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ABSTRACT

For U(2)-invariant 4-metrics, we show that the Bt-flat met-
rics are very different from the other canonical metrics
(Bach-flat, Einstein, extremal Kähler, etc.) We show every
U(2)-invariant metric is conformal to two separate Kähler
metrics, leading to ambiKähler structures. Using this ob-
servation we find new complete extremal Kähler metrics on
the total spaces of O(−1) and O(+1) that are conformal to
the Taub-bolt metric. In addition to its usual hyperKäh-
ler structure, the Taub-NUT’s conformal class contains two
additional complete Kähler metrics that make up an ambi-
Kähler pair, making five independent compatible complex
structures for the Taub-NUT, each of which is conformally
Kähler.

RESUMEN

Para 4-métricas U(2)-invariantes, mostramos que las métri-
cas Bt-planas son muy diferentes de las otras métricas
canónicas (Bach-planas, Einstein, Kähler extremas, etc.)
Mostramos que toda métrica U(2)-invariante es conforme a
dos métricas Kähler separadas, lo que nos lleva a estructuras
ambiKähler. Usando esta observación encontramos nuevas
métricas Kähler extremas completas en los espacios totales
de O(−1) y O(+1) que son conformes a la métrica Taub-bolt.
Adicionalmente a su estructura usual hiperKähler, la clase
conforme de Taub-NUT contiene dos métricas Kähler com-
pletas adicionales que hacen un par ambi-Kähler, lo que ge-
nera cinco estructuras complejas compatibles independientes
para el Taub-NUT, cada una de las cuales es conformemente
Kähler.
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1 Introduction

Cohomogeneity-1 metrics with U(2) symmetry have the form

g = A(r) dr2 +B(r) (η1)2 + C(r)
(
(η2)2 + (η3)2

)
(1.1)

where η1, η2, η3 are the usual left-invariant covector fields on S3. Naively the topology is R× S3,

but there could be a quotient on the S2 factor, and topological changes occur at locations where B

or C reach zero. We classify canonical metrics of this form including the Bt-flat metrics, and create

new explicit examples of canonical metrics using the ambiKähler techniques of [2]. This project

began as a way to develop supporting examples for other work, and treads such familiar ground

that we expected few surprises. But we did find surprises, two of which we feel worth reporting to

the wider community.

The first is how the Bt-flat metrics fit among the other canonical metrics. The space of U(2)-

invariant extremal Kählers is rather small—up to homothety the moduli space is 3-dimensional—

and except for the Bt flat metrics there are basically no other canonical metrics. Up to a choice

of conformal factor, the Bach-flat metrics are a 2-parameter subspace of the extremal1 metrics.

The Einstein and harmonic-curvature metrics [14] are identical, and up to conformal factors are

exactly the Bach-flat metrics. Half-conformally flat metrics are conformally extremal, and up to

conformal factors the metrics with W+ = 0 (or W− = 0) form a 1-parameter subspace of the

Bach-flat metrics. The KE metrics and the Ricci-flat metrics are each a 1-parameter subclass of

the Bach-flats. Up to homothety there are exactly three complete Ricci-flat KE metrics: flat R4,

the Eguchi-Hanson, and the Taub-NUT. The Taub-NUT is extraordinary; see Proposition 2.5 and

Section 4.

The Bt-flat metrics of [25] are exceptions to this framework. A Bt-flat metric is a metric satisfying

the Euler-Lagrange equations of the functional

Bt =

∫
|W |2 + t

∫
s2 (1.2)

where t ∈ (−∞,∞], and we set B∞ =
∫
s2. The B0 extremals are the Bach-flat metrics, and the

B∞ extremals are either scalar-flat or Einstein (see [5] for stable points of the
∫
s2 functional).

For t ̸= 0,∞ the Bt Euler-Lagrange equations are an overdetermined 8th order system. After an

appropriate reduction we find a 5-dimensional moduli space of Bt-flat metrics up to homothety.

If the constant scalar curvature (CSC) condition is imposed, the CSC Bt-flat metrics constitute a

4-parameter family up to homothety. Intuitively, as t varies in [0,∞], the Bt-flat metrics would

seem to interpolate between the Bach-flat metrics at t = 0 and the Einstein metrics at t = ∞.

As we pointed out, up to conformal factors these are exactly the same class, so it would stand
1We will use extremal to mean extremal Kähler, and KE to mean Kähler-Einstein.
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to reason that the Bt-flat metrics would stay within this class. We find this is not the case; see

Theorem 1.4.

The second surprise has to do with the global nature of certain complete ambiKähler pairs. Any

metric (1.1) is automatically compatible with two complex structures which give opposite orien-

tations that are both conformally Kähler—in short, each Kähler metric of the form (1.1) is a

partner in an ambiKähler pair [2]. In Section 4 we consider four examples: an ambiKähler pair

conformal to the classic Taub-NUT, and an ambiKähler pair conformal to the classic Taub-bolt.

The two metrics conformal to the Taub-NUT are complete extremal Kähler metrics, one of which

has zero scalar curvature (ZSC) and is 2-ended, and the other of which is one-ended and strictly

extremal. The two metrics conformal to the Taub-bolt are complete extremal metrics, and exist on

two different underlying complex surfaces, O(−1) and O(+1) ≈ CP 2 \ {pt}. The metric on O(+1)

is the only complete extremal Kähler metric, known to the authors, with a curve of positive self

intersection. For instance the Eguchi-Hanson [17] and LeBrun metrics [29] lie on the total spaces

of various O(k) with k < 0.

Placing the metric (1.1) in a more useful form, we solve dz = 2
√
AB
C dr for z to obtain

g = C

(
1

4F
dz2 + F (η1)2 + (η2)2 + (η3)2

)
(1.3)

where we have abbreviated F = B
C , now a function of z. If f = f(z) is any function and {e1, e1, e3}

is the S3 frame dual to {η1, η2, η3}, then

Jf = −2f
∂

∂z
⊗ η1 +

1

2f
e1 ⊗ dz − e2 ⊗ η3 + e3 ⊗ η2 (1.4)

is a complex structure; see Lemma 2.1. Setting f = ±F , the two complex structures J± = J±F

are compatible with g, and produce opposite orientations. The (1,1) forms are

ω± = g(J±·, ·) = ±1

2
Cdz ∧ η1 + Cη2 ∧ η3. (1.5)

From dηi = −ϵijkηj ∧ ηk we have dω± = (±C + Cz)dz ∧ η2 ∧ η3, so a U(2)-invariant metric g is

always conformally Kähler, and is Kähler when the conformal factor is C = C0e
∓z, respectively.

The following linear operators appear frequently:

L+ =

(
−1

2

d

dz
+ 1

)(
− d

dz
+ 1

)
, L− =

(
1

2

d

dz
+ 1

)(
d

dz
+ 1

)
(1.6)

as does the 4th order linear operator L+ ◦ L− = 1
4
∂4

∂z4 − 5
4
∂2

∂z2 + 1. The third-order nonlinear
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operator B also appears:

B(F, F ) =
(
−1

2
Fzz +

3

2
Fz + F − 1

)
(L+(F )− 1) + Fz

(
L+(F )

)
z. (1.7)

This is a bit messy, but B can be understood as a first integral of the inhomogeneous operator

F 7→ L+(L−(F ))−1; see equation (3.15). We will often use {σ0, σ1, σ2, σ3}, where σ0 = 1
|dz|dz and

σi = 1
|ηi|η

i, to mean the orthonormal frame found by normalizing orthogonal frame {dz, η1, η2, η3}.

Proposition 1.1. The metric (1.3) has scalar curvature

s = −4C−1

(
∂2F

∂z2
+

1

2
F − 2

)
− 24C− 3

2
∂

∂z

(
F
∂C

1
2

∂z

)
(1.8)

and trace-free Ricci tensor

Rı◦c =
4F√
C

(
∂2

∂z2
1√
C

− 1

4

1√
C

)
·
(
(σ0)2 − (σ1)2

)
+ 2

(
1√
C

∂

∂z

(
F
∂

∂z

1√
C

)
− 1

C

(
1

2

∂2F

∂z2
− 3

4
F + 1

))
·
(
(σ0)2 + (σ1)2 − (σ2)2 − (σ3)2

)
. (1.9)

The Weyl curvatures and their divergences are

W± = − 1

C
(L±(F )− 1)

(
ω± ⊗ ω± − 2

3
Id∧±

)
δW± =W±

(
∇ log

∣∣∣e± 3
2 z(L±(F )− 1)

√
C
∣∣∣ , · , · , · ) . (1.10)

The Bach tensor is

Bach =
16

3C2
· F ·

(
L−(L+(F ))− 1

)
·
(
− 2(σ1)2 + (σ2)2 + (σ3)2

)
+

8

3C2
· B(F, F ) ·

(
− (σ0)2 − (σ1)2 + (σ2)2 + (σ3)2

)
.

