we prove that Γ is a contraction in

B(0, ρ). In fact,

∥(Γϕ)(t)− (Γφ)(t)∥ ≤
∫ ∞

−∞
∥G(t, s)∥∥f(s, ϕ(s), ϕ(s− τ))− f(s, φ(s), φ(s− τ))∥ds

≤
∫ ∞

−∞
λ(t, s)∥f(s, ϕ(s), ϕ(s− τ))− f(s, φ(s), φ(s− τ))∥ds

≤ L

∫ ∞

−∞
∥k1(ρ)∥ϕ(s)− φ(s)∥+ k2(ρ)∥ϕ(s− τ)− φ(s− τ)∥ds

≤ L(k1(ρ) + k2(ρ))∥ϕ− φ∥∞.

Using Banach fixed point Theorem, we deduce by (H5) that Γ has a fixed point ϕ.
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Now, we will prove that equation (4.2) has an almost automorphic solution.

Theorem 4.5. Assume that (H1)-(H3) and (H5) hold and f ∈ AA(R × X × X,X). Then,

equation (4.2) has a unique almost automorphic mild solution u(t), t ∈ R, with ∥u∥∞ ≤ ρ.

Proof. We define the functional on X as in Theorem 4.4 by

(Γϕ)(t) =

∫ ∞

−∞
G(t, s)f(s, ϕ(s), ϕ(s− τ))ds, t ∈ R.

We show that Γ(AA(R, X)) ⊂ AA(R, X). Since f ∈ AA(R×X ×X,X), and for each u ∈ B(0, ρ)
there exists a subsequence {τn} of {τ ′n} such that

lim
n
G(t+ τn, s+ τn)x− G̃(t, s)x = 0, and lim

n
G̃(t− τn, s− τn)x−G(t, s)x = 0,

f̃(t, u(t), u(t− τ)) = lim
n→∞

f(t+ sn, u(t+ sn), u(t+ sn − τ))

and

f(t) = lim
n→∞

f̃(t− sn, u(t− sn), u(t− sn − τ))

for each t, s ∈ R, x ∈ K. Thus, we have

Γ̃u(t) =

∫
R
G̃(t, s)f̃(s, ũ(s), ũ(s− τ))ds, t ∈ R.

Note that

∥Γu(t+ τn)− Γ̃u(t)∥=
∥∥∥∥∫

R
G(t+ τn, s)f(s, u(s), u(s− τ))ds−

∫
R
G̃(t, s)f̃(s, ũ(s), ũ(s− τ))ds

∥∥∥∥
=

∥∥∥∥∫
R
G(t+ τn, s+ τn)f(s+ τn, u(s+ sn), u(s+ sn − τ))ds

−
∫
R
G̃(t, s)f̃(s, ũ(s), ũ(s− τ))ds

∥∥∥∥
≤
∫
R

∥∥∥G(t+ τn, s+ τn)
[
f(s+ τn, u(s+ sn), u(s+ sn − τ))− f̃(s, ũ(s), ũ(s− τ))

]∥∥∥ ds
+

∫
R

∥∥∥[G(t+ τn, s+ τn)− G̃(t, s)
]
f̃(s, ũ(s), ũ(s− τ))

∥∥∥ ds.
Let

J1,n :=

∫
R
G(t+ τn, s+ τn)

[
f(s+ τn, u(s+ sn), u(s+ sn − τ))− f̃(s, ũ(s), ũ(s− τ))

]
ds

and

J2,n :=

∫
R

[
G(t+ τn, s+ τn)− G̃(t, s)

]
f̃(s, ũ(s), ũ(s− τ))ds.
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We have

J1,n ≤
∫
R
λ(t, s)

[
f(s+ τn, u(s+ sn), u(s+ sn − τ))− f̃(s, ũ(s), ũ(s− τ))

]
ds.

Since f ∈ AA(R×X ×X,X) and by the dominated convergence theorem, it follows that J1,n → 0

as n→ ∞.

