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problem. Finally, we present an example for illustration to

demonstrate our outcome.

Para evitar estudiar ecuaciones diferenciales iterativas con
dereivadas fraccionarias de distintos o6rdenes, es esencial
tratarlas a través de una derivada fraccionaria amplia, que
deje otras derivadas fraccionarias como un caso especial. De
este modo, estudiamos un problema de valor inicial para
ecuaciones diferenciales fraccionarias iterativas no-lineales
que involucra la derivada fraccionaria ®-Hilfer. Establece-
mos la existencia y unicidad de la solucién a través de teo-
remas de punto fijo. Demostramos resultados relacionados
a la dependencia de la solucién y la estabilidad de Ulam-
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1 Introduction

Fractional calculus is a branch of mathematics in which we obtain definitions of derivatives and
integrals with arbitrary positive real order so that the classical derivative can act as a special case.
There are many more definitions of fractional derivatives, see the monographs [17,28,29]. It is worth
obtaining the most generalized fractional differential operator to unify all these definitions. Later,
Sousa and Oliveira (2018) [35] investigated the most generalized ®-Hilfer fractional derivative. In
[14,21,22,27], significant theoretical advancements concerning various forms of nonlinear ®-Hilfer
fractional differential equations and several important properties of their solutions are examined.
Development of theory after the proposal of the ®-Hilfer fractional derivative, other versions of
fractional operators were studied. For example, a work that addresses the fractional derivative in
variable order with respect to the ® function [38] and the work on calculus of ®-Hilfer fractional
derivative with an additional parameter k£ > 0 and associated fractional differential equations

[15,20].

We note that fractional calculation has been extensively studied and its theory, although well
consolidated, still new versions of fractional operators are presented and, certainly interesting and
important applications arising from them, will be discussed in the near future. On the other hand,
we can also highlight problems of fractional differential equations with p-Laplacian, which have been
attracting the attention of researchers. In 2022, Sousa et al. [39] first work on variational problems
using the ®-Hilfer fractional derivative was presented. In the work, the authors presented a new
fractional Sobolev space for the ®-Hilfer fractional derivative, and built a variational structure
so that it was possible to investigate the existence of weak solutions to a fractional p-Laplacian

problem via Nehari manifold (33,34, 37].

The differential equations which involves the iterates of unknown function is called as Iterative
differential equations (IDEs). IDEs are especially useful for simulating real-world systems where
the rate of change is dependent on both the function and the number of times the unknown function
is applied. They extend traditional differential equations to capture more complex, nonlinear, and
self-referential dynamics, with applications across various fields, including biology, physics, and
engineering. Examples include infectious disease models [45], the motion of charged particles with
retarded interaction [11], insect population dynamics [2], and Nicholson’s blowflies model [16]. Due

to their wide range of applications, IDEs are an essential area of study.

Eder [7] studied the IDEs of the form

and showed that every solution either identically vanishes or is strictly monotonic. Feckan [§]
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investigated the functional differential equation

Vasile Bernide [1] proved convergence theorems under weaker conditions than those suggested by

A. Buica [3] and proved the existence of solutions for first-order iterative differential equations.

TIterative fractional differential equations (FDEs) deals iterative differential equations associated
with various types of fractional derivatives. They serve as powerful tools for modeling complex
systems that exhibit memory effects, non-local interactions, and long-term dependencies. Here, we

highlight a few significant studies on iterative FDEs.

Ibrahim [11] investigated the existence and approximation of solution for the iterative Riemann-

Liouville FDEs of the form
DSu(t) = h(t,u(t),u(u(t))), u(0)=uo.
Damag et al. [4] proved the existence of solution for the iterative FDEs
DSu(t) = h(t,u(t), u(u(t)), ' (t), u(te) =uo, to€ J,

by applying non-expansive operator method and Browder-Ghode-Kirk fixed point theorem. Guerfi
and Ardjouni [9] investigated existence, uniqueness, continuous dependence and Ulam-Hyers sta-

bility of mild solution for the Caputo iterative FDEs of the form

CD§, ult) = h (u[O] (), (1), ... ul (t)) :

u(0) = u'(0) = 0.

Existence and approximation problems for the iterative differential equations are solved in [5,6,12,
24,44-46,48|. Also, iterative integro-differential equations are studied [10,13,18,32|. For further

development of iterative differential equations see [26,31,41,42] and the references therein.

