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ABSTRACT

In this paper, we give some rational approximations of

S(n) =

n∑
j=1

1

n2 + j
by the multiple-correction method and

present the bounds of its error.

RESUMEN

En este artículo, entregamos algunas aproximaciones

racionales de S(n) =

n∑
j=1

1

n2 + j
por el método de correc-

ción múltiple y presentamos las cotas de su error.
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1 Introduction

It is well known that we often need to deal with the problem of approximating the factorial function

n!, and its extension to real numbers called the gamma function, defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt, Re(x) > 0,

and the logarithmic derivative of Γ(x) called the psi-gamma function, denoted by

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
.

For x > 0, the derivative ψ′(x) is called the tri-gamma functions, while the derivatives ψ(k)(x),

k = 1, 2, 3, . . . are called the poly-gamma functions.

In recent years, some authors paid attention to giving increasingly better approximations for the

gamma function using continued fractions. For detailed information, please refer to the papers [1,2,

9,11,12] and references cited therein. In fact, it is quite well-known in the theory the algorithm for

transforming every formal power series into an associated continued fraction, see [6]. In particular,

there are certain methods of transforming the power series
∑∞

n=0 cnx
−n−1 into continued fractions,

see [10, Section III].

For any integer i and x > 0, we have

ψ(i)(x+ 1)− ψ(i)(x) = (−1)i
i!

xi+1
,

and when i = 0, it yields

ψ(x+ 1)− ψ(x) =
1

x
.

By adding equalities of the form

ψ(j + 1)− ψ(j) =
1

j

from j = n2 + 1 to j = n2 + n, we get

ψ(n2 + n+ 1)− ψ(n2 + 1) =

n∑
j=1

1

n2 + j
= S(n) (1.1)

Graham, Knuth and Patashnik [5] proposed the problem of obtaining the asymptotic value of the

finite sum

S(n) =

n∑
j=1

1

n2 + j
=

1

n2 + 1
+

1

n2 + 2
+ · · ·+ 1

n2 + n
(1.2)

with a given absolute error.
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In this paper, we handle the problem with the aid of the multiple-correction method [3,4,13]. We

will give some rational approximations of S(n) =
∑n

j=1
1

n2+j by the multiple-correction method,

and prove some inequalities for the upper and lower bounds. Throughout the paper, the notation

P (x; k) means a polynomial of degree k in x, which may be different at each occurrence.

2 Some lemmas

The following lemma gives a method for measuring the rate of convergence, for its proof see Mortici

[7, 8].

Lemma 2.1. If the sequence (xn)n∈N is convergent to zero and there exists the limit

lim
n→+∞

ns(xn − xn+1) = l ∈ [−∞,+∞], (2.1)

with s > 1, then

lim
n→+∞

ns−1xn =
l

s− 1
. (2.2)

We also need the following intermediary result.

Lemma 2.2. For every positive integer k, we define

fk(x) = lnx+
s1

x+ t1 +
s2

x+t2+···+ sk
x+tk

,

where s1 = − 1
2 , t1 = − 1

6 ; s2 = 1
36 , t2 = − 13

30 ; s3 = 9
25 , t3 = − 17

630 ; s4 = 6241
15876 , t4 = − 417941

786366 ; . . .

Then for x > 1, we have

f2(x+ 1)− f2(x) <
1

x
< f3(x+ 1)− f3(x). (2.3)

Proof. We will apply the multiple-correction method [3, 4, 13] to study the two-sided inequality

(2.3) as follows.