For J2,n since G(t, s) is bi-almost automorphic, given ε > 0, there is N > 0 such that for n ≥ N ,

we have

∥G(t+ τn, s+ τn)f̃(s, ũ(s), ũ(s− τ)− G̃(t, s)f̃(s, ũ(s), ũ(s− τ))∥ < ε∥f∥∞, t, s ∈ R,

so for n ≥ N ,

J2,n ≤
∫
R
∥G(t+ τn, s+ τn)f̃(s, ũ(s), ũ(s− τ)− G̃(t, s)f̃(s, ũ(s), ũ(s− τ))∥ds.

Thus, by the dominated convergence theorem we have that J2,n → 0 as n→ ∞ . Thus limn Γu(t+

τn) = Γ̃u(t). We can show in a similar way that limn Γ̃u(t− τn) = Γu(t). Hence, limn Γu(t+ τn) =

Γ̃u(t) and limn Γ̃u(t−τn) = Γu(t), for t ∈ R. By Theorem 3.2, equation (4.2) has a unique bounded

mild solution u(t), t ∈ R , with ∥u∥∞ ≤ ρ and u ∈ AA(R, X).

Theorem 4.6. Let µ ∈ M and µ satisfy (M). Assume that (H1)-(H3) and (H5) hold and

f ∈ PAA(R×X×X,X, µ). Then, equation (4.2) has a unique µ-pseudo almost automorphic mild

solution u(t), t ∈ R, with ∥u∥∞ ≤ ρ.

Proof. We define the functional on X as in Theorem 4.4 by

Γϕ(t) =

∫ ∞

−∞
G(t, s)f(s, ϕ(s), ϕ(s− τ))ds, t ∈ R.

By Theorem 4.4, equation (4.2) has a unique bounded mild solution u(t), t ∈ R , with ∥u∥∞ ≤ ρ.

Let f = g+h ∈ PAA(R×X×X,X, µ) where g ∈ AA(R×X×X,X) and h ∈ E(R×X×X,X, µ).
Thus, Γϕ has a unique decomposition:

Γϕ(t) = u1(t) + u2(t)

where, for all t ∈ R, we have

u1(t) =

∫
R
G(t, s)g(s, u(s), u(s− τ))ds

and

u2(t) =

∫
R
G(t, s)h(s, u(s), u(s− τ))ds.
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Using Theorem 4.5, we obtain that u1 ∈ AA(R, X). It remains to show that u2 ∈ E(R, X, µ). Let

r > 0. Then,

1

µ([−r, r])

∫ r

−r

∥u2(t)∥ dµ(t) =
1

µ([−r, r])

∫ r

−r

∥∥∥∥∫
R
G(t, s)h(s, u(s), u(s− τ))ds

∥∥∥∥ dµ(t)
≤ 1

µ([−r, r])

∫ r

−r

∥∥∥∥∫ t

−∞
G(t, s)h(s, u(s), u(s− τ))ds

∥∥∥∥ dµ(t)
+

1

µ([−r, r])

∫ r

−r

∥∥∥∥∫ ∞

t

G(t, s)h(s, u(s), u(s− τ))ds

∥∥∥∥ dµ(t)
For any fixed r > 0, by calculations similar as to the Theorem 3.2, we have

1

µ([−r, r])

∫ r

−r

∥u2(t)∥dµ(t) ≤
2C

µ([−r, r])

(
∥h∥∞ +

∫ r

−r

∥h(s)∥ds
)

(4.7)

From (4.7), we claim that

lim
r→∞

1

µ([−r, r])

∫ r

−r

∥u2(t)∥dµ(t) = 0

Hence, u2 ∈ PAA(R, X, µ). We obtain the proof of the Theorem.

5 Applications

In the next example, we show that integrable dichotomy is a generalization of exponential di-

chotomy.