Vivek et al. [40] examined the class of ®-Riemann-Liouville iterative fractional differential equation

with non-local condition

DS®u(t) = h(t,u(u(t))), 0<E<1,

u(0) + f(u) = uo.
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Motivated by interesting work mentioned above on iterative differential equations we consider the

non-linear iterative FDEs of the form

D5 M u(t) = b (((@() - 2(0)w)” (1), (@) — @(0))'~<u)" 1),
(@) = ®(0)=Cu)™ (t)) ted, (1.1)

L9 %u(0) =ug, uo >0, ¢=E&+n(1-¢), (1.2)

where J = [0,T], ® is an increasing function on .J such that ® € C*(.J) and ®'(¢) # 0, for all t € J,
HDS’JFW; ®(.) is the ®-Hilfer derivative of order ¢ € (0,1) and type 5 € [0,1]. Further,

(1.4)

are the iterates of the function (®(-) — ®(0))' “w and h € C(J"*!, R) is a positive non-lincar

function that fulfills a few other requirements, which are detailed subsequently.

We believe that the main results of this paper are best presented as follows:

(1) Before attacking the main results, it was necessary to discuss some properties for the space

with weight C1_¢;0(J,R, M).

(2) The first contribution of the paper was to investigate the existence and uniqueness of solutions

to the problem (1.1)-(1.2) through the theory of fixed points.

(3) In addition to the above, we investigated the continuous dependence and Ulam-Hyers stabil-
ity.

(4) Finally, we present an example, in order to elucidate the results discussed.

We analyzed iterative differential equations associated ®-Hilfer fractional derivative for the exis-

tence and qualitative properties of solutions in the space of weighted Lipschitz functions.

The iterates of unknown functions defined by (1.3) and (1.4) that appears in the equations (1.1)-
(1.2) make the study challenging as it requires domain and codomain of unknown functions should
be same and hence appropriate solutions space is required to deal with the solutions of itera-
tive FDEs (1.1)-(1.2). In this context the two weighted spaces are defined. The weighted space
Ci—¢.o(J,R, L) ensures that that the iterates are well defined and Ci_¢.¢(J,R, M) ensures the

existence of solution for the iterative FDEs.

The ®-Hilfer fractional derivative is the most generalized form of fractional derivatives, encompass-

ing various fractional differential operators described in [35] as special cases for varying values of
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1 and different choices of the function ®. In this context, the ®-Hilfer fractional derivative serves
as a powerful tool in fractional calculus that unifies the study of fractional differential equations
(FDEs) under a single framework. As a result, it is no longer necessary to conduct independent

analyses of FDEs using various fractional derivative operators.

This paper is organized as follows. In Section 2, we discuss about ®-fractional calculus, define
some weighted spaces that required for further calculation. Section 3 deals with the properties
of weighted space. In Section 4, we investigate existence via fixed point theorem and uniqueness
result. Further Section 5 includes continuous dependence, Ulam-Hyers and generalized Ulam-Hyers

stability of solution. In Section 6, example is provided to illustrate our results.

2 Preliminaries

In this section, we provide definitions and few basic results pertaining to ®-fractional calculus.

Further, we provide the suitable weighted space to deal with solutions of iterative FDEs.

2.1 &-fractional calculus

Definition 2.1 ([17]). The ®-Riemann-Liowville fractional integral of order & >0 (£ € R) of the
function u € C ([a,b],R) is given by

ISP (t) = 7/ ' () ((t) — D () u(s)ds. (2.1)

Definition 2.2 ([35]). The ®-Hilfer fractional derivative of a function u € C™ ([a,b],R) of order
m—1<&<m and type n € [0,1], is defined by

Hpt&m®, o mm—gno (1 d (1—n)(m—¢); @
DS Pty = 17 (@/(t)dt) 14 u(t), te(a,b).

Lemma 2.3 ([35]). Let m—1<&<meN, ue (C™a,b],R) and n € [0,1]. Then

(i) 15" DS u(e) = wlt) - 3 R L0 P (a), where u () =

T(E—k+1)
1 d m—k
(q>/( )dt) u(t),

(i) FDET I u (1) = u (1),

where ( = &+ n(m — &).
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2.2 Weighted spaces

Consider the weighted space
Ci-c;a(J,R) = {u: (0,T] = R (B(t) — (0))' " u(t) € C[0, T]}

with the norm

ulloy_¢ o (rr) = sup ’(‘I)(t) ~3(0) “u(t)|, 0<(<L
S

Then the space (01_<;<1>(J, R),|| - Hleg;@(J,R)) is Banach space.