(Step 1) The initial-correction. Since (lnx)′ = 1
x , so we choose f0(x) = lnx and develop

F0(x) := f0(x+ 1)− f0(x)− 1
x into power series expansion in 1

x , we have

F0(x) = f0(x+ 1)− f0(x)−
1

x
= −1

2

1

x2
+

1

3

1

x3
+O

(
1

x4

)
. (2.4)
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(Step 2) The first-correction. Let f1(x) = lnx+ s1
x+t1

and develop F1(x) := f1(x+1)−f1(x)− 1
x

into power series expansion in 1
x , we have

F1(x) =

(
−1

2
− s1

)
1

x2
+

(
1

3
+ s1 + 2s1t1

)
1

x3
+O

(
1

x4

)
. (2.5)

Then let the coefficients of 1
x2 and 1

x3 in (2.5) equal zero, we have s1 = − 1
2 , t1 = − 1

6 and

F1(x) =
1

24

1

x4
+O

(
1

x5

)
. (2.6)

(Step 3) The second-correction. Let f2(x) = lnx + s1
x+t1+

s2
x+t2

and develop F2(x) := f2(x +

1)− f2(x)− 1
x into power series expansion in 1

x , it can be derived that

F2(x) =

(
1

24
− 3s2

2

)
1

x4
+

(
− 11

270
+

7s2
3

+ 2s2t2

)
1

x5
+O

(
1

x6

)
. (2.7)

Then let the coefficients of 1
x4 and 1

x5 in (2.7) equal zero, we have s2 = 1
36 , t2 = − 13

30 and

F2(x) = f2(x+ 1)− f2(x)−
1

x
= − 1

40

1

x6
+O

(
1

x7

)
. (2.8)

Furthermore, we obtain

F ′
2(x) =

P (x)

3x2(1 + x)(1− 6x+ 10x2)2(5 + 14x+ 10x2)2
,

where P (x) = 75− 480x− 508x2 + 3680x3 + 4500x4.

As all coefficients of P (x+ 1) = 7267 + 27544x+ 37532x2 + 21680x3 + 4500x4 are positive,

which implies that F2(x) is strictly increasing. Since F2(∞) = 0, it can be found that

F2(x) < 0 on x > 1. This finishes the proof of the left-hand inequality in (2.3).

(Step 4) The third-correction. Similarly, let f3(x) = lnx + s1
x+t1+

s2

x+t2+
s3

x+t3

and develop

F3(x) := f3(x+ 1)− f3(x)− 1
x into power series expansion in 1

x , we have

F3(x) =

(
− 1

40
+

5s3
72

)
1

x6
+

802− 2275s3 − 1750s3t3
21000

1

x7
+O

(
1

x8

)
. (2.9)

Then let the coefficients of 1
x6 and 1

x7 in (2.9) equal zero, we have s3 = 9
25 , t3 = − 17

630 and

F3(x) = f3(x+ 1)− f3(x)−
1

x
=

6241

453600

1

x8
+O

(
1

x9

)
. (2.10)
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Furthermore, we obtain

F ′
3(x) =

Q(x)

3x2(1 + x)(−79 + 600x− 790x2 + 1260x3)2(991 + 2800x+ 2990x2 + 1260x3)2
,

where Q(x) = 18387502563 − 175398675600x − 226510750180x2 − 500966546560x3 −
1400497343100x4 − 1903983580800x5 − 832289774400x6.

As all coefficients of Q(x+1) = −5021259168077− 22246965738440x− 41656576872460x2 −
41788587214960x3 − 23404761863100x4 − 6897722227200x5 − 832289774400x6 are negative,

which implies that F3(x) is strictly decreasing. Since F3(∞) = 0, it can be found that

F3(x) > 0 on x > 1. This finishes the proof of the right-hand inequality in (2.3).

The proof of Lemma 2.2 is completed.

3 Main results

By adding inequalities (2.3) of the form

f2(x+ 1)− f2(x) <
1

x
< f3(x+ 1)− f3(x)

from x = n2 + 1 to x = n2 + n, we get

f2(n
2 + n+ 1)− f2(n

2 + 1) <

n∑
j=1

1

n2 + j
< f3(n

2 + n+ 1)− f3(n
2 + 1). (3.1)

This two-sided inequalities give the estimate of
∑n

j=1
1

n2+j . So we have

Theorem 3.1. For positive integer n > 1,

ln

(
1 +

n

n2 + 1

)
+

P (n; 5)