Example 5.1. We give an example of family of operators (A(t))t∈R that generates an evolution

family with an integrable dichotomy. Let {bk}k∈Z be a positive Riemamn sequence such that bk =

1
k2+1 . Let Jk := [k − b2k, k + b2k], for k ∈ Z. Let ℓ : R → (0,∞) be continuously differentiable

function given by ℓ(t) = 1, if t ̸∈ Jk and in Jk, ℓ(t) ∈
[

1
k2+1 , 1

]
where ℓ(k) = bk. We have

∑
k∈Z

∫
Jk

ℓ−1(s)ds =
∑
k∈Z

∫ k+ 1
(k2+1)2

k− 1
(k2+1)2

(k2 + 1)ds = 2
∑
k∈Z

k2 + 1

(k2 + 1)2

≤ 2

(
1 + 2

∞∑
k=1

1

k2

)
≤ 2

(
π2

3
+ 1

)
<∞.

Consider the scalar differential equation

u′(t) = a(t)u(t), a(t) = −α+ ℓ′(t)ℓ(t)−1, α > 0, (5.1)

one has

u(t) = u0e
−αtℓ(t) where u0 is the initial data .
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It is well-known that the evolution family of the equation (5.1) with projections P (t) = I, t ∈ R

is given by U(t, s) = e−α(t−s) ℓ(t)
ℓ(s) . We have Green’s function G(t, s) = U(t, s) has an integrable

dichotomy. Indeed,

∫ t

−∞
U(t, s)ds ≤

∫ t

−∞
e−α(t−s) +

[t]+2∑
k=−∞

∫
Jk

ℓ−1(s)ds ≤ 1

α
+ 2

(
π2

3
+ 1

)
<∞.

Condition (2.4) is satisfied with L = 1
α +2

(
π2

3 + 1
)
. The equation (5.1) is not exponentialy stable.

In fact,

U(k + b2k, k) = (k2 + 1)e
− α

(k2+1)2 → ∞, as k → ∞.

Thus integrable dichotomy is more general than the exponential dichotomy. Note that

| U(t, s) |≤ e−α(t−s) + λ0(s), s ≤ t

with

λ0(s) =
∑
k∈Z

ℓ−1(s)χJk
(s),

where χJk
is the characteristic function on Jk. It is clear that λ0 ∈ L1(R). Then equation (5.1)

has an integrable dichotomy with λ(t, s) = e−α(t−s) + λ0(s), s ≤ t satisfying

sup
t∈R

∫ t

−∞
λ(t, s)ds ≤ L. (5.2)

In a similar way, we can prove that

sup
t∈R

∫ ∞

t

U(t, s)ds ≤ L, (5.3)

but the evolution family is not exponentially stable at −∞. Let the diagonal matrix

A(t) = diag(b1(t), b2(t), . . . , bn(t))

with each bi satisfying (5.2) for i = 1, . . . , k and satisfying (5.3) for i = k+1, . . . , n (k > 0). Then,

this construction yields the linear system

x′ = A(t)x

which has an integrable dichotomy with

λ(t, s) = e−|t−s| + λ0(s), t, s ∈ R,
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λ0 integrable in R. We consider the projections

P (t) =

Ir 0

0 0

 , Q(t) = I − P (t) =

0 0

0 In−r

 ,

where Ir and In−r are identity matrix of order respectively r and n − r. Finally, one extend the

diagonal and integrable caracter of the dichotomy of A(t) to a diagonal infinite dimensional.

