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ABSTRACT

Not every finite distributive lattice is isomorphic to the con-
gruence lattice of a finite semidistributive lattice. This note
provides a construction showing that many of these finite
distributive lattices are isomorphic to congruence lattices of
infinite semidistributive lattices.

RESUMEN

No todo reticulado distributivo finito es isomorfo al reticu-
lado de congruencia de un reticulado finito semidistributivo.
Esta nota proporciona una construcción mostrando que mu-
chos de estos reticulados finitos distributivos son isomorfos
a reticulados de congruencia de reticulados infinitos semidis-
tributivos.
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1 Introduction

Congruence lattices of lattices are distributive, and every finite distributive lattice is isomorphic

to the congruence lattice of a finite lattice. We would like to know more about: Which finite

distributive lattices are the congruence lattice of some semidistributive lattice?

Not every finite distributive lattice D is isomorphic to ConL for a finite semidistributive lattice L.

There are two known restrictions [2, 9]: if D is the congruence lattice of a finite semidistributive

lattice, then considering D as the lattice O(P ) of order ideals of an ordered set, neither 2 nor Y

(Figure 1) can be an order filter in P . An equivalent formulation is that neither a 3-element chain

nor (B2)++ := 2+ 22 can be a filter in D. There may be other restrictions.

This note presents a construction to show that many finite distributive lattices with 3 or (B2)++

as a filter are isomorphic to the congruence lattice of an infinite semidistributive lattice.

B2

a b

2 Y

Figure 1: Ordered sets referred to in the text: B2, 2, Y

2 Background

The join-semidistributive law for lattices is

(JSD) x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z).

Its dual is the meet-semidistributive law, (MSD). Lattices that satisfy both are called semidis-

tributive, abbreviated SD. The semidistributive laws were found by B. Jónsson as a property of

free lattices; see [6–8] and the survey [1].

Finite distributive lattices are isomorphic to the lattice of order ideals (downsets) of an ordered

set. In fact, D ∼= O(P ), where P = (J(D),≤) is the set of join-irreducible elements of D. This

reflects the fact that join-irreducible elements in a distributive lattice are join-prime. Our results

are formulated in terms of this duality.

Let n denote an n-element chain, An an n-element antichain, and Bn the boolean lattice with

n atoms. For the ordered sets, P and Q, the ordered set P ∪̇ Q has the elements of P and Q

incomparable, while the ordered set P +Q has every element of P below every element of Q. For
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the lattices K and L with 0 and 1, let K#L denote the glued sum, where 1K = 0L.

Lemma 2.1. Let P and Q be ordered sets. If O(P ) = K and O(Q) = L, then

(1) O(P ∪̇ Q) = K × L,

(2) O(P +Q) = K#L.

If L is a lattice, then L+ denotes the lattice obtained by adjoining a new zero element, that is,

L+ = 1 + L. Thus L++ = 2 + L. Likewise, L+ is the lattice obtained by adjoining a new top

element, that is, L+ = L+ 1.

The congruence lattice of a finite lattice is a finite distributive lattice. There are two restrictions

mentioned in the introduction: if O(P ) ∼= Con K for a finite semidistributive lattice, then neither

2 nor Y can be an order filter (upset) of P . Note that O(2) = 3 and O(Y ) = (B2)++; remember

to include the empty order ideal. The following elementary technical observation [9] then shows

that neither 3 nor (B2)++ is a filter of O(P ).

Lemma 2.2. Let S and P be finite ordered sets. Then O(S) is isomorphic to a filter of O(P ) if

and only if S is an order filter of P .

Now 2 is the only finite simple SD lattice. Indeed, if L is JSD and has a largest element 1, then it

has a prime ideal, and hence L has 2 as a homomorphic image. There are however infinite simple

SD lattices [4].

The original lattices in [4] contained no completely doubly irreducible (c.d.i.) elements, that is,

elements that are completely join-irreducible and completely meet-irreducible. A straightforward

modification of the construction yields infinite simple semidistributive lattices containing infinitely

many c.d.i. elements; see [3]. (Replace the defining relations (7) and (8) in [4] by bi < bi+1 and

di < di+1; these are slightly stronger.)

The infinite simple SD lattices constructed in [3,4], containing an infinite chain of c.d.i. elements,

are called FN lattices. The letter F will denote an arbitrary FN lattice with c.d.i. elements. An

infinite simple semidistributive lattice necessarily has neither 0 nor 1. We will use FN lattices as

the building blocks for our constructions.

The least congruence on a lattice is denoted by ∆, and the greatest congruence ∇. In this note we

are dealing with infinite lattices that have finite congruence lattices. Of course, that is not always

the case.
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3 Direct products

The first operation for building new representations from existing ones is the direct product.