For 0 < L < T and M > 0, we define the following sets
Ci—cio(J,R; L) = {u € C_cia(JR) 10 < (B(t) — ®(0)) Cu(t) < L} :
and
Ci_co(J, Ry M) = {u €Ci—¢o(JR;L):
’(@(tg) —®(0))' " ulty) — (B(t1) — (0))' Cults)| < M|tz — t1] 11, t2 € J}.
If { = 1 then above weighted spaces reduces respectively to
CUR,L)={ueC(J,R):0<u(t) <L, Vte J}
and
C(LR;M)={ueC(J,R;L) : |u(te) —u(tr)] < M|te — t1|, Vt1,t2 € J}, M >0

which are defined in [9].

Lemma 2.4 ([48]). If ui,us € C(J,R; M), then

’ ’ u[ln] . u[n]

n—1
< M7 |luqg — us , n=1,2,...
i © S sl

where C(J,R) = {u|u: J — Ris continuous} is Banach space with the supremum norm.
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3 Properties of weighted space C\_¢,¢(J,R; M).

To prove existence of solution of iterative FDEs (1.1)-(1.2) we use the following Schauder’s fixed

point theorem.

Theorem 3.1 (Schauder’s fixed point theorem [30]). Let U be a non-empty compact convex subset

of Banach space (B,||-||) and A:U — U is a continuous mapping. Then A has a fized point.

In the view of Theorem 3.1, we have to prove that the space C1_¢, 4 (J,R; M) is non-empty, convex
and compact subset of a Banach space Ci1_¢,¢(J,R), and the proof of the same is provided in

following theorems.

Theorem 3.2. For 0 < L < T and M > 0, the weighted space Ci_¢.o(J,R; M) is non-empty,
closed and convex subset of Ci_¢. o (J,R).

Proof. Define v : (0,T] — Rby v(t) = (®(t) — ®(0))* "' L, t € (0,T]. Then (®(t) — ®(0))' " v(t) =
L € C(J,R). Therefore v € C1_¢, o(J,R; L). Further for any t1,t; € J, we have
\(<I>(tz) — ®(0))' " v(ta) — (@(tr) — 2(0)" " v(tr)
= |(@(t2) = ®(0)' (@(t2) — @(0)° ™ L= (@(t2) — D(0))' "~ (@(t1) ~ @(0)) ' L

=0< Mlta — tq].
From above discussion it follows that v € C1_¢,o(J,R; M).
Let {u,}p2, be any sequence in C1_¢;¢(J,R; M) and u € Ci_¢, o(J,R) is such that
Jim jun = ulley_ 5 (1) =0 (3.1)
Note that

0< ‘(<I>(t) —®(0))" 7 (un(t) — U(t))'

< sup | (@(8) = 2(0)' ™ (ua(t) ~ u(®)] = |[un ~ vlley . w10 (32)

Using squeeze theorem for sequences from (3.1) and (3.2) it follows that

lim |(®(t) — ®(0))' " un(t) — (®(t) — ®(0))' S u(t)| = 0. (3.3)

n—0o0

Further if u,, € Ci_¢;o(J,R; M) then u,, € Ci—¢;o(J,R; L) for all n. Thus

0< (®(t) — ®(0)) “un(t) <L, forallnandte.l. (3.4)
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Taking limit as n — oo in inequality (3.4) and using the continuity of modulus and the limit (3.3),

we have
0< (®(t) —®(0) “u(t) <L, foralte.l
Therefore u € Ci_¢, o (J,R; L).

Consider for tq,t5 € J,

|(@(t2) = @(0)' u(tz) = (@(t2) — 2(0))'  u(tr)|
< ‘(@(tz) — ©(0))" ™ (un(t2) — u(tg))‘ + ](@(tl) —@(0))' ™ (un(t2) — u(tr))
+ |(@(t2) = @(0) ™ wnlta) — (®(t1) — @(0)' wn(ty)|

< 2un —ulle, 4w + Mlt2 = tal.

Letting n — oo we get, ’((b(tg) —3(0)" Cults) — ((t1) — @(0))1—%(751)‘ < Mlt, — t;|. Thus
(S Cl_C;q)(J,R,M).

Consider any v,w € Ci—¢;0(J,R,M) and s € [0,1]. Then (®(t) —®(0))""“v(t) and
(®(t) — ®(0))' "¢ w(t) are continuous on J hence (®(t) — ®(0))' " (sv + (1 — s)w) (¢) is contin-
uous on J. This gives sv + (1 — s)w € Ci_¢;0(J). Slnce v,w € Ci_¢o(J,R,L) we have
0 < (®(t) —®(0)" “wv(t) < L and 0 < (®(t) — ®(0))' “w(t) < L. Therefore for any t € J,
yields that

0< (D(t) — ®(0) ¢ (sv+ (1 —s)w) (¢)

=5((t) — 2(0)' " v(t) + (R(t) — @(0))' " w(t) — s (D(t) — D(0)' " w(t)
<sL+L—sL=01L.