Example 5.2. Let µ be a mesure with a Radon-Nikodym derivative ρ defined by:

ρ(t) =

 et, t ≤ 0

1, t > 1.
(5.4)

We consider the existence and uniqueness of a µ-pseudo almost automorphic solutions for the

following system:
∂u(t, ξ)

∂t
=
∂2u(t, ξ)

∂ξ2
+ α(t)u(t, ξ) + g(t, u(t, ξ)), t ∈ R, ξ ∈ [0, π],

u′(t, 0) = u′(t, π) = 0, t ∈ R,
(5.5)

where α(t) = 1
2 sin

(
1

2+cos t+cos
√
2t

)
∈ AA(R, X). Take X = L2[0, π] with norm ∥ · ∥ and inner

product (·, ·)2. g : R× L2[0, π] → L2[0, π] is µ-pseudo almost automorphic with

g(t, ξ) = e−|t|ψ(ξ),

where t 7→ e−|t| belongs to E(R,R, µ). The function ψ is Lipschitzian. Let κ > 0

|ψ(x)− ψ(y)| ≤ κ|x− y|.

Let f : R× L2[0, π] → L2[0, π] be a function defined by

f(t, v)(x) = e−|t|ψ(v(x)).

We define A : D(A) ⊂ X → X by

Aϕ = ϕ′′ for ϕ(·) ∈ D(A),

with domain

D(A) = {u ∈ H2(0, π) : u′(0) = u′(π) = 0}.
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It is well-known that the operator A generates a C0-semigroup (T (t))t≥0 on X such that ∥T (t)∥ ≤ 1

for t ≥ 0. Moreover, we have

T (t)ϕ =

∞∑
n=0

e−n2t(ϕ, en)2en, for all t ≥ 0, ϕ ∈ X,

with en(t) =
√

2
π cos(nt) for each n ∈ N. Define a family of linear operators A(t) by:

A(t) =
∂2

∂x2
+ α(t)I = A+ α(t)I for t ∈ R,

with domain

D(A(t)) = D(A) = {u ∈ H2(0, π) : u′(0) = u′(π) = 0}.

It is easy to see that the family of linear operators A(t) satisfy assumptions (A1)-(A3). Indeed,

just take Y = X, M = 1 and ω = 1
2 .

Let v(t) = u(t, ·). Then (5.5) becomes

d

dt
v(t) = A(t)v(t) + f(t, v(t)).

The operators A(t) generate an evolution family (U(t, s))t≥s given by:

U(t, s)ϕ =

∞∑
n=0

e
∫ t
s
[α(τ)−n2]dτ (ϕ, en)2en, for all t ≥ s, ϕ ∈ X.

Lemma 5.3. The evolution family has an integrable dichotomy with data (λ, P ).

Proof. We divide the series in two parts i.e., thus

U(t, s)ϕ = e
∫ t
s
[α(τ)−1]dτ (ϕ, e0)2e0 +

∞∑
n=1

e
∫ t
s
[α(τ)−n2]dτ (ϕ, en)2en, for all t ≥ s, ϕ ∈ X.

For t ≥ s and ϕ ∈ V ect{e0},

|U(t, s)ϕ| = |e
∫ t
s
α(τ)dτ (ϕ, e0)2e0| ≤ e

1
2 (t−s)|ϕ|.

Let ϕ ∈ V ect{en;n = 1, 2, . . . },

|U(t, s)ϕ| =

∣∣∣∣∣
∞∑

n=1

e
∫ t
s
[α(τ)−n2]dτ (ϕ, en)2en

∣∣∣∣∣ ≤ e
∫ t
s
[α(τ)−1]dτ

∣∣∣∣∣
∞∑

n=1

(ϕ, en)2en

∣∣∣∣∣ ≤ e−
∫ t
s
[1−α(τ)]dτ |ϕ|.
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Let I−P = diag(1, 0, . . . , 0, 0, 0, . . . ) and P = diag(0, 1, 1, . . . ) be projections with Rank(I−P ) = 1

and Rank(P ) = ∞. Thus, the Green function is defined by

G(t, s) =

U(t, s)P =
∑∞

n=1 e
∫ t
s
[α(τ)−n2]dτen, if t ≥ s,

−Ũ(t, s)(I − P ) = −e−
∫ t
s
α(τ)dτe0, if t < s.