Lemma 3.1. If K and L are lattices, then Con(K ×L) ∼= Con K ×Con L. For ordered sets, this

translates to the disjoint union, that is, if Con K ∼= O(P ) and Con L ∼= O(Q), then

Con(K × L) ∼= O(P )×O(Q) = O(P ∪̇Q).

The lemma allows us to represent Bm = O(Am) as Con 2m or Con Fm where F is an FN lattice.

The following properties will play a role later.

IGD(K) The congruence generated by collapsing any nonempty ideal of K is ∇.

FGD(K) The congruence generated by collapsing any nonempty filter of K is ∇.

A lattice satisfying both IGD and FGD is called half-simple, and FN lattices (being simple) clearly

are half-simple. Half-simple lattices can have neither 0 nor 1.

Lemma 3.2. A finite direct product of lattices with FGD has FGD. Likewise, for IGD and half-

simple.

Proof. Let L = K1 × · · · ×Kn, with each Kj having FGD, and let G be a nonempty filter of L.

Let θ denote the congruence on L obtained by collapsing G. We want to show that θ = ∇L.

Lattices have factorable congruences, as a consequence of congruence distributivity. This means

that there exist congruences θi ∈ Con Ki such that, for x, y ∈ L, we have x θ y iff xi θi yi for all

1 ≤ i ≤ n. But each θi is the congruence generated on Ki by the projection of the filter G onto Ki,

which is a nonempty filter. Since Ki has FGD, this implies that θi = ∇Ki
, whence θ = ∇L.

4 Replacing a c.d.i. element with a half-simple lattice

Let d be a c.d.i. element in a lattice K, and let H be half-simple. The lattice K(d ↪→ H) is the set

(K − {d}) ∪̇H with the natural order, that is, for k ∈ K − {d} and h ∈ H, k ≤ h iff k ≤ d, and

k ≥ h iff k ≥ d. Joins and meets are well-defined in K(d ↪→ H), because d is doubly irreducible.

Indeed, K − {d} and H are sublattices, while

k ∨ h =

h, if k ≤ d;

k ∨ d, otherwise;
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and dually. Thus, K(d ↪→ H) is semidistributive, if both K and H are semidistributive. The

construction is illustrated schematically in Figure 2.

B2

a F

B2(a ↪→ F ) K

d

d∗

d∗

F

K(d ↪→ F )

d∗

d∗

Figure 2: Schematic representation of the construction, replacing a c.d.i. element with an FN
lattice F

One can also replace multiple c.d.i. elements independently, forming K(d1 ↪→ H1, . . . , dn ↪→ Hn).

Let us now analyze Con (K(d ↪→ H)).

For any element u ∈ K, considering how joins of congruences work, there is a unique largest

congruence ζu in Con K such that the congruence class [u]θ is a singleton, that is, [u]θ = {u} iff

θ ≤ ζu. Note that when Con K ∼= O(P ), the congruence ζu corresponds to an order ideal of P ,

which we also denote ζu.

Theorem 4.1. Let K be a lattice with a c.d.i. element d, and let H be a half-simple lattice. Form

L = K(d ↪→ H). Then

Con L ∼= {(θ, α) ∈ Con K × Con H : θ ≰ ζd → α = ∇H}.

In terms of ordered sets, if Con K ∼= O(P ) and Con H ∼= O(Q), then Con L ∼= O(R) where

R = Q ∪ P with the order q ≤ p iff p /∈ ζd for p ∈ P , q ∈ Q.

Figure 3 illustrates how Theorem 4.1 applies to N5(c ↪→ F ) and ζc > ∆.

Proof. Let φ be the congruence on L = K(d ↪→ H) that collapses H back to a single point, so

that L/φ ∼= K. By the isomorphism theorems, ↑φ in Con L is isomorphic to Con K. Explicitly,

if f : L ↠ K with ker f = φ and ψ ≥ φ, then k f(ψ) k′ if and only if there exist x, x′ in L with

k = f(x), k′ = f(x′), and xψ x′. Equivalently, in view of ψ ≥ φ, for all x, x′ in L, we have that

f(x) f(ψ) f(x′) if and only if xψ x′.

Let S be the sublattice of Con K × Con H given in the theorem. We establish inverse lattice

homomorphisms σ : Con L→ S and τ : S → Con L.
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For ψ ∈ Con L, let σ(ψ) = (f(ψ ∨ φ), ψ|H). For (θ, α) ∈ S and k, k′ ∈ K − {d}, h, h′ ∈ H, let

k τ(θ, α) k′ iff k θ k′,

h τ(θ, α)h′ iff hαh′,

k τ(θ, α)h iff k θ d.

The crucial observations are these.

• If f(ψ ∨ φ) ≰ ζd, then k f(ψ ∨ φ) d for some k ∈ K − {d}. Hence k ψ h for some h ∈ H (as

f(h) = d).