This proves sv + (1 — s)w € Ci—¢;o(J,R, L). Consider any t1,t, € J, then

|(@(t2) = @(0))' ™ (su+ (1 = $)w) (t2) = (@(t) = B(0))' ™ (sv+ (L = $)uw) (1)
— 5 |(@(t2) = @(0)' " v(tz) — (B(t2) — D(0))'C v(t1)|
+ (1= 5) [(@(t2) = ©(0))' ~C w(ta) = (@(t2) = (0)' w(ty)|
< sMlto —t1]| + (1 — 8) M|ty — t1| = M|ty — t1]-

From above discussion it follows that sv + (1 — s)w € Ci1_¢, (J,R; M) for any s € [0,1]. Thus
proof of Ci_¢. o (J, R; M) is non-empty, closed and convex subset of C1_¢; ¢(J,R) is completed. [
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Theorem 3.3. For 0 < L < T and M > 0, the weighted space Ci_¢.o(J,R; M) is uniformly

bounded and equicontinuous.
Proof. Let any u € Ci_¢, o(J,R; M) then u € Ci_¢. (J,R; L). Hence
0< (®(t)— ®(0) Cut)<L, foralte

This gives [|ullc,_,. ,(r) < L, for all u € C1—¢.0(J,R; M). This proves C1—¢, o(J,R; M) is uni-
formly bounded.

Let any u € C1_¢,a(J,R; M). Then (®(t) — ®(0))'~Cu(t) is continuous for each ¢ € J. Further,

we have
(D(t2) — ®(0)) " u(ty) — (D(ty) — D(0)' " u(ty)| < Mlty —t1], for all t1,t5 € J.
Let any € > 0. Define § = §7. Then t1,t5 € J, [t2 — t1| < 0 implies
(®(t2) — 2(0)'~“ u(tz) = (B(t1) = ®(0))'“ultr)| <e.

This proves Ci_¢.o(J,R; M) is equicontinuous. This completes the proof of Ci_¢, o (J,R; M) is

uniformly bounded and equicontinuous. O

Remark 3.4. From Theorem 3.3 and Arzela-Ascoli theorem it follows that Ci_¢.o(J,R; M) is
relatively compact. But Ci_¢,o(J,R; M) is also closed subset of Ci_¢;0(J,R) and
hence Ci_¢,o(J,R; M) is compact subspace of Ci_¢;o(J,R).

4 Existence and uniqueness results

Theorem 4.1. Assume that the function h: J*T — [0,00) satisfies the Lipschitz type condition
n

|h(t, w1, gy ..y upn) — h(t,v1,02,...,05)] < ch|ul —wv;|, where ¢; > 0. (4.1)
i=1

Then, the iterative FDEs (1.1)-(1.2) has at least one solution in the weighted space
Ci—¢;o(J,R; M), provided

Yo p _ £—C+1
6 T @) - 20) <L, (4.2)
and .
P = C+1)(®(c) — (0) ()| < M, for some c e (0,T), (4.3)

E+1)
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where
n i—1

p =sup{h(t,0,0,...,0)} and p*:p—i—LZciZMj.
tes =1 j=0

Proof. Considering equivalent fractional integral equation [36] to the iterative FDEs (1.1)-(1.2),
we define an operator A on C1_¢, o(J,R; M) by

— (o)
oG

x h (((@(-) - <1>(o))1*<u)

(Au)(t) = (20 w0+ g / &' (1) (0(t) — B(r))¢ "

(0]

o) (@) = 20y 0)" (0),.... (@) - 2(0) )" (7)) ar
(4.4)

where t € (0,T]. In the view of Schauder’s fixed point theorem, we have to show that the mapping
A:Ci¢c.o(J, Ry M) — Ci_¢,0(J,R; M) is well defined and continuous. Proof of the same is given

in several steps.

Since h is continuous on J we have h € C1_¢,4(J). Further, Igf is bounded from Ci_¢. ¢(J) to
Ci—¢;o(J) implies Igfh € Ci_¢;0(J). This gives Au € Ci_¢,0(J), for all u € C1_¢,0(J). Thus
the mapping A is well defined.

