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ABSTRACT

In this paper, we study the geometry of real flag manifolds
within complex flag manifolds, focusing on their Lagrangian
properties. We prove that the natural immersion of real
flag manifolds into their corresponding complex flag mani-
folds can be characterized as infinitesimally tight Lagrangian
submanifolds with respect to the Kirillov-Kostant-Souriau
(KKS) symplectic form. This property of tightness provides
a significant geometric constraint, indicating that the sub-
manifolds are locally minimal and cannot be deformed in-
finitesimally to reduce their volume further in the ambient
space. We further provide a comprehensive classification of
these immersions, detailing the conditions under which such
submanifolds exist across various symmetric pairs. This clas-
sification elucidates the relationship between the structure of
the real flags and the associated complex flags, contributing
to a deeper understanding of the interplay between symplec-

tic geometry and representation theory.

Published: 21 November, 2025

@)evne |

Accepted: 16 May, 2025 (©2025 J. Baez et al. This open access article is licensed under a Creative Commons

Received: 12 August, 2024

Attribution-NonCommercial 4.0 International License.


http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2703.523
https://orcid.org/0000-0002-2227-7532
https://orcid.org/0000-0003-4340-4809
mailto:sbaez@cmm.uchile.cl
mailto:smartin@ime.unicamp.br

524

J. Baez & L. A. B. San Martin

RESUMEN

En este articulo, estudiamos la geometria de variedades ban-
dera reales dentro de variedades bandera complejas, con foco
en sus propiedades Lagrangianas. Demostramos que la in-
mersion natural de variedades bandera reales en sus corres-
pondientes variedades bandera complejas puede caracteri-
zarse como subvariedades Lagrangianas infinitesimalmente
estrechas con respecto a la forma simpléctica de Kirillov-
Kostant-