(1.11)

If the metric is Kähler with respect to J+, then the scalar curvature and Ricci form are

s = − 8

C

(
L+(F )− 1

)
, and

ρ = − 2

C

(
L+(F )− 1

)
ω+ − 2

C

((
−1

2

∂

∂z
+ 1

)(
∂

∂z
+ 1

)
F − 1

)
ω−. (1.12)

We remark that the U(2)-ansatz linearizes the Bach-flat equations Bach = 0, reducing them to

L+◦L−(F )−1 = 0. The equation B(F, F ) = 0 is then an algebraic restriction on initial conditions.

When studying metrics—rather than just solutions of ODEs—it is useful to reduce the metrics by

homothetic equivalence. In our setting this reduces the dimension of the solution space by two:

one dimension for translation in z and one for multiplication of g by a positive constant.
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Proposition 1.2 (Extremal and Bach-flat metrics). The metric (1.3) is extremal with complex

structure J+ if and only if C = C0e
−z and L+(L−(F ))− 1 = 0, meaning

F (z) = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z. (1.13)

Such a metric is Bach-flat if and only if, in addition to (1.13), also C1C4 − C2C3 = 0.

Consequently, up to homothety, the extremal metrics form a 3-parameter family, and up to homoth-

ety and conformal factors the Bach-flat metrics constitute a 2-parameter subfamily of the extremal

metrics.

A metric is said to have harmonic curvature if δRm = 0, which is equivalent to δW = 0 and

s = const; see [7, 14]. In the U(2)-invariant case δW = 0 actually implies s = const.

Proposition 1.3 (Einstein and harmonic-curvature metrics). For the metric (1.3) the following

are equivalent: 1) δW = 0, 2) δRm = 0, 3) the metric is Einstein: Rı◦c = 0, 4) F and C satisfy

F = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z, C =
e−z

(C5 + C6e−z)2
, (1.14)

with the two relations C1C5 − C2C6 = 0 and C3C5 − C4C6 = 0. Given (1.14), scalar curvature is

the constant s = −24(C2C
2
5 − 2C5C6 + C3C

2
6 ).

A U(2)-invariant metric is Bach-flat if and only if it is conformally Einstein. The metric (1.14)

is KE with respect to J+ if and only if C6 = 0 (so also C1 = C3 = 0), and KE with respect

to J− if and only if C5 = 0 (so also C2 = C4 = 0). Up to homothety, there is a 1-parameter

family of Ricci-flat metrics, and exactly three complete Ricci-flat KE metrics: the flat metric, the

Taub-NUT metric, and the Eguchi-Hanson metric. See Propositions 3.2 and 3.5.

Theorem 1.4. In the U(2)-invariant case, the space of solutions to the Bt-flat equations is 7-

dimensional. Up to homothety, these constitute a 5-parameter family of metrics and the CSC

Bt-flat metrics constitute a 4-parameter family. When t ̸= 0,∞, there exist CSC Bt-flat metrics

that are not conformal to any extremal metric.

The overdetermined 8th order Bt-flat system is complicated, but appears explicitly in Lemma

3.8. In Section 4 we discuss the ambiKähler transform, and examine complete extremal metrics

conformal to the classic Taub-NUT and -bolt metrics.
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2 Complex structures, metrics, and topology

The metric (1.3), complex structures J±, and (1, 1) forms ω± = g(J±·, ·) are

g = C
( 1

4F
dz2 + F (η1)2 + (η2)2 + (η3)2

)
J± = ∓2F

∂

∂z
⊗ η1 ± 1

2F
e1 ⊗ dz − e2 ⊗ η3 + e3 ⊗ η2

ω± = ±1

2
Cdz ∧ η1 + Cη2 ∧ η3.

(2.1)

In Section 2.1 we study the complex structures. In Section 2.2 we compute curvature quantities

up through the Bach tensor. In Section 2.3 we examine the topology and asymptotics which the

U(2) ansatz may produce.

2.1 The complex structures

Here we check the integrability of the left-invariant almost complex structures Jf . We also study

the right-invariant compatible complex structures that we call I±.

Lemma 2.1. Given any f = f(z) ̸= 0, the complex structure Jf is integrable.

Proof. The splitting
∧

1
C =

∧
1,0 ⊕

∧
0,1 into ±

√
−1 eigenspaces of Jf gives

∧
0,1 = spanC

{
1

2f
dz −

√
−1η1, η2 −

√
−1η3

}
. (2.2)

On bases we compute

d

(
1

2f
dz −

√
−1η1

)
= −2

√
−1η2 ∧ η3 = 2η2 ∧

(
η2 −

√
−1η3

)
,

d
(
η2 −

√
−1η3

)
= 2η1 ∧ η3 + 2

√
−1η1 ∧ η2 = 2

√
−1η1 ∧

(
η2 −

√
−1η3

)
.

(2.3)

Therefore d
∧

0,1 ⊂
∧

1 ∧
∧

0,1 =
∧1,1 ⊕

∧0,2 so we conclude that Jf is integrable.

Lemma 2.2. The complex structures J± are metric compatible. Their (1, 1) forms ω± = g(J±·, ·)
are closed if and only if C = C0e

∓z, respectively.

Proof. Checking compatibility with the metric is an elementary computation which we omit. From

(1.5), dω± = 0 if and only if C = C0e
∓z.

To create right-invariant complex structures and relate them to the metric (which is left-invariant)

we require background coordinates. Polar coordinates on R4 ≈ C2 are

(r, ψ, θ, φ) 7−→
(
r cos(θ/2)e−

i
2 (ψ+φ), r sin(θ/2)e−

i
2 (ψ−φ)

)
. (2.4)
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The three “Euler coordinates” (ψ, θ, φ) have ranges |ψ ± φ| < 2π and θ ∈ [0, π]. The transitions

between the coordinate framing and the left-invariant framing are

η0 = dz =
√
F

2
√
C
dr e0 = ∂

dz =
√
F

2
√
C

∂
∂r

η1 = 1
2 (dψ + cos θ dφ) e1 = 2 ∂

∂ψ

η2 = 1
2 (sinψ dθ − cosψ sin θ dφ) e2 = 2

(
cosψ cot θ ∂

∂ψ + sinψ ∂
∂θ − cosψ csc θ ∂

∂φ

)
η3 = 1

2 (cosψ dθ + sinψ sin θ dφ) e3 = 2
(
− sinψ cot θ ∂

∂ψ + cosψ ∂
∂θ + sinψ csc θ ∂

∂φ

)
.

(2.5)

To create the right-invariant frames we apply quaterionic conjugation T (z, w) = (z̄,−w) to C2,

which changes the parameterization of C2 to

(r, ψ, θ, φ) 7−→
(
r cos(θ/2)e

i
2 (φ+ψ), −r sin(θ/2)e i

2 (φ−ψ)
)
. (2.6)

In coordinates, T is T (r, ψ, θ, φ) = (r,−φ,−θ,−ψ). The left-invariant forms ηi pull back to right-

invariant forms η̄i = T ∗(ηi). In the bases {ηi}, {η̄i}, the linear map T ∗ :
∧

1 →
∧

1 is

T ∗ =


1 0 0 0

0 − cos θ cosψ sin θ − sinψ sin θ

0 − sin θ cosφ − cosψ cos θ cosφ+ sinψ sinφ sinψ cos θ cosφ+ cosψ sinφ

0 − sin θ sinφ − cosψ cos θ sinφ− sinψ cosφ sinψ cos θ sinφ− cosψ cosφ

 . (2.7)

In the bases {ei}, {ēi} we have that T∗ : TM → TM is the transpose T∗ = (T ∗)T . One can check

directly that T ∗, T∗ ∈ O(4).

Let σi = 1
|ηi|η

i be the unit length forms

σ0 =

√
C

4F
dz, σ1 =

√
CFη1, σ2 =

√
Cη2, σ3 =

√
Cη3 (2.8)

and let {fi} = 1
|ei|ei be the corresponding frame. Then the complex structures J± are

J± = ∓f0 ⊗ σ1 ± f1 ⊗ σ0 − f2 ⊗ σ3 + f3 ⊗ σ2. (2.9)

Under T , J± are conjugate to right-invariant complex structures I∓, given by T∗ ◦ I± ◦ T∗ = J∓.

Because I∓ are isomorphic to J± under a diffeomorphism on M4 (the S3 antipodal map), I+ and

I− are integrable. We summarize this in the following lemma.

Lemma 2.3. The structures I± are integrable, right-invariant, and g-compatible. The structures

J+, I+ produce a common orientation, with corresponding (1, 1)-forms ω+, ω+
I ∈

∧+. Similarly

J−, I− produce a common orientation, and ω−, ω−
I ∈

∧−.
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The Hermitian structures (g, J±) produce a very flexible array of Kähler metrics, as F may be

chosen freely. By contrast, the Kähler conditions for (g, I±) are far more restrictive. This is because

the left-action of SU(2) fixes g but permutes I± among an S2 worth of complex structures; therefore

if ω±
I is Kähler, it is part of a hyperKähler structure. In particular dω±

I = 0 forces Ricg = 0.

Proposition 2.4. Letting ω−
I = g(I−·, ·), then dω−

I = 0 if and only if

F = (1 + C1e
z)

2 and C =
C0e

z

(1 + C1ez)
2 . (2.10)

Any such metric is Ricci-flat. The same holds for ω+
I after replacing z by −z in (2.10).

Proof. We may compute dω−
I explicitly using the matrices for T ∗ in (2.7) and its transpose T∗.

The computation is tedious but completely elementary, and works out to be

∗dω−
I =

2√
C

(
cos θ

(
(−2 + F

1
2 ) + F

1
2
∂

∂z
log C

)
η1

− F− 1
2 sin θ cosψ

(
2F

1
2 − 2F

∂

∂z
log C − ∂

∂z
F

)
η2 (2.11)

− F− 1
2 sin θ sinψ

(
2F

1
2 − 2F

∂

∂z
log C − ∂

∂z
F

)
η3

)
.

Setting this to zero gives the partially decoupled system

∂

∂z
F

1
2 =

(
−1 + F

1
2

)
,

∂

∂z
log C =

(
−1 + 2F− 1

2

)
(2.12)

which has general solution F = (1 + C1e
z)

2, C = C0e
z

(1+C1ez)
2 . Ricci-flatness follows from the general

fact that any hyperKähler metric is Ricci flat [5], or from Proposition 3.2 below.

Proposition 2.4 gives a two parameter family of solutions. Up to homothety we have two metrics.

Proposition 2.5. Up to homothety, there are exactly two metrics g of the form (1.3) for which

I− is a Kähler structure. The first is

F = (1− ez)
2

and C =
ez

(1− ez)2
. (2.13)

This hyperKähler metric has an ALF end at z = 0 a nut at z = +∞. The second is

F = (1 + ez)
2

and C =
ez

(1 + ez)2
. (2.14)

This metric is incomplete, with a nut at z = −∞ and a curvature singularity at z = +∞.

For an analysis of the nut-like topology see Section 2.3.1 and for ALF ends see Section 2.3.2. To
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verify the claim that (2.14) has a curvature singularity as z → +∞, we may use (2.27) below to

find |W+|2 = 384(−1 + ez)6. The metric (2.13) is the Euclidean Taub-NUT; see Section 4.

2.2 Curvature quantities

It is useful to place the metric (2.1) into LeBrun ansatz form [30]. Referring to the polar coordinates

of (2.4), from (r, φ, θ, ψ) we change to (Z, τ, x, y) where x = log tan θ
2 , y = φ, τ = ψ, and Z solves

dZ = 1
4Cdz. Then (η2)2 + (η3)2 = 1

4 (dθ
2 + sin2 θ dφ2) = 1

4 cosh2 x
(dx2 + dy2) and the metric is

g =
C

4 cosh2 x
(dx2 + dy2) +

FC

4
(dτ − tanh(x)dy)

2
+

4

FC
dZ2. (2.15)

Written this way, the metric (2.15) is precisely in the form of Proposition 1 of [30]—the LeBrun

ansatz—where w = 4
FC and eu = FC2

16 cosh2 x
. The complex structures in these coordinates are

J±(dZ) = ∓2FCη1, J±(dx) = −dy. (2.16)

We record the useful fact that η2 ∧ η3 = 1
4 cosh2(x)

dx ∧ dy.

Proposition 2.6 (Ricci Curvature in the Kähler case). If g is Kähler with respect to J+, its Ricci

form ρ = Ric(J ·, ·) and scalar curvature are

ρ = − 2

C

(
L+(F )− 1

)
ω+ − 2

C

[(
−1

2

∂

∂z
+ 1

)(
∂

∂z
+ 1

)
F − 1

]
ω−, (2.17)

s = − 8

C

(
L+(F )− 1

)
. (2.18)

Proof. Setting C = C0e
−z we follow the computation in [30]. From that paper, the Ricci form is

ρ = −i∂∂̄u = 1
2d(Jdu) where in our case u = log(FC2) − log(16cosh2(x)), as we found in (2.15).

Using coordinates (z, τ, x, y) (specifically using z, not Z from (2.15)), we have J(dz) = −2Fη1 and

J(dx) = −dy from (1.4) and (2.16). Using also dx ∧ dy = 4 cosh2(x)η2 ∧ η3 and dη1 = −2η2 ∧ η3,

u = logF − 2z + 2 logC0 − 2 log(4 cosh x)

du = (FzF
−1 − 2)dz − 2 tanh(x)dx (2.19)

Jdu = (−2Fz + 4F )η1 + 2 tanh(x)dy

dJdu = (−2Fzz + 4Fz)dz ∧ η1 + (−4Fz − 8F + 8)η2 ∧ η3

From (2.1), dz ∧ η1 = C−1(ω+ − ω−) and η2 ∧ η3 = 1
2C

−1(ω+ + ω−). Therefore

ρ =
2

C

(
−1

2
Fzz +

3

2
Fz − F + 1

)
ω+ +

2

C

(
1

2
Fzz −

1

2
Fz − F + 1

)
ω− (2.20)
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as claimed. Scalar curvature for any Kähler metric is s = 2 ∗ (ω+ ∧ ρ), so (2.17) along with the

facts ω+ ∧ ω− = 0 and ∗(ω+ ∧ ω+) = 2 gives (2.18).

Proposition 2.7 (Ricci curvature, general case). Scalar curvature is

s = −4C−1

(
∂2F

∂z2
+

1

2
F − 2

)
− 24C− 3

2
∂

∂z

(
F
∂

∂z
C

1
2

)
. (2.21)

Using the unit frames σi of (2.8) the trace-free Ricci curvature is

Rı◦c = 4FC− 1
2

(
∂2

∂z2
C− 1

2 − 1

4
C− 1

2

)
·
(
(σ0)2 − (σ1)2

)
+ 2

(
C− 1

2
∂

∂z

(
F
∂

∂z
C− 1

2

)
− C−1

(
1

2

∂2F

∂z2
− 3

4
F + 1

))
·
(
(σ0)2 + (σ1)2 − (σ2)2 − (σ3)2

)
.

(2.22)

Proof. We use the conformal change formulas from [5]. The scalar curvature (2.21) follows from

(2.18) along with the formula s̃ = U−2(s− 6U−1△gU) when g̃ = U2g. In the Kähler metric where

C = e−z, the Laplacian △g acting on any U = U(z) is △gU = 4e2z ∂∂z
(
e−zF ∂U

∂z

)
. To obtain (2.21),

use U = e
1
2 zC

1
2 .

To compute Rı◦c, again we start with the Kähler case; (2.17) gives

Rı◦c g = 2ez
(
1

2
Fzz −

1

2
Fz − F + 1

)(
−(σ0)2 − (σ1)2 + (σ2)2 + (σ3)2

)
(2.23)

The trace-free Ricci conformally changes by Rı◦cg̃ = Rı◦cg +2U(∇2
gU

−1 − 1
4 (△gU

−1)g). Then using

2U
(
∇2
gU

−1 − 1

4
(△gU

−1)g
)
= −4UF (ez(U−1)z)z

(
−(σ0)2 + (σ1)2

)
− 2U(ezF (U−1)z)z

(
− (σ0)2 − (σ1)2 + (σ2)2 + (σ3)2

) (2.24)

and U = e
1
2 zC

1
2 , we add (2.24) to (2.23) to give (2.22).

Proposition 2.8. The metric (2.1) has Weyl curvatures

W± = −C−1
(
L±(F )− 1

)(
ω± ⊗ ω± − 2

3
Id∧±

)
. (2.25)

Proof. We use Derdzinski’s Theorem (see [15, Section 3, Proposition 2]) to find W+ in the

Kähler case, then conformally change to the arbitrary case. By Derdzinski’s Theorem W+ =

s
12

(
3
2ω ⊗ ω − Id∧+

)
where ω is a Kähler form. When C = e−z, ω+ is Kähler and Proposition 2.6

gives

W+ = −2

3
ez (L+(F )− 1)

(
3

2
ω+ ⊗ ω+ − Id∧+

)
. (2.26)
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Conformally changing from C = e−z to any C = C(z) gives (2.25). Computing W− is the same,

after setting C = ez to make ω− rather than ω+ into a Kähler form.

From Proposition 2.8, |W±|2 and |W±|2dV ol are

|W±|2 =
32

3C2

(
L±(F )− 1

)2 and

|W±|2dV ol = 16

3

(
L±(F )− 1

)2
dz ∧ η1 ∧ η2 ∧ η3.

(2.27)

We compute the divergences δW± and the Bach tensor.

Proposition 2.9. For the metric (2.1),

δW± = W±
(
∇ log

∣∣∣e± 3
2 z(L±(F )− 1)

√
C
∣∣∣ , · , · , · ) . (2.28)

Proof. Again we first conformally change the metric so it is Kähler. By Lemma (2.4) the metric

g̃ = e−zC−1g is Kähler and the form ω̃ = g̃(J+·, ·) is closed. Then δ̃ω̃ = − ∗ dω̃ = 0 so also

δ̃(ω̃ ⊗ ω̃) = 0, and δ̃(Id∧+) = 0 because Id∧+ is covariant-constant. Therefore (2.25) gives

δ̃ W̃+(·, ·, ·) = δ̃

(
−ez(L+(F )− 1)

(
ω̃ ⊗ ω̃ − 2

3
Id∧+

))
(·, ·, ·)

= −
(
ω̃ ⊗ ω̃ − 2

3
Id∧+

)(
∇̃(ez(L+(F )− 1)), · , · , ·

)
= W̃+

(
∇̃ log

∣∣ez(L+(F )− 1)
∣∣ , · , · , ·)

=W+
(
∇ log

∣∣ez(L+(F )− 1)
∣∣ , · , · , · ) .

(2.29)

Derdzinski’s conformal change formula, equation (19) of [15], is

δ̃ W̃+ = δW+ − 1

2
W+ (∇ log (ezC) , · , · , · ) (2.30)

so changing the metric back with conformal factor ezC, (2.29) and (2.30) give

δW+ =W+
(
∇ log

∣∣∣e 3
2 z(L+(F )− 1)

√
C
∣∣∣ , · , · , ·) . (2.31)

The argument for δW− is entirely the same, after conformally changing so ω̃− not ω̃ is closed.

Proposition 2.10 (The Bach Tensor). The Bach tensor of (2.1) is

Bach =
16

3C2
F
(
L−(L+(F ))− 1

)
·
(
− 2(σ1)2 + (σ2)2 + (σ3)2

)
+

8

3C2
B(F, F ) ·

(
− (σ0)2 − (σ1)2 + (σ2)2 + (σ3)2

)
.

(2.32)
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Proof. In the Kähler case we decompose the Bach tensor into its J-invariant and J-anti-invariant

parts Bach+, Bach− respectively. It is known that Bach+ = 1
3 (∇

2s)+0 + 1
6sRı◦c and Bach− =

− 1
6 (∇

2s)−; see Eq. (39) of [15], Eq. (20) of [1] or Lemma 6 of [10]. We have

∇2s =
4F

C
szzσ

0 ⊗ σ0 + sz∇dz

=

(
4F

C
szz −

2F 2

C2
sz
(
F−1C

)
z

)
(σ0)2 +

2

C2
sz (FC)z (σ1)2 +

2F

C2
szCz

(
(σ2)2 + (σ3)2

)
.

(2.33)

In the Kähler case where C = e−z and s = −8ez(L+(F )− 1), we compute

(∇2s)− = −32e2zF
(
L−(L+)(F )− 1

) (
(σ0)2 − (σ1)2

)
(∇2s)+ = −16e2z

(
2F (L−(L+(F )− 1)− FzL+(Fz + F )− 1

) (
(σ0)2 + (σ1)2

)
+ 16e2zF

(
L+(Fz + F )− 1

) (
(σ0)2 + (σ1)2 + (σ2)2 + (σ3)2

)
△s = 4e−2z (FC) (FCsz)z.

(2.34)

Then (∇s)+0 = (∇2s)+ − 1
4 (△s)g and using the expression for Rı◦c of (2.23),

Bach+ =
16e2z

3

(
1

2
B(F, F ) + F ·

(
L−(L+(F ))− 1

))
·
(
− (σ0)2 − (σ1)2 + (σ2)2 + (σ3)2

)
Bach− =

16e2z

3
· F ·

(
L−(L+(F ))− 1

)
·
(
(σ0)2 − (σ1)2

) (2.35)

Conformally changing from C = e−z to arbitrary C, we obtain (2.32).

Compare also with Proposition 14 of [1].

Compare equation (2.32) with (3.3) of [34]; after substituting C = 1, F = f2 and dz = 2fdt the

expression here and the expression there are identical.

2.3 Topology: “nuts”, “bolts”, and asymptotics

Here we discuss global aspects of U(2)-invariant metrics. Ostensibly the metric (2.1) is well defined

on R× S3 but topology changes occur if F or C attain 0 somewhere. If F reaches zero, the metric

most naturally lives on a quotient I × (S3/Γ)/ ∼ where Γ is some discrete subgroup of SU(2), and

∼ identifies some 3-sphere to a 2-sphere, via the Hopf map. Where F or C is infinite, there is a

(possibly incomplete) manifold end.
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2.3.1 Bolts, Nuts

C

F

Bolt, Pos.
Self-Int.

Bolt, Neg.
Self-Int.

C ≈ e -z

F=O(1)

Nut ⟶

Figure 1: A compact manifold with a bolt of positive and of negative self-intersection. A nut at
z = +∞.

The first kind of topology change occurs when the Hopf fiber collapses but the conformal factor

remains non-zero, meaning F but not C reaches zero. When F (z0) = 0, the locus z = z0 is not a

3-sphere but a 2-sphere, colloquially known as a “bolt” [21] (see also [17,29,32]).

As this is well known, we describe it only briefly. Recalling the coordinates of Section 2.1, transver-

sals to the bolt are 2-dimensional submanifolds locally given by θ = const, φ = const, and the

metric is smooth at the bolt provided it is smooth on such transversals. The inherited metric on

the transversal is ĝ2 = 1
4F dz

2 + F
4 dψ

2 with ψ ∈ [−2π, 2π), which we write ĝ2 = dr2+(
√
Fd( 12ψ))

2

by solving dr = 1√
4F
dz with r = 0 at z = z0. If

√
F = kr + O(r2), where k ̸= 0, then

(
√
Fd( 12ψ))

2 ≈ r2(d(k2ψ))
2 so the metric ĝ2 will be conical at r = 0 with cone angle 2π|k| (so

smooth if and only if k = ±1). If k ∈ Z \ {0} however, we can obtain a smooth metric on the quo-

tient I×S3/Γ where Γ is a cyclic subgroup of order |k| of the Hopf action. From
√
F = kr+O(r2)

we have k = d
√
F

dr , and because d
dr = 2

√
F d
dz , k = dF

dz . We summarize this in the following

Proposition.

Proposition 2.11 (The “bolting condition”). Assume z = z0 is a zero of F (z) but not C(z). If

dF

dz

∣∣∣∣
z=z0

= k (2.36)

where k ̸= 0 then we may identify the locus {z = z0} with a 2-sphere (a “bolt”). Assuming

k ∈ Z \ {0}, then taking the |k|-to-1 quotient of the S3 factor, the metric is smooth near {z = z0}
and the “bolt” is a 2-sphere of self intersection number k.

It is possible that two bolts occur, one at z0 and one at z1 where z0 < z1, as in Figure 1. We

certainly must have dF
dz ≥ 0 at z0 and dF

dz ≤ 0 at z1, so the bolts, assuming they are both smooth

after resolution, must have self-intersection numbers k and −k where k ∈ Z \ {0}. With either

complex structure J+ or J−, this is the “odd” Hirzebruch surface Σ2k−1; see [33].

A nut, by contrast, occurs when the S3 factor contracts to a point; the nearby topology is that

of a ball in R4. This occurs when C becomes zero but F remains finite. When ω is Kähler and
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C = C0e
−z, a nut may occur at z = +∞; this is depicted in Figure 1. When ω− is Kähler and

C = C0e
−z a nut may occur at z = −∞.

Proposition 2.12 (The Nut condition at z = ∞). Assume C = O(e−z) and F = 1 + O(e−z) as

z → ∞. Adding a point at z = ∞, this point is a finite distance away and has a neighborhood with

bounded curvature and the topology of a ball.

2.3.2 ALE, ALF, and cusp-like ends

C ≈ e z

F=O(1)

ALE End ⟶ C=O(z-2)

F=O(z2)

ALF end

C=e -z

F=O(z2)

Cusp-like End

Figure 2: ALE, ALF, and cusp-like ends in the U(2) ansatz.

If g is Kähler with respect to J− so C = C0e
z, an ALE end can occur as z → ∞, as depicted in

Figure 2. If instead g is Kähler with respect to J+ then replacing z by −z, Figure 2 is flipped and

an ALE end occurs as z → −∞.

Proposition 2.13. Assume g is Kähler with respect to J+, so C = e−z. If F = 1 + O(z−2) as

z → −∞, the metric is ALE with better-than-quadratically decaying curvature.

Proof. Letting r be the distance function that solves dr = 1
2

√
C/Fdz = 1

2e
− 1

2 z(1 + O(z−2))dz,

by assumption we have r = e−
1
2 z + O(z−1). Then C = e−z = r2 + O(r−4), so the metric is

g ≈ dr2 + (r2 + O(r−4))dσS3 as r → ∞, so it is ALE. To check curvature decay, Proposition 2.6

gives

ρ = −2C−1

(
1

2
Fzz −

3

2
Fz + F − 1

)
ω + 2C−1

(
1

2
Fzz −

1

2
Fz − F + 1

)
ω− (2.37)

so asymptotically ρ ≈ ezO(z−2)ω + ezO(z−2)ω− = o(r−2). The expressions for |W+|, |W−| in

(2.27) give the same decay rates. Thus the Riemann tensor decays like |Rm | = o(r−2).

The ALF end has cubic volume growth, cubic curvature decay, and R3 tangent cone at infinity.

See for example [13, 16, 18, 26]. By a “cusp-like” end, we mean an end that locally resembles a

Riemannian product of a tractrix of revolution (sometimes called a pseudosphere) with a sphere.

Toward infinity the scalar and Weyl curvatures decrease rapidly, whereas the Ricci curvature ap-

proaches a constant bilinear form of signature (−,−,+,+). These two kinds of ends are conformal

to each other: we have C = ez

(1−ez)2 in the ALF case and C = e−z or C = ez in the cusp-like case.

In both cases F has a second-order zero at z = 0. See Figure 2.
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Proposition 2.14. Assume F = z2 +O(z3) near z = 0.

If C remains finite then the manifold forms a complete, cusp-like end near z = 0. Asymptotically

the Hopf fiber shrinks to zero and the metric has the local geometry of the product of a psuedosphere

times a sphere.

If C = O(z−2) then the the metric forms an ALF end near z = 0.

Proof. The distance function r satisfies dr = 1
2

√
C
F dz so in the cusp-like case, where C remains

finite, then
√
F = O(z) gives r ≈ 1

2 log |z| near 0 and indeed the distance to 0 is infinite so the

metric is complete. From ω ∧ ω = −C2dz ∧ η1 ∧ η2 ∧ η3, we see the volume is finite. Checking the

tensors W±, from F = z2 +O(z3) we find that L±(F )− 1 = O(z) and so |W±| ↘ 0 as z → 0. In

the Kähler case ρ is a multiple of ω added to a multiple of ω−. The multiple on ω is also O(z), but

the multiple on ω−, by (2.17), approaches 4C−1. This justifies the assertion that, in the Kähler

case, the local geometry approaches a +1 times a −1 curvature surface. In the non-Kähler case,

the usual conformal change formulas for Ricci curvature shows this remains true.

Next we verify that when C = z−2 + O(1) near z = 0, the metric has an ALF end. Then

dr = 1
2

√
C
F dz =

(
1
2z

−2 +O(1)
)
dz so r = z−1 + O(z) near z = 0. To compute volume, we use

C
3
2 = O(r3) and F

1
2 = O(z) = O(r−1), so we have

dV ol = −C 3
2F

1
2 dr ∧ dσS3 ≈ r2dr ∧ dσS3 . (2.38)

Integrating (2.38) and noting that r is a distance function, indeed we observe cubic volume growth.

Next we check curvature decay. From (2.27) we have L±(F )− 1 = O(1) so that |W+| ≈ 32
3 C

−2 =

O(z2) = O(r−2) and similarly for |W−|. Inserting F , C into the Ricci form ρ from (2.19), we see

Ricci curvature decays quadratically.

We close by noting that ALE ends are conformal to nuts and vice-versa—by changing between

C = e−z and C = ez—and similarly ALF ends and cusp-like ends are conformal to each other.

3 Special Metrics

We use the computations of Section 2.2 to determine what conditions are needed to make a U(2)-

invariant metric special or canonical.
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3.1 Scalar Curvature

From (2.21) of Proposition 2.7, specifying scalar curvature is equivalent to

sC
3
2 + 4C

1
2

(
∂2F

∂z2
+

1

2
F − 2

)
+ 24

∂

∂z

(
F
∂

∂z
C

1
2

)
= 0, (3.1)

for given s = s(z). This underdetermined equation is linear in F . Imposing the Kähler condition

C = C0e
±z creates a critically determined linear equation.

3.2 Extremal Kähler metrics

A Kähler metric is extremal if the functional g 7→
∫
s2dV ol is stable under those perturbations of

g that preserve the Kähler class. From [9] the Euler-Lagrange equations are that the gradient ∇s
is a holomorphic vector field, but there are several ways to assess whether (1.3) is extremal. In

our context we are less concerned with global functionals such as
∫
s2. We use the local condition

that a Kähler metric is extremal if and only if J∇s is Killing.

Proposition 3.1 (The extremal condition). The metric (2.1) with complex structure J+ is ex-

tremal Kähler if and only if C = C0e
−z and L−(L+(F )) = 1, which is

F = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z. (3.2)

Its scalar curvature is s = − 24
C0

(C1e
−z + C2).

Likewise, the metric with complex structure J− is extremal Kähler if and only if C = C0e
z and

again L−(L+(F )) = 1. Its scalar curvature is s = − 24
C0

(C3 + C4e
z).

Proof. From (2.1) and (2.5), we have ∇z = 4FC
∂
∂z = 4

C J
∂
∂ψ . Because the coordinate field ∂

∂ψ

is itself a Killing field and because s = s(z) is a function of z alone, the extremal condition is

∇s = −4αJ ∂
∂ψ = −αez∇z = ∇ (αe−z) where α is a constant. Therefore s = αe−z + β where β is

another constant. Using s = −8C−1
0 ez(L+(F )− 1), from (2.18) we obtain

−8C−1
0 ez

(
1

2

∂2F

∂z2
− 3

2

∂F

∂z
+ F − 1

)
= αe−z + β. (3.3)

After setting C1 = − 1
24αC0 and C2 = − 1

24βC0 we obtain (3.2).

For J− in place of J+, reverse the sign on z in all computations.
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3.3 Einstein metrics

By (2.22), Rı◦c = 0 if and only if

∂2

∂z2
C− 1

2 =
1

4
C− 1

2 and C
1
2
∂

∂z

(
F
∂

∂z
C− 1

2

)
=

(
1

2

∂2F

∂z2
− 3

4
F + 1

)
. (3.4)

This is critically determined and partly decoupled. It is 4th order in total so we will have a

4-parameter solution space. The general solution is

F = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z, C =
e−z

(C5 + C6e−z)
2 ,

where C1C5 − C2C6 = 0, and C3C5 − C4C6 = 0.

(3.5)

With six constants and two algebraic relations we have the expected four-parameter family of

solutions. Compare with Proposition 2.4. The algebraic relations on the Ci are equivalent to the

pairs (C1, C2), (C3, C4), and (C5, C6) being proportional to each other. These imply also that

C1C4 −C2C3 = 0, so we recover the fact that Einstein metrics are Bach-flat; see (3.14) below. By

Lemma 2.2 the metric is Kähler when C6 = 0 (for J+) or C5 = 0 (for J−).

To be Ricci-flat, C and F require, in addition to (3.4), that s = 0. This third relation appears to

make the overall system overdetermined, but it does not, for the reason that s is a first integral

for the system (3.4) so only contributes an algebraic relation. From (3.1),

s = −24(C2C
2
5 − 2C5C6 + C3C

2
6 ). (3.6)

Proposition 3.2 (The Einstein conditions). The metric (1.3) is Einstein if and only if

F = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z, C =
e−z

(C5 + C6e−z)
2 ,

C1C5 − C2C6 = 0, and C3C5 − C4C6 = 0.

(3.7)

Its scalar curvature is the constant s = −24(C2C
2
5 − 2C5C6 + C3C

2
6 ).

Up to homothety, there is a 2-dimensional family of Einstein metrics. Up to homothety, there is

a 1-dimensional family of Ricci-flat metrics, a 1-dimensional family of KE metrics with respect

to J+, and a 1-dimensional family of KE metrics with respect to J−. Up to homothety and

biholomorphism, there are exactly five Ricci-flat Kähler metrics, three of which are complete.

Proof. We have proven everything except the final assertion, that exactly five metrics of the form

(1.3) are Ricci-flat Kähler, up to homothety. We prove this regardless of the complex structure,

whether one of the structures considered here or not. A U(2)-invariant metric is Einstein if and

only if it has the form (3.7). By Derdzinski’s theorem [15], if a scalar-flat metric is Kähler—
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regardless of the complex structure—then it is half-conformally flat. In particular C1 = C2 = 0 or

C3 = C4 = 0.

So assume C3 = C4 = 0; the case C1 = C2 = 0 is identical under the isomorphism z 7→ −z. We

have four remaining variables C1, C2, C5, C6 and two relations: C1C5 − C2C6 = 0 from (3.5) and

C2C
2
5 − 2C5C6 = 0 from (3.6). If in addition to C3 = C4 = 0 we have both C1 = C2 = 0 then

either C5 = 0 or else C6 = 0 and in either case we have the flat metric: F = 1 and C = C0e
±z.

Suppose C1 = 0 but C2 ̸= 0; then the two relations force C5 = C6 = 0, an impossibility. Suppose

C1 ̸= 0 but C2 = 0; then the relations force C6 = 0 so

F = 1 +
1

2
C1e

−2z, C =
1

C2
5

e−z (3.8)

which is Kähler with respect to J+. Up to homothety, there are exactly two such metrics: the first

is given by F = 1− e−2z, C = e−z, which is the Eguchi-Hanson metric, and the second is given by

F = 1 + e−2z, C = e−z (3.9)

which is incomplete and has a curvature singularity at z = −∞.

Lastly it is possible that neither C1 nor C2 are zero. The two relations now give C6

C5
= C1

C2
and

C6

C5
= C2

2 , so C1 = 1
2C

2
2 . Therefore the metric is

F = 1 +
1

4
C2

2e
−2z + C2e

−z =

(
1 +

1

2
C2e

−z
)2

, C =
C2

5e
−z(

1 + 1
2C2e−z

)2 . (3.10)

Under the isomorphism z 7→ −z this is the Kähler metric of Proposition 2.4 which is Kähler with

respect to the complex structure I−; therefore the metric (3.10) is Kähler with respect to the

complex structure I+. As in Proposition 2.5 there are two such metrics: one where C2 < 0 (which

is the Taub-NUT metric) and one where C2 > 0 (which has a curvature singularity).

3.4 Half-conformally flat, half-harmonic, and Bach-flat metrics

Proposition 3.3. The metric (1.3) has W± = 0 if and only if L±(F )− 1 = 0, meaning

F = 1 + C3e
z +

1

2
C4e

2z or F = 1 +
1

2
C1e

−2z + C2e
−z, (3.11)

respectively. Up to homothety, each case constitutes a 1-parameter family of such metrics, each a

subspace of the 2-parameter family of Bach-flat metrics.

In the case g is Kähler with respect to J+ so C = C0e
−z, then W+ = 0 implies s = 0, and W− = 0

implies s = − 24
C0

(C1e
−z + C2).
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The half-harmonic condition δW+ = 0 (or δW− = 0) is underdetermined, and requires an addi-

tional condition to be critically determined. Three possibilities are s = const, the Kähler condition,

and both δW± = 0.

Proposition 3.4. The metric (1.3) has δW+ = 0 if and only if a constant k1

exists so e
3
2 z (L+(F )− 1)C = k1, and δW− = 0 if and only if e−

3
2 z (L−(F )− 1)C = k2 for some

k2 ∈ R.

Assume (2.1) is Kähler with respect to J+, meaning C = C0e
−z. Then

a) δW+ = 0 if and only if F = 1+C2e
−z+C3e

z+ 1
2C4e

2z. In particular s = −24C2

C0
is constant.

b) δW− = 0 if and only if F = 1 + 1
2C1e

−2z + C2e
−z + 1

2C4e
2z. In particular the metric is

extremal and s = −24 1
C0

(C1e
−z + C2).

Proof. For δW+ = 0 this follows from Proposition 2.9 with C = C0e
−z, e

3
2 z(L+(F )− 1)

√
C = k1

and finding the general solution. In the Kähler case, a) and b) follow from Proposition 3.1.

In the U(2)-invariant case, δW = 0 is equivalent to the Einstein condition.

Proposition 3.5 (Harmonic curvature). The metric (2.1) has δW = 0 if and only if g is Einstein.

Proof. Because δW+ ∈ T ∗M ⊗
∧+ and δW− ∈ T ∗M ⊗

∧−, we have δW = 0 if and only if δW+

and δW− are both zero. Then by Lemma 2.9 constants k1, k2 exist so

e
3
2 z(L+(F )− 1)

√
C = k1 and e−

3
2 z(L−(F )− 1)

√
C = k2. (3.12)

Eliminating C, we obtain k2e
3
2 z(L+(F )− 1) = k1e

− 3
2 z(L−(F )− 1) which has solution

F = 1 + k1

(
1

2
C1e

−2z + C2e
−z
)
+ k2

(
C1e

z +
1

2
C2e

2z

)
. (3.13)

Using either equation in (3.12), C = C0e
−z

(C2+C1e−z)2
. By Proposition 3.2, the metric is Einstein.

Next we consider the case of Bach-flat metrics. By Proposition 2.10, F solves the fourth order

linear equation L−(L+(F )) − 1 = 0 and the third order non-linear equation B(F, F ) = 0. This

seems to be overdetermined, but due to (3.15) the two equations are not independent.

Lemma 3.6. If F solves L+(L−(F )) − 1 then B(F, F ) = const. If F solves B(F, F ) = 0, then

L+(L−(F ))− 1 = 0. Lastly B(F, F ) = L+(L−(F ))− 1 = 0 if and only if

F = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z and C1C4 − C2C3 = 0. (3.14)
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Proof. A tedious but completely elementary computation shows

∂

∂z
B(F, F ) = 2

(
L+(L−(F ))− 1

) ∂F
∂z

. (3.15)

Therefore B(F, F ) is indeed constant on solutions of L+(L−(F )) − 1 = 0. Next, B(F, F ) = 0

implies either F = const or L+(L−(F )) = 1. By direct computation the only constant that

satisfies B(F, F ) = 0 is F = 1, which indeed solves L+(L−(F )) − 1 = 0. We conclude that

B(F, F ) = 0 implies L+(L−(F ))− 1 = 0.

The general solution of L+(L−(F )) = 1 is F = 1+ 1
2C1e

−2z +C2e
−z +C3e

z + 1
2C4e

2z, and in this

case direct computation shows that B(F, F ) = 3(C2C3 − C1C4). Therefore the general solution of

L+(L−(F )) = 1, B(F, F ) = 0 is the three parameter family of (3.14).

Proposition 3.7. The metric (2.1) is Bach-flat if and only if

F = 1 +
1

2
C1e

−2z + C2e
−z + C3e

z +
1

2
C4e

2z and C1C4 − C2C3 = 0. (3.16)

In particular g is Bach-flat if and only if it is conformally Einstein. Up to conformal factors and

translation in z, the Bach-flat metrics constitute a 2-parameter family of metrics.