Now, we show that the mapping A is continuous. Using Lipschitz condition on h, for any ¢ € J,

one has

(@) = 2(0))' ¢ (4u — 40) (1)

—~~

3

1-¢ ot
h ((@(-) - ‘P(O))l_gu)

[0]
X

t "(r —®(r))E
< P0G — [ om@n -
e (@)~ 20) )" (1)~ (@) 2(0))<0) " (7) ar
(1) — @(0)'~*
G
< c,‘ (@() @(o))Hu)[’]—((@() <1>(o))1*<v)m C(JR)/O ' (r) (D) — ®(r)* " dr
(@(1) = S(O) ' <~ S - -
Sy o M @0 - ey - @0 - 20) o
(¢(t)_¢(0))574+1 - — j 1—
- r¢+1) ZQ M7]|(20) - 2(0) C(u_v)HC(J,R)

, B £—C+1
- ZCiZM] ((I)(t)F(?-(l-O)l)) llu=vlle; ¢ e
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Therefore, we get

|
—

| Au — A’UHCl_(;q,(J,R) <

1 n 7 ,
N MI(®(T) — ®(0)) St |u — . 4.
METT) 2 2 M @) = 2O~ vl oy (49

I
<)

Let any € > 0. Define
el'(€+1)

(®(T) — B(0))e—<+1 ;

§ = — )
> My
7=0

Then for any u,v € C1—¢;¢(J,R; M) and ||U_UH017<Y¢(J’R) < 6 we have |‘AU_AUHC'17C;¢(J,R) < e.

This proves A is continuous mapping. Next we prove that
A(Cr1—¢;o(J,R; M) C Cr¢0(J,R; M),

Let any v € Ci_¢.o(J,R; M). Then,

(@0 - 20 (o] < s+ LOROP ] 8 () (1) — B(r)E !
h (((«b(-) —9(0)' )

[0]
X

0 (@0 - 20)¢0) " (... (@0 - 20) ¢ 0) " () ) ar

(4.6)
Using Lipschitz condition on A for any u € Ci—¢; o (J,R; M), it follows that

[0] (1]

i ((120) - 20~ u)
<[n (@6 - 20)<0)" (). (@) - 20 )

). (100) = 20" " (7). (@0) - 20 0) " ()

N ((00) - 2000 0) " )
—h(T,O,...,O)’ + |h(7,0,...,0)]

(@) - 20)u)" () :

((@() - @) u)

+ p.
C(J,R)

n
+p< Zci
i=1

Using the inequality in Lemma 2.4, we obtain

i ((120) - 20 ~0) " ). (100) = 20" <) " (7). (@0) - 20D 0) " ()|

1
<pty ay M
i=1 0

Jj=

(®() —®(0)' ¢ “ch,R) '

Using the definition of space Ci—¢;o(J,R; M), we get

(1]

i ((120) = 200 ) " ). (100) = 20" <) " () (@0) - 20)0) " ()|

<p+Y. Y ML=p", ueCigallRM). (4.7)

i=1 ;=0
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Using inequality (4.7) in (4.6) for any u € Ci_¢;4(J,R; M), we obtain

_ 1=¢( Au Uuo L* _ 1—¢ k "(r —d(r)NE Ydr
(@(t) = 2(0)) (A )] < T + gy (20 — 2(0) /O<I>()(<I>(t) @(r))"d

o P _ £—¢c+1 _ U0 p* B e
STQ ey PO 2O S 1 F g (00 — 200
< L.

Therefore
0 < (@(t) — D(0))~(Au)(t) < |(®(t) — B(0)<(Au)(t)| < L, u € Crc 0 (LR M), (4.5)

This proves Au € Ci_¢;0(J,R; L).

Further, for any t1,ts € J with ¢; < to9, using inequality (4.7), we have

O(t2) — (0))' "¢

[(@(t2) — @(0))' ™ (Au)(t2) — (B(t1) — ©(0))' ™ (Au)(tr)| = ‘ ( /0 T (1) (@(t2) — B(r))E

(1]

(@0 - 200 w) " 0. (@0 - 200" ) " (... (@0 - 00 0) " (7))

X

- r /0 () (@) - B
0

‘F(ﬁ) £ r'() €
P e .
- ’F(& +1) [((D(tQ) —®(0))5 T — (®(t1) — @(0))* T ]

Define g(t) = (®(t) — ®(0))s~¢*!, t € [0,T]. Then clearly g is continuous on [t;, ;] and differen-
tiable on (t1,t2) for any t;,ty € J with t; < to. Therefore using mean value theorem there exists

¢ € (0,T) such that
g(t2) — g(t1)
to—t;

g'(c) =

Using definition of function g, it follows that
(@(ts) — ©(0))5SH — (@(t1) — D(0)5™H! = {(€ — C+1) ((c) — ©(0)) @' (c)}t2 — t).