3P1(n; 4)P2(n; 4)
<

n∑
j=1

1

n2 + j
< ln

(
1 +

n

n2 + 1

)
+

5P (n; 9)

3P1(n; 6)P2(n; 6)
, (3.2)

where

P (n; 5) = 44n+ 85n2 + 170n3 + 150n4 + 150n5,

P1(n; 4) = 5 + 14n2 + 10n4,

P2(n; 4) = 5 + 14n+ 24n2 + 20n3 + 10n4,

P (n; 9) = 387838n+ 655457n2 + 1744984n3 + 1983990n4 + 2717310n5

+ 2199960n6 + 1942920n7 + 952560n8 + 476280n9,

P1(n; 6) = 991 + 2800n2 + 2990n4 + 1260n6,

P2(n; 6) = 991 + 2800n+ 5790n2 + 7240n3 + 6770n4 + 3780n5 + 1260n6.
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Proof. The double inequality (3.1) can be equivalently written as (3.2).

Theorem 3.1 gives an asymptotic formula of the sum S(n) =
∑n

j=1
1

n2+j , but we want to ob-

tain the rational approximation. It ensures the following approximation formula as n → ∞,

ln
(
1 + n

n2+1

)
∼ n

n2+1 , but the rate of convergence is not satisfied. Now we estimate the function

ln
(
1 + n

n2+1

)
as following.

Theorem 3.2. For positive integer n > 1, we have

n2 + 133
109n− 769

6540

n3 + 375
218n

2 + 768
545n+ 2401

2180

< ln

(
1 +

n

n2 + 1

)
<

n− 1
22

n2 + 5
11n+ 59

66

. (3.3)

Proof. Developing the function ln
(
1 + n

n2+1

)
− s2n

2+s1n+s0
n3+t2n2+t1n+t0

into power series expansion in 1
n ,

we have

ln

(
1 +

n

n2 + 1

)
− s2n

2 + s1n+ s0
n3 + t2n2 + t1n+ t0

(3.4)

= (1− s2)
1

n
+

(
−1

2
− s1 + s2t2

)
1

n2
+

(
−2

3
− s0 + s2t1 + s1t2 − s2t

2
2

)
1

n3

+

(
3

4
+ s2t0 + s1t1 + s0t2 − 2s2t1t2 − s1t

2
2 + s2t

3
2

)
1

n4

+

(
1

5
+ s1t0 + s0t1 − s2t

2
1 − 2s2t0t2 − 2s1t1t2 − s0t

2
2 + 3s2t1t

2
2 + s1t

3
2 − s2t

4
2

)
1

n5

+

(
−2

3
+ s0t0 − 2s2t0t1 − s1t

2
1 − 2s1t0t2 − 2s0t1t2 + 3s2t

2
1t2 + 3s2t0t

2
2 + 3s1t1t

2
2

+ s0t
3
2 − 4s2t1t

3
2 − s1t

4
2 + s2t

5
2

)
1

n6
+O

(
1

n7

)
.

According to Lemma 2.1, to get the highest rate of convergence, we have s2 = 1, s1 = 133
109 ,

s0 = − 769
6540 , t2 = 375

218 , t1 = 768
545 , t0 = 2401

2180 and

ln

(
1 +

n

n2 + 1

)
− s2n

2 + s1n+ s0
n3 + t2n2 + t1n+ t0

=
31721

305200

1

n7
+O

(
1

n8

)
.

Furthermore, we denote G1(x) = ln
(
1 + x

x2+1

)
− x2+ 133

109x−
769
6540

x3+ 375
218x

2+ 768
545x+

2401
2180

, then we can get

G′
1(x) = − 1409315 + 4813232x+ 3457589x2

(1 + x2)(1 + x+ x2)(2401 + 3072x+ 3750x2 + 2180x3)2
< 0,

which implies that G1(x) is strictly decreasing. Since G1(∞) = 0, it can be found that G1(n) > 0

for every positive integer n. Then we have

n2 + 133
109n− 769

6540

n3 + 375
218n

2 + 768
545n+ 2401

2180

< ln

(
1 +

n

n2 + 1

)
. (3.5)
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This finishes the proof of the left-hand inequality in (3.3).