• If k ψ h for some k ∈ K −{d} and h ∈ H, then ψ collapses either an ideal or a filter of H (or

both). Because H is half-simple, this implies ψ|H = ∇H .

• The condition ψ|H = ∇H is equivalent to ψ ≥ φ.

On the other hand, if θ ∈ Con K with θ ≤ ζd, and α ∈ Con H, let ξ be the relation on L such

that ξ|K−{d} = θ|K−{d}, ξ|H = α, and ξ contains no pairs of the form (k, h) or (h, k). Then ξ is a

congruence on L and ξ = τ(θ, α). The remaining details are left as an exercise to the reader.

Corollary 4.2. Let K be a lattice with a c.d.i. element d, and let H be a half-simple lattice. If

ζd = ∆K , then

Con K(d ↪→ H) ∼= Con H# Con K.

In particular, with an FN lattice,

Con K(d ↪→ F ) ∼= 1+Con K = (Con K)+ when ζd = ∆K ,

Con F (d ↪→ H) ∼= Con H + 1 = (Con H)+ when H is half-simple.
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N5 =K c
a

b

P

ζc

Q φ

R

φ ζc

Figure 3: Example N5(c ↪→ F ) for Theorem 4.1. Note ζc = Cg(a, b).

Recall that for n ≥ 3, the n-element chain is not the congruence lattice of a finite semidistributive

lattice (or even a finite join-semidistributive lattice [2]).

Corollary 4.3. For every n ≥ 2, the n-element chain n can be represented as the congruence

lattice of an infinite semidistributive lattice.

2 = O(1) F

3 = O(2) F ⟨d1 ↪→ F ⟩

4 = O(3) F ⟨d1 ↪→ F ⟨d2 ↪→ F ⟩⟩

5 = O(4) F ⟨d1 ↪→ F ⟨d2 ↪→ F ⟨d3 ↪→ F ⟩⟩⟩

etc.

As an application of direct products (Lemma 3.1):

Corollary 4.4. For positive integers n1, . . . , nk, the lattices n1 × · · · × nk are congruence lattices

of infinite SD lattices.

If any nj ≥ 3, then n1 × · · · × nk is not the congruence lattice of a finite SD lattice.

The lattice O(Y ) = (B2)++ is the other lattice minimally not representable as the congruence

lattice of a finite SD lattice. However, O(Y ) ∼= Con K for both of the following infinite SD

lattices:

• K1 = B2(a ↪→ F (d ↪→ F ))
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• K2 = N5(a0 ↪→ F ) where N5 = B2[a], doubling an atom.

These lattices are drawn schematically in Figure 4.

K1 K2

Figure 4: Schematic representation of lattices Kj with Con Kj = O(Y ).

One can just as easily use K = Bn and one of its atoms to represent (Bn)++ for any n ≥ 2 as the

congruence lattice of an infinite SD lattice, generalizing either of the representations K1 or K2.

A dual tree is a connected finite ordered set such that every element has at most one cover. A

dual forest is a disjoint union of finitely many dual trees. When P is a dual forest, there is a

straightforward way to represent O(P ) as a congruence lattice. For branching in the dual tree, we

replace multiple c.d.i. elements.

Theorem 4.5. If P is a finite dual forest, then O(P ) is the congruence lattice of an infinite SD

lattice.

Proof. Without loss of generality P is a dual tree, as we can use direct products for a dual forest.

Let u ≻ v1, . . . , vn in P , and assume inductively that each O(↓ vj) ∼= Con Hj for a half-simple

SD lattice Hj . Let F be an FN lattice, and choose distinct c.d.i. elements d1, . . . , dn ∈ F . Form

L = F (d1 ↪→ H1, . . . , dn ↪→ Hn). Then L is half-simple, and Con L ∼= O(↓u) by the straightforward

extension of Corollary 4.2 for multiple substitutions.

1

2

3

4

5 6

7

Figure 5: Dual tree example
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The method is best illustrated by an example. Let P be the dual tree in Figure 5. To find an

infinite SD lattice K with Con K ∼= O(P ), we use K = F1⟨b1 ↪→ H1, b2 ↪→ H2, b3 ↪→ H3⟩ where

H1 = F2⟨b4 ↪→ F3⟩

H2 = F4⟨b5 ↪→ F5, b6 ↪→ F6⟩

H3 = F7.

Also observe that Theorem 4.5 includes O(An + k) = B+···+
n with k “+” signs.

5 Conclusion

We have shown that many finite distributive lattices that are not the congruence lattice of a finite

semidistributive lattice, are the congruence lattice of an infinite semidistributive lattice. Some of

these examples were included in an earlier version of this note [5].

This suggests two problems.

Question 1. Are there additional restrictions on congruence lattices of finite SD lattices?

Question 2. Is every finite distributive lattice the congruence lattice of an infinite SD lattice?

We conjecture that the answers are NO and YES, respectively.
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