Therefore, using condition (4.3), one has

|(@(t2) = @(0))' ™ (Au)(t2) — (®(t1) — ©(0))" (Au)(t1)]

< ﬁ {(E=C+1) (@) - ®(0) ¥ (O} (2 — 11) < Mtz — ta]. (49)

From inequalities (4.8) and (4.9) , it follows that (Au) € Ci_¢. o(J,R; M). This completes the
pI'OOf of A (lec q;(J, R; M)) - leg; q;.(J7 R; M)
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We have proved that A fulfills all the conditions of Schauder’s fixed point theorem. Therefore, A
has at least one fixed point which is the solution of the iterative FDEs (1.1)-(1.2). O

Theorem 4.2. Suppose that all conditions of Theorem 4.1 hold. Then the problem (1.1)-(1.2) has
a unique solution in Ci_¢, o(J,R; M) provided

_ E41-¢ i ,
(Q(T)F(;:(_Ol))) ZQ_ MI < 1. (4.10)

Proof. If possible the iterative FDEs (1.1)-(1.2) has two distinct solution v, and vs in the weighted
space Ci_¢;o(J,R; M). Then in view of equivalent fractional integral equation to the iterative

FDEs (1.1)-(1.2) and the operator A defined in (4.4), we have Av; = v; and Avy = vs.
Therefore

o1 = 2|y ¢, o (1r) = |[Av1 = Avallo,_ . o (s R)-

Proceeding as in the proof of Theorem 4.1, we obtain the estimation on the line of equation (4.5),

as follows

llvr —v2lle) (o (rr) = |[Av1 = Avallo,_ o (sR)

n

i—1
1 .
< - ) J _ E—C+1 _ )
< FETT o ¢ 2 MO ~ 0N et

Using condition (4.10), in above estimation, we obtain

||’01 - ’U2||017<;<I>(J.,R) < ||Ul - UQHCH—(;@(J,]R)v

which is not possible. Therefore iterative FDEs (1.1)-(1.2) has a unique solution. O

5 Continuous dependence and stability results

5.1 Continuous dependence results

To investigate the data dependency of solution of the nonlinear iterative FDEs (1.1)-(1.2), we

consider the another nonlinear iterative FDEs of the form

(1]

") = i (@0 - 20 a) " 0. (00 - 2(0)<2) " 0,.... (@) - 20) 7))

ted, (5.1)

29 %a(0) = G0, @0 >0, ¢=¢&+n(l-¢), (5.2)

where h is a function different from h that satisfies all the assumptions of h.
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Theorem 5.1. Suppose that all the assumptions of Theorem 4.2 hold. Then, solution u of iterative
FDEs (1.1)-(1.2) and solution @ of iterative FDEs (5.1)-(5.2) satisfies the inequality

1
- ING) -
& —ulle,_. o (sr) < p— g(i)ﬂ —————— o — uo|
R T .
=1 j5=0

(B(T)=®(0))~*"
T(E+1)

B(T)—d(0))s—c+1 o il
g § S

- (5.3)

ol

Proof. Using equivalent fractional integral of iterative FDE (1.1)-(1.2) and (5.1)-(5.2), for any
t € J we have

X

(00 - 200 <) " (). (@0) - 20 2) " (..., ((00) ~ 20 ) " ()
(1]

+[Jf- A
C(J,R)

C(J,R) .
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Using Lemma 2.4, for any 7 € J, we obtain

[0]

i (100 - 20)2)" ). (00) — 20 <2) " ()., (@00 - 200 ) " (7))
-1 ((@0) - 20y~ u)"

<o), * gcigw (®() — 2(0)' @ - (@)~ o) u
= HE - hHC’(J,]R) + z"; Ci ]Z; Ma = ulle, . o8- (5.5)
Using estimation (5.5) in the inequality (5.4), for any t € J, we have
|(@(t) — @(0))'~(a(t) — u(t))]
< |ﬂ<}(—50| + 2u I:(fq)j—o)l))gc+1 HE - hHC(J,R) + écﬁ';z_;Mj o —ulle, .

lag — uo| | (®(T) — ®(0))s<*! H;L

n i—1
RIS
=TT T TeE+ry C(J,R)+;Cj;0 oo

Therefore, we obtain

1
')

P(T)—P(0))E—¢+1 ;
1- GO Y a W

& —ulle, 0 (r) <

(®(T)—®(0)*—*!

+ o Hh hHC(J]R -
(T)—d(0)E—c+ < '
== 22 M

Remark 5.2. (1) Theorem 5.1 gives the continuous dependence of the solution of the problem

(1.1)-(1.2) on the initial condition as well as on the nonlinear functions.