Similarly, developing the function ln
(
1 + n

n2+1

)
− u1n+u0

n2+v1n+v0
into power series expansion in 1

n , we

have

ln

(
1 +

n

n2 + 1

)
− u1n+ u0
n2 + v1n+ v0

(3.6)

= (1− u1)
1

n
+

(
−1

2
− u0 + u1v1

)
1

n2
+

(
−2

3
+ u1v0 + u0v1 − u1v

2
1

)
1

n3

+

(
3

4
+ u0v0 − 2u1v0v1 − u0v

2
1 + u1v

3
1

)
1

n4
+O

(
1

n5

)
.

According to Lemma 2.1, to get the highest rate of convergence, we have u1 = 1, u0 = − 1
22 ,

v1 = 5
11 , v0 = 59

66 and

ln

(
1 +

n

n2 + 1

)
− u1n+ u0
n2 + v1n+ v0

= − 109

1980

1

n5
+O

(
1

n6

)
.

Furthermore, we denote G2(x) = ln
(
1 + x

x2+1

)
− x− 1

22

x2+ 5
11x+

59
66

, then we can get

G′
2(x) =

−503− 840x+ 1199x2

(1 + x2)(1 + x+ x2)(59 + 30x+ 66x2)2
> 0

when x > 1, which implies that G2(x) is strictly increasing. Since G2(∞) = 0, it can be found

that G2(n) > 0 for positive integer n > 1. Then we have

ln

(
1 +

n

n2 + 1

)
<

n− 1
22

n2 + 5
11n+ 59

66

. (3.7)

This finishes the proof of the right-hand inequality in (3.3).

The proof of Theorem 3.2 is completed.

Combining (3.2) and (3.3), we have

Theorem 3.3. As n→ ∞,

P (n; 10)

3P (n; 3)P1(n; 4)P2(n; 4)
<

n∑
j=1

1

n2 + j
<

P (n; 13)

3P (n; 2)P1(n; 6)P2(n; 6)
, (3.8)

where

P (n; 10) = −19225 + 251314n+ 915243n2 + 2580666n3 + 4566456n4 + 6735890n5

+ 7304720n6 + 6514900n7 + 4331300n8 + 2106000n9 + 654000n10,

P (n; 3) = 2401 + 3072n+ 3750n2 + 2180n3,
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P (n; 13) = −8838729 + 283891048n+ 724331705n2 + 2291454430n3 + 3803306340n4

+ 6508603530n5 + 7775628660n6 + 9153584460n7 + 8099239500n8 + 6891737400n9

+ 4319179200n10 + 2549232000n11 + 928746000n12 + 314344800n13,

P (n; 2) = 59 + 30n+ 66n2.

So we can get the rational approximation P (n;10)
3P (n;3)P1(n;4)P2(n;4)

of the finite sum S(n) =
∑n

j=1
1

n2+j ,

and the error can be bounded as following,

Theorem 3.4. As n→ ∞, we have

n∑
j=1

1

n2 + j
∼ T (n) =

P (n; 10)

3P (n; 3)P1(n; 4)P2(n; 4)
. (3.9)

Furthermore, we can give the bounds of the error estimation,

0 <

n∑
j=1

1

n2 + j
− T (n) <

109

1980

1

n5
. (3.10)

Proof. Set D = 109
1980 , from (3.8) we can get

P (n; 13)

3P (n; 2)P1(n; 6)P2(n; 6)
− T (n)− D

n5
(3.11)

= − P (n; 24)