Proof. The metric g is Bach-flat if and only if L+(L−(F ))− 1 = 0 and B(F, F ) = 0. From Lemma

3.6, this holds if and only if F = 1 + 1
2C1e

−2z + C2e
−z + C3e

z + 1
2C4e

2z and C1C4 − C2C3 = 0,

giving a 3-parameter family of solutions. Factoring out by translation in z, this is a 2-parameter

family, as claimed. To see that any Bach-flat metric is conformal to an Einstein metric, simply let

C be a conformal factor from Proposition 3.2.

3.5 Bt-flat metrics

The Bt-flat metrics [25] extremize the functional Bt(g) =
∫
|W |2+t

∫
s2, where we take B∞ =

∫
s2.

The Euler-Lagrange equations of this functional [25] are

−4Bach+ t C = 0 (3.17)

where C = 2
(
∇2s− (△s)g − sRı◦c

)
. The Bach tensor is always trace-free and Tr(C) = −6△s, so

tracing the Bt-flat condition (3.17) gives △s = 0. Then we can rewrite the Bt-flat condition as the

two equations 2Bach+ t(sRı◦c−∇2s) = 0 and △s = 0. We can express these as an ODE system.

Lemma 3.8 (The unreduced Bt-flat equations). In the metric (2.1) the Bt-flat equations △s = 0,

2Bach+ t(sRı◦c−∇2s) = 0 are equivalent to

∂

∂z

(
CF

∂s

∂z

)
= 0, F1(F,C) = 0, F2(F,C) = 0, T (F,C) = 0 (3.18)
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where F1, F2 and T are the operators

F1(F,C) = 24
∂

∂z

(
F

∂

∂z
C

1
2

)
+ 4C

1
2

(
∂2F

∂z2
+

1

2
F − 2

)
+ sC

3
2

F2(F,C) =
8

3

(
L+(L−(F ))− 1

)
+ t sC

3
2

(
∂2

∂z2
C− 1

2 − 1

4
C− 1

2

)
+

t

2

C

F

∂F

∂z

∂s

∂z
+ t

∂C

∂z

∂s

∂z

T (F,C) = 16B(F, F )− 18tF
∂C

∂z

∂s

∂z
− 6tC

∂F

∂z

∂s

∂z

− 3

4
tsC−1

(
C2(−16 + 4F + Cs) + 12F

(
∂C

∂z

)2

+ 8C
∂C

∂z

∂F

∂z

)
(3.19)

and B is the operator from (1.7).

Proof. In coordinates, △ = 1√
det g

∂
∂xi

(√
det g gij ∂

∂xj

)
. Using (Z, τ, x, y)-coordinates of (2.15) we

have det g = 1
16 cosh2(x)

C2 and g11 = 4FC. Because s = s(Z) is a function of Z alone, then 0 = △s
is

0 =
4 cosh2(x)

C

∂

∂Z

(
C

4 cosh2(x)
4FC

∂s

∂Z

)
=

4

C

∂

∂Z

(
FC2 ∂s

∂Z

)
. (3.20)

The coordinate change from z to Z of (2.15) gives C ∂
∂Z = ∂

∂z , so we obtain the first equation of

(3.18). The second equation F1(F,C) = 0 is precisely the scalar curvature equation (3.1). With

△s = 0 the Hessian ∇2s is trace-free; then a straightforward computation gives

∇2s = −2C−4 ∂s

∂z

∂(FC3)

∂z
(σ0)2 + 2C−2 ∂s

∂z

∂(FC)

∂z
(σ1)2 + 2FC−2 ∂s

∂z

∂C

∂z

(
(σ2)2 + (σ3)2

)
. (3.21)

Now for the third and fourth equations we use (2.22), (2.32), and (3.21). We expect precisely two

additional relations, due to the fact that each of the tensors Bach, Rı◦c, and ∇2s have four non-zero

components, but also the two algebraic relations of being trace-free, and having identical (3, 3) and

(4, 4) entries. We take one relation from 2(Bach00+Bach22)+t(sRı◦c 00+sRı◦c 22−s,00−s,22) = 0.

Using (1.9), (1.11), and (3.21), this is

8

3

(
L−(L+(F ))− 1

)
+ tsC

3
2

(
∂2 1√

C

∂z2
− 1

4

1√
C

)
+
t

2

C

F

∂F

∂z

∂s

∂z
+ t

∂C

∂z

∂s

∂z
= 0 (3.22)

which is F2(C,F ) = 0. We take another relation from 2Bach00 + t(sRı◦c 00 − s,00) = 0, which is

0 = 16B(F, F )− 18tF
∂C

∂z

∂s

∂z
− 6tC

∂F

∂z

∂s

∂z

− 3

4
tsC−1

(
C2(−16 + 4F + sC) + 12F

(
∂C

∂z

)2

+ 8C
∂C

∂z

∂F

∂z

)

+
3

4
tsC

1
2

(
4C

1
2

(
∂2F

∂z2
+

1

2
F − 2

)
+ 24

∂

∂z

(
F
∂C

1
2

∂z

)
+ sC

3
2

)
.

(3.23)

Using (3.1) to eliminate the last term, this is F1(F,C) = 0.
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The equations (3.18) give four equations for the three unknowns s, F , C, so the system appears

to be overdetermined. But the equations of (3.18) are not independent.

Lemma 3.9. We have the following relation:

∂T
∂z

=
−3t

2
√
C

∂(sC)

∂z
F1 + 12

∂F

∂z
F2 − 6t

∂ log(C3F )

∂z

∂

∂z

(
CF

∂s

∂z

)
. (3.24)

In particular T (F,C) is constant along solutions of the system F1(F,C) = F2(F,C) = △s = 0.

Proof. This follows from a tedious but completely elementary computation.

Lemma 3.10. At all points where C ̸= 0 and F ̸= 0, the 8th order system

∂

∂z

(
CF

∂s

∂z

)
= 0, F1(F,C) = 0, F2(F,C) = 0 (3.25)

is critically determined, T is a constant of the motion, and (3.25) combined with the restraint

T (F,C) = 0 admits a 7-parameter family of solutions.

Up to homothety, in the U(2)-invariant setting the Bt-flat metrics form a 5-parameter family, and

the CSC Bt-flat metrics form a 4-parameter family.

Proof. To ascertain whether the system (3.25) is critically determined, we examine the coefficients

on the derivatives of s, F , and C. These coefficients of the form FC, CF−1, C
1
2 , C− 1

2 , FC− 3
2 and

so on. Provided F and C remain bounded away from 0 and +∞, we have a non-singular principal

symbol. We conclude that the system (3.25), which has three unknowns and three equations,

remains critically determined when F and C remain positive.

We count the degrees of freedom in the solution space. The equations ∂
∂z

(
CF ∂s

∂z

)
= 0, F1 = 0,

and F2 = 0 are fourth order in F , second order in C, and second order in s, which makes eight

derivatives in total, requiring eight initial conditions. Then we restrict to T = 0. From Lemma 3.9,

T is constant along solutions so is completely determined by the system’s initial conditions. T (F,C)

is third order in F , second order in C, and first order in s, so T = 0 is a single algebraic relationship

among the initial conditions, and reduces the solution space from eight dimensions to seven. Up to

homothety the solution space is therefore 5-dimensional. Finally, requiring s = const is the same

as imposing an initial condition of sz = 0, so the CSC Bt-flat solution space is 4-dimensional up

to homothety.

Theorem 3.11. The ZSC Bt-flat metrics, t ̸= ∞, are the ZSC Bach-flat metrics.

Assume g is Bt-flat, conformally extremal, and t ̸= 0,∞. Then it is CSC if and only if it is ZSC

or Einstein.

If t ̸= 0, 13 ,∞ there exist CSC Bt-flat solutions that are not conformally extremal.
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Proof. The CSC Bt-flat equations are (3.18) with initial condition sz = 0. As discussed above,

this is a system with 6 degrees of freedom (4 up to homothety). First we examine the ZSC case,

where s = 0. In this case T = 16B, so B(F, F ) = 0 and so the metric is Bach-flat. Thus F lies

in the 3-parameter family given by Lemma 3.6. Fixing F , F1 = 0 gives a 2-parameter family of

solutions for C and we obtain the expected 5-parameter solution space of ZSC Bach-flat metrics

(which has 3 parameters up to homothety).