(2) If h = h in (5.3) then Theorem 5.1 gives the dependency of the solution of (1.1)-(1.2) on

itial condition.

(3) If up = g in (5.3) then Theorem 5.1 gives the dependency of the solution of (1.1)-(1.2) on

the nonlinear functions.

(4) If h = h and uy = g in (5.3), Theorem 5.1 gives the uniqueness of solution of the problem

(1.1)-(1.2).
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5.2 Stability results

To discuss the Ulam-Hyers stablity results we need the following definitions.

Definition 5.3 ([19]). The iterative FDEs (1.1)-(1.2) is said to be Ulam-Hyers stable if there
exists a real number K > 0 such that for each € > 0 and for each solution v € Ci_¢.(J,R; M) of
the inequality

H ,mn; @
|7 Dy ()

- (((@0) - 20 0)

(0]

(1), ((@() — 2(0)) )

with I;_:C;‘bv(()) = wy, there exists a solution u € Ci_¢,o(J,R; M) of problem (1.1)-(1.2) that
satisfy
HU_U”Cl_(;@(J,R;M) SKG, teJ

Definition 5.4 ([19]). The iterative FDEs (1.1)-(1.2) is said to be generalized Ulam-Hyers sta-
ble if there exists x € C(J,RT) with x(0) = 0 such that for each ¢ > 0 and for each solu-
tion v € Ci—¢;0(J,R; M) of the inequality (5.6) with I;;C“I)U(O) = wg, there exists a solution
u € Ci—¢.a(J,R; M) of the problem (1.1)-(1.2) satisfying

Hu - U||leg;<1>(J,]R;]\/I) S X(e)a teJ

Theorem 5.5. Assume all the assumptions of Theorem 4.2 hold. Then the problem (1.1)-(1.2) is
Ulam-Hyers stable.

Proof. Consider v € Ci_¢,0(J,R; M) be a function such that Ii_:c;q)v(O) = wugp, that satisfy the
inequality (5.6). Then integrating it, we obtain

_ ¢—1 t
o) - POZZOE iy o [ w0 - e
< ( (@0 - 20)<0)" () ((00) - 200" 0) " ()., (120 - 2(0)0) " (1)) e
<IEPe= S (@(t) — ®(0)5, te(0,T).

rE+1)

If u e Ci—¢;(J,R; M) is the solution of the iterative FDEs (1.1)-(1.2) then using Lipschitz con-

dition of h, we obtain
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Using the inequality in the Lemma 2.4, we have

[v(t) — u(t)]
€ 3 ¢, (@) —2(0)° < B e )i B 1\
< re g @0~ O + Ee ;c (@)= @) v) " = ((@() - @(0))"u) o
: e, (@) —D(0)S N~ = Caiami—C e
<t (@0 — 2O + ;Q;JM (@) — ®(0)) v — (d(-) — B(0)) Hw)
€ _ g n 1—1 )
= FE D @0~ 20 + WZZM lo—ullo, .y, tE
Therefore consider for all ¢t € J,
o= ulle, . atman= sup|(®() = 2(0)) (o (t) — u(t)|
€ e — g—¢+1 izl
< 7F(£+1)(<I>(T) —P(0)E ¢ 4 ((I)(T)F(;)—i(-ol))) ;ci;w lo—ulley . yon-
This gives
v —ullg, 0 < rern (2 — 2O
1-¢ @ - n i—1 :
L= e X o X MI(2(T) — $(0)) ¢
(®(T) — ®(0))* <!
Define K = ,F(g +1) . Then K > 0 and we have

n K]

—1
1= i 35 e 5 MI@(T) - a(0)=6
lv — UHCI,C;W) = Ke.

This proves iterative FDEs (1.1)-(1.2) is Ulam-Hyers stable. O
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Corollary 5.6. Suppose all the assumptions of Theorem 5.5 are satisfied then the iterative FDEs
(1.1)-(1.2) is generalized Ulam-Hyers stable.

Proof. Follows by taking ¢(e) = Ke. O
6 Examples
Example 6.1. Consider the following initial value problem for iterative fractional differential
equations
"3 ey = CHZZOE ¢ (@) - 90 ¢
2—¢ 1
+ (@0 — o) (2 (LU= o)) - L ((@0) - 20)0) " ¢
s (@0 — @) ) o), (61)
I 9%0(0) =0, teJ=10,1] (6.2)
Define the function & : J% — [0, 00) by,
_ (@) -®(0): | 1 N 2-¢
bt ) = 2O @) - 5(0)
RS 1-¢ (©(t) — 4’(0))2(> B ) 1 1
+ 200((13(15) ®(0)) ((b( 5 (0) %0 106"

Then for any t € J and u;,v; € J, (i = 1,2), we have

1 1
|h(t,u1,uz) — h(t,v1,v2)| < %Wl — | + ﬁ|u2 — val.

This shows h satisfies Lipschitz type condition (4.1) with ¢; = 5—10 and ¢y = ﬁ. We have T' =1,

choose L = 1 then the condition 0 < L < T hold. Further, in the view of condition (4.2) and (4.3)
choose ¢ = %, M > 0 and the function ® such that

< M, (6.3)

and
(®(1) — ®(0))2 " ° <1, (6.4)
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where

p= sup {h(t,0,0)}

t€[0,1]
_ (@) —2(0)F | (B(1) —(0))* ¢ (2(1) —2(0)' ¢ (®(1) — 2(0))*¢
- VT * 100 * 200 (q) ( 2 ) a MO)) ’
(6.5)
p*:p+cl+02(1+M):p+i+i(l+M). (6.6)

50 100

With the choices of constant M and the function ® that satisfies conditions (6.3) and (6.4), all the
assumptions of Theorem 4.1 are satisfied. Thus Schauder’s fixed point Theorem 3.1 guarantee the
at least one solution of the iterative FDEs (6.1)-(6.2) in the weighted space Cy_c.¢(J, R; M). By

actual substitution one can verify that
o(t) = ————=, tel0,1], (6.7)

is the solution of the iterative FDEs (6.1)-(6.2). Further in addition to the conditions (6.3) and
(6.4), if the constant M and the function ® satisfy the condition

2(®(1) —\/‘;(0))2 (510+1(1)0(1+M)) <1, (6.8)

the problem (6.1)-(6.2) has unique solution in the weighted space C;_¢.a(J, R; M).

Note that the function v defined in (6.7) is the unique solution of the problem (6.1)-(6.2). If we
take ®(t) =t, t € [0,1] and n = 1 the problem (6.1)-(6.2) involving ®-Hilfer fractional derivative

reduces to the following initial value problem for iterative FDEs of the form

1
oot 1 1 L 1
DZ2 t) = — —t+ —t— — t) — — t .
0+v(?) /7 T100" T 00" " 50" ®) = 1507 @ (6.9)
v(0) = 0. (6.10)
In this case
1 1

1
=t —— = 0.5766.
P= "7z 100 " 100

If we choose M =1 then

§ 12
p* = 05766+ — + o = 0.6166.
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Further, the conditions (6.3), (6.4) and (6.8) reduce respectively to
_0.6166 x 2

(-9 (e(3)-o0) " (5)]- 5%

7 (@(1) - e(0)} ¢ = 222

2p*
VT

1
2

3

1\ 7
(> |:O.6025< 1 (6.11)

= 0.6957 < 1 (6.12)

and

VT

Note that all the conditions of Theorem 4.2 are satisfied. Therefore the initial value problem

for Caputo iterative FDEs (6.9)-(6.10) has a unique solution in the space C'(.J,R;1). By actual

2(®(1) ;(0))2 (510 N 171)0(1 +M)) _ 2 (510 n 130> —0.0451 < 1. (6.13)

substitution, one can verify that
t
v(t) = 3 t €[0,1], (6.14)
is the unique solution of the problem (6.9)-(6.10).

We remark that the constants c¢; and ¢y appears naturally as h satisfy Lipschitz condition. T =1
is the end point of the interval on which the problem (6.1)-(6.2) is considered. The constant L
(0<L<T),ce(0,T)and M > 0 one choose in the view of condition (4.2) and (4.3). These

constants depends on the choice of function ®.

7 Conclusion

Through analytical approaches we examine the nonlinear iterative FDEs with ®-Hilfer fractional
derivative for existence, uniqueness, stability and dependency of solutions. The conditions (4.2)
and (4.3) required to prove the existence and uniqueness results Theorem 4.1 and Theorem 4.2 are
strong. Achieving the same kind of outcomes by removing the restrictions in (4.2) and (4.3) will
be very interesting. We have given specific examples to demonstrate our findings. Investigating
alternative conditions with weaker constraints is essential for ensuring the existence and uniqueness
of solutions for iterative ®-Hilfer fractional differential equations (FDEs). In this context, one can
analyze iterative ®-Hilfer FDEs under various types of initial and boundary conditions to study
their existence, uniqueness, different forms of stability, and other qualitative properties. Further,
the work explored in [23,25,43,47,49] can be analyzed by integrating the iterates of unknown

function and the fractional calculus.
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