1980n5P (n; 2)P1(n; 3)P1(n; 4)P2(n; 4)P1(n; 6)P2(n; 6)
< 0,

where

P (n; 24) = 379103668732775 + 2810435887808320n+ 14242250073272280n2

+ 52307052296627116n3 + 157936445498291068n4 + 399973820542120296n5

+ 882209143385828432n6 + 1711892774844546448n7 + 2970795182632943800n8

+ 4635720249539129840n9 + 6558910458343361680n10 + 8434105620517736160n11

+ 9897520754047548080n12 + 10594749646379864160n13 + 10355798883536793600n14

+ 9208131536164270400n15 + 7433462344335679600n16 + 5402752686291200000n17

+ 3514488757828417600n18 + 2012863116859364800n19 + 1001770606450320000n20

+ 417999105909504000n21 + 141577633391040000n22 + 34754556120480000n23

+ 5414684436000000n24.

Proof of Theorem 3.4 is completed.
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Remark 3.5. As n→ ∞, we also can get the rational approximation

W (n) =
P (n; 13)

3P (n; 2)P1(n; 6)P2(n; 6)
(3.12)

of the finite sum S(n) =
∑n

j=1
1

n2+j .

Remark 3.6. Using the Maclaurin series of the left and right hand of (3.2), we obtain

29

440

1

n11
+

1

30

1

n12
+O

(
1

n13

)
≤

n∑
j=1

1

n2 + j
− U(n) ≤ 1

11

1

n11
− 1

24

1

n12
+O

(
1

n13

)
. (3.13)

So we have another approximation, as n→ ∞,

n∑
j=1

1

n2 + j
∼ U(n) =

1

n
− 1

2

1

n2
− 1

6

1

n3
+

1

4

1

n4
− 2

15

1

n5
+

1

12

1

n6
− 1

42

1

n7
− 1

24

1

n8
+

7

90

1

n9
− 1

10

1

n10
.

(3.14)

Furthermore, we denote H1(x) = ln
(
1 + x

x2+1

)
+ P (x;5)

3P1(x;4)P2(x;4)
− U(x)− 29

440
1

x11 , then we can get

H ′
1(x) =

P (x;19)
120x12(1+x2)(1+x+x2)P 2

1 (x;4)P
2
2 (x;4)

, where

P (x; 19) = 54375 + 283875x+ 1223550x2 + 3541475x3 + 8928955x4 + 18003620x5

+ 32386512x6 + 48945976x7 + 66608504x8 + 76840064x9 + 79734920x10

+ 68524380x11 + 52231532x12 + 29887232x13 + 14214864x14 + 1988640x15

− 1179920x16 − 2468400x17 − 927200x18 − 480000x19.

As all coefficients of

P (x+ 3; 19) = −1095798626414130− 6922138869735924x− 20458381656316617x2

− 37730683241040109x3 − 48798043215225557x4 − 47107553905950172x5

− 35247917132102064x6 − 20940823139217776x7 − 10032400214888248x8

− 3912613116855772x9 − 1247976394963924x10 − 325701204911892x11

− 69291596265604x12 − 11915674458880x13 − 1632596145936x14 − 174202919520x15

− 13962062720x16 − 791257200x17 − 28287200x18 − 480000x19

are negative, which implies that H1(x) is strictly decreasing on x > 3. Since H1(∞) = 0, it can be

found that H1(n) > 0 for positive integer n > 3. Then we have

29

440

1

n11
≤

n∑
j=1

1

n2 + j
− U(n). (3.15)
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Similarly, we denote H2(x) = ln
(
1 + x

x2+1

)
+ 5P (x;9)

3P1(x;6)P2(x;6)
− U(x) − 1

11
1

x11 , then we can get

H ′
2(x) =

P (x;27)
30x12(1+x2)(1+x+x2)P 2

1 (x;6)P
2
2 (x;6)

, where

P (x; 27) = 28934492716830 + 163504701528000x+ 781783155292011x2

+ 2561640891519341x3 + 7366886663076127x4 + 17465244022945601x5

+ 37293047508784116x6 + 69715428169427545x7 + 119236982847280685x8

+ 183471922929904370x9 + 260745743812768040x10 + 338060035189670685x11

+ 406969201616917085x12 + 450014549032420100x13 + 463005366631670400x14

+ 438405464461473000x15 + 385877522700724000x16 + 311756448527065800x17

+ 233075982007921000x18 + 158623848613552500x19 + 98916577490962500x20

+ 55177732215522000x21 + 27657182228634000x22 + 11962175918742000x23

+ 4459721484330000x24 + 1316647483200000x25 + 296695768320000x26

+ 37807106400000x27.

As all coefficients of P (x; 27) are positive, which implies that H2(x) is strictly increasing. Since

H2(∞) = 0, it can be found that H2(n) < 0 for every positive integer n. Then we have

n∑
j=1

1

n2 + j
− U(n) ≤ 1

11

1

n11
. (3.16)

So we can give the upper and lower bounds as follow, for positive integer n > 3,

29

440

1

n11
≤

n∑
j=1

1

n2 + j
− U(n) ≤ 1

11

1

n11
. (3.17)

4 Some new estimates and double side inequalities

In order to prove the announced inequalities, we use the direct consequence of Theorem 8 of Alzer

[2] who proved that the double-sided inequalities for the function of arbitrary accuracies

lnx− 1

2x
−

2n−1∑
i=1

B2i

2ix2i
< ψ(x) < lnx− 1

2x
−

2n∑
i=1

B2i

2ix2i
, (x > 0, n ∈ N), (4.1)

where Bj , j ≥ 0 denote the Bernoulli numbers which may be generated by

z

ez − 1
=

∞∑
j=1

Bj
zj

j!
.



CUBO
27, 1 (2025)

Rational approximation of the finite sum of some sequences 175

In particular, for i = 2, we deduce that:

lnx− 1

2x
−Q6(x) < ψ(x) < lnx− 1

2x
−Q8(x), (4.2)

where Q6(x) =
1

12x2 − 1
120x4 + 1

252x6 , Q8(x) =
1

12x2 − 1
120x4 + 1

252x6 − 1
240x8 . Combining (1.1) and

(4.2), we get

ln
n2 + n+ 1

n2 + 1
+

P1(n; 25)

5040(n2 + 1)8(n2 + n+ 1)6
< S(n) =

n∑
j=1

1

n2 + j

= ψ(n2 + n+ 1)− ψ(n2 + 1) < ln
n2 + n+ 1

n2 + 1
+

P2(n; 25)

5040(n2 + 1)8(n2 + n+ 1)6
, (4.3)

where

P1(n; 25) = −21 + 3186n+ 15651n2 + 69238n3 + 202356n4 + 529934n5

+ 1122353n6 + 2160262n7 + 3588004n8 + 5473222n9 + 7408367n10

+ 9267866n11 + 10416693n12 + 10852108n13 + 10193994n14 + 8875980n15

+ 6943146n16 + 5020008n17 + 3220812n18 + 1898232n19 + 966000n20

+ 446880n21 + 167580n22 + 56280n23 + 12600n24 + 2520n25,

and

P2(n; 25) = 21 + 3312n+ 22842n2 + 105784n3 + 354605n4 + 972552n5

+ 2229004n6 + 4439168n7 + 7749915n8 + 12075104n9 + 16850506n10

+ 21261744n11 + 24267221n12 + 25182808n13 + 23708364n14 + 20294352n15

+ 15714090n16 + 11002824n17 + 6899676n18 + 3862152n19 + 1894620n20

+ 808080n21 + 287700n22 + 84000n23 + 17640n24 + 2520n25.

So we can immediately obtain the new estimates of the finite sum S(n) =
∑n

j=1
1

n2+j as following,

Theorem 4.1. As n→ ∞, we have

n∑
j=1

1

n2 + j
∼ V (n) = ln

n2 + n+ 1

n2 + 1
+

2520n25

5040(n2 + 1)8(n2 + n+ 1)6
. (4.4)

Remark 4.2. If we select a lager n in the double-sided inequalities (4.1), we can get others double-

sided rational estimates for the considered function Sn with arbitrary accuracies.
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