Next assume the metric is CSC Bt-flat, s ̸= 0, and g conformally extremal. By Proposition 3.1,

F = 1
2C1e

−2z + C2e
−z + C3e

z + 1
2C4e

2z. Plugging in this, along with ∂s
∂z = 0 into F2 = 0, we

obtain (
∂2

∂z2
C− 1

2 − 1

4
C− 1

2

)
= 0. (3.26)

Therefore C = e−z

(C5+C6e−z)2 . Plugging this into F1 = 0 provides

0 = C5(C1C5 − C2C6)e
−z +

(
− s

24
+ C2C

2
5 − 2C5C6 − C3C

2
6

)
+ C6(C4C6 − C3C5)e

z. (3.27)

We have the seven unknown constants C1, C2, C3, C4, C5, C6, and s, and (3.27) contributes three

relations so we have a 4-parameter solution space. We consider the possibilities. First, the expres-

sion for C makes it impossible that C5 and C6 are both zero. If C5 ̸= 0, C6 = 0 then C = C−2
5 e−z

so the metric is Kähler with respect to J+, and (3.27) forces C1 = 0, C2 = s
24C2

5
. Then 0 = T is

0 = −1

2
e2zs

(
3st− 4e2z(1− 3t)C3C

2
5

)
, (3.28)

and because t ̸= 0, this forces s = 0, contradicting the assumption s ̸= 0. (Similarly assuming

C5 = 0, C6 ̸= 0 also gives s = 0, again contradicting s ̸= 0.)

Therefore both C5, C6 ̸= 0. Then (3.27) forces C1C5 − C2C6 = 0, C4C6 − C3C5 = 0, and by

Proposition 3.2 the metric is Einstein. We conclude that if a CSC Bt-flat metric is conformally

extremal, it is ZSC or Einstein.

Finally we prove that some CSC Bt-flat metrics are not conformally extremal. The family of

Einstein solutions is 4-dimensional, and therefore, by what we just proved, the family of CSC

Bt-flat that are conformally extremal is also 4-dimensional. But the space of CSC Bt-flat metrics

is 6-dimensional. We conclude that some CSC Bt-flat metrics fail to be conformally extremal.
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4 AmbiKähler Pairs

AmbiKähler pairs are from [2]. An ambiKähler structure on a manifold is a pair of Kähler manifolds

(Mn, J1, g1) and (Mn, J2, g2) where the complex stuctures J1 and J2 produce opposite orientations

and the Kähler metrics g1 and g2 are conformal. Either member of the pair can be called the

ambiKähler transform of the other. From Lemma 2.2, every U(2)-invariant metric on a 4-manifold

has an ambiKähler structure using J±, conformally related by letting C be e+z or e−z.

Consequently the classic U(2)-invariant Kähler metrics all have ambiKähler transforms. Most of

these ambiKähler transforms produce nothing interesting. The ambiKähler transform of the Burns

metric is the Fubini-study metric, for example, and the transforms of the other LeBrun instanton

metrics are extremal Kähler metrics on weighted projective spaces—these are Bochner-flat metrics

found by Bryant in [8, Section 2.2], although their conformal relationship with the LeBrun instan-

tons was not discussed there. The transform of an odd Hirzebruch surface is precisely itself. The

transforms of the Taub-NUT-Λ and Eguchi-Hanson-Λ metrics have curvature singularities.

The Taub-NUT and Taub-bolt cases, however, are more interesting. The Taub-NUT is hyperKähler

with its family of complex structures being I− and its left-translates. By Propositions 2.4 and 2.5

F = (1− e−z)2, C =
C0e

−z

(1− e−z)2
(4.1)

with coordinate range z ∈ (0,∞]. The nut is located at z = ∞, and the ALF end is at z = 0;

see Section 2.3 and Figure 3. Separate from the hyperKähler structure an ambiKähler structure

exists, given by complex structures J− and J+ and conformal factors C = C0e
z, C = C0e

−z.

Thus the conformal orbit of the Taub-NUT meets three complete canonical metrics: itself which

is hyperKähler, a 2-ended ZSC Kähler metric, and a 1-ended extremal Kähler metric. We call the

latter two the modified Taub-NUT metrics of the first and second kinds.

The modified Taub-NUT of the first kind has complex structure J− and conformal factor C = C0e
z,

which gives it the same orientation as the original Taub-NUT. This metric is two-ended: the nut

at z = −∞ becomes an ALE end, and the ALF end at z = 0 becomes a cusp-like end. This

complete, 2-ended metric is scalar flat by Proposition 1.1. Letting J+ be the complex structure

with conformal factor C = C0e
−z produces the modified Taub-NUT of the second kind. This

metric is one-ended: it still has a nut at z = ∞, but the conformal change turns the ALF end into

a cusp-like end. By Theorem 3.1 it is extremal Kähler. It has scalar curvature s = 48(1 − e−z),

which is positive and approaches 0 asymptotically along the cusp.
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C= C0ⅇ
-z

(1-ⅇ-z)2

F=(1-ⅇ-z)2

ALF end

Nut⟶

C=C0ⅇ
-z

F=(1-ⅇ-z)2

Cusp

Nut⟶

C=C0ⅇ
z

F=(1-ⅇ-z)2

Cusp

ALE end⟶

Figure 3: The Taub-NUT and modified Taub-NUTs of the first and second kinds.

The modified Taub-NUT of the first kind on C2 \ {(0, 0)} is the ZSC Kähler metric of [19] for

n = 2, and the modified Taub-NUT of the second kind is a complete Bochner-flat metric from

[8, Section 2.2] (see also [39]) and is explored in [20].

C= ⅇ-z

(1-ⅇ-z)2

ALF endBolt, -

C=ⅇz

CuspBolt, -

C=ⅇ-z

CuspBolt, +

Figure 4: The Taub-bolt, and the modified Taub-bolts of the first and second kinds.

The classic Taub-bolt is Ricci-flat but not Kähler (and certainly not hyperKähler) with respect to

any complex stucture2. The Taub-bolt metric is

C =
C0e

−z

(1− e−z)2
, F = 1− 1

8
e−2z +

1

4
e−z − 9

4
ez +

9

8
e2z (4.2)

on z ∈ [− log(3), 0). This metric is complete, Ricci-flat, Bach-flat, but not half-conformally flat:

both W+ and W− are non-zero by Proposition 3.3; see [35, 36]. It has an ALF end at z = 0

and a bolt of self-intersection −1 at z = − log(3). The underlying manifold is the total space of

O(−1). It is conformally Kähler with respect to either J− or J+, creating an ambiKähler pair—the

modified Taub-bolt metrics of the first and second kinds, respectively. Changing between J− and

J+ reverses the orientation, so changes the self-intersection number of the bolt from −1 to +1.

With the complex structure J− and conformal factor C = C0e
z we obtain an extremal Kähler

metric we call the modified Taub-bolt of the first kind. This metric continues to have a bolt of

self-intersection −1 at z = − log(3), but the ALF end at z = 0 has been transformed into a cusp-

like end. The scalar curvature is s = 54C−1
0 (1 − ez), which is positive and approaches 0 along

the cusp. Its underlying complex manifold is the total space of O(−1). Its ambiKähler transform

has complex structure J+ and conformal factor C = C0e
−z; we call this extremal Kähler metric

the modified Taub-bolt of the second kind. The orientation has been reversed and the bolt has

self-intersection +1 at z = − log(3). The ALF end at z = 0 has again been transformed into a

cusp-like end. The scalar curvature is s = 6C−1
0 (−1+e−z), which again is positive and approaches

2If it were Kähler with respect to any complex structure, whether a complex structure considered here or not,
Derdzinski’s theorem would imply it is half-conformally flat which it is not.
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zero asymptotically along the cusp. Its underlying complex manifold is the total space of O(+1),

which is CP 2 \ {pt}.

Like the Taub-NUT, the Taub-bolt’s conformal orbit meets three canonical metrics: itself, which

is Ricci flat, and two extremal Kähler metrics. See also [6] which explores the Taub-bolt among

other topics (electronically released almost simultaneously with this paper). Neither of the modified

Taub-bolts is Bochner-flat or half-conformally flat.

Notable is the presence of a rational curve of positive self intersection in the modified Taub-bolt

of the second kind. This is the only example of a complete extremal Kähler metric with a curve of

positive self-intersection, that is known to the authors. By contrast there are many examples with

curves of zero or negative self intersection. These include the Burns, Eguchi-Hanson, and LeBrun

metrics which are all Kähler metrics on O(k) with k < 0 [29]; the Chen-Teo metrics [11, 12] and

conformally related Kähler metrics [6] which are on surfaces with rational curves of non-positive

self-intersection; and the extremal Kähler “asymptotically equivariantly R2 × S2” [40, 41] metrics

which all have rational curves of non-positive self-intersection.
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