Then, u′(t) = A(t)u(t) has an integrable dichotomy with data (λ, P ), where λ is given by:

λ(t, s) =

e
−

∫ t
s
[1−α(τ)]dτ , if t ≥ s,

e−
∫ t
s
α(τ)dτ , if t < s.

Let us calculate L and C as mentioned in Definition 2.20. Let t ∈ R, using the fact that − 1
2 ≤

α(τ) ≤ 1
2 , one obtain

sup
t∈R

∫
R
λ(t, s)ds = sup

t∈R

(∫ t

−∞
e−

∫ t
s
[1−α(τ)]dτds+

∫ ∞

t

e−
∫ t
s
α(τ)dτds

)
≤
(∫ t

−∞
e−

1
2 (t−s)ds+

∫ ∞

t

e
1
2 (t−s)ds

)
= 4 = L.

Now, let us verify hypothesis (A). Let T > 0, we have

∫ ∞

T

∫ T

−T

λ(t, s)dµ(t)ds =

∫ ∞

T

(∫ 0

−T

ete
1
2 (t−s)dt+

∫ T

0

e
1
2 (t−s)dt

)
ds

≤
(
2

3
+ 2e

1
2T

)∫ ∞

T

e−
1
2 sds ≤ 16

3
= C.

In a similar way, we can show that

∫ T

s

λ(t, s)dµ(t) ≤ C,

∫ s

−T

λ(t, s)dµ(t) ≤ C, and
∫ −T

−∞

∫ T

−T

λ(t, s)dµ(t)ds ≤ C.

Hence, (H1) and (H2) hold.

Lemma 5.4. The Green’s function is bi-almost automorphic.

Proof. Let α ∈ AA(R, X), then, for every sequence (s′k)k≥0 of real numbers, there exists a subse-

quence (sk)k≥0 ⊂ (s′k)k≥0 and a measurable function α̃, such that

lim
k
α(τ + sk) = α̃(τ) and lim

k
α̃(τ − sk) = α(τ) for all τ ∈ R.
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Let us define, Ũ(t, s)ϕ = T (t−s)e
∫ t
s
α̃(τ)dτϕ, for all t ≥ s, ϕ ∈ X. Since U is bi-almost automorphic,

we have

lim
k
U(t+ sk, s+ sk)ϕ− Ũ(t, s)ϕ ≤ lim

k

∥∥∥∥T (t− s)e
∫ t+sk
s+sk

α(τ)dτ
ϕ− T (t− s)e

∫ t
s
α̃(τ)dτϕ

∥∥∥∥
≤ lim

k

∥∥∥∥T (t− s)

(
e
∫ t+sk
s+sk

α(τ)dτ − e
∫ t
s
α̃(τ)dτ

)
ϕ

∥∥∥∥
≤ lim

k

∥∥∥T (t− s)
(
e
∫ t
s
α(τ−sk)dτ − e

∫ t
s
α̃(τ)dτ

)
ϕ
∥∥∥

≤ lim
k

∥∥∥T (t− s)e
∫ t
s
α̃(τ)dτ

(
e
∫ t
s
|α(τ−sk)−α̃(τ)|dτ − 1

)
ϕ
∥∥∥

As α ∈ AA(R, X), we have

∣∣∣e∫ t
s
|α(τ−sk)−α̃(τ)|dτ − 1

∣∣∣→ 0 as k → ∞.

Then

lim
k
U(t+ sk, s+ sk)ϕ− Ũ(t, s)ϕ = 0.

In a similar way, we can prove that limk Ũ(t − sk, s − sk)ϕ − U(t, s)ϕ = 0. Then, U is bi-almost

automorphic.

Consequently, all assumptions of the Theorem 4.3 are satisfied. We can deduce by the Theorem 4.3

that the problem (4.1) has an unique µ-pseudo almost automorphic mild solution on R, under the

condition κ small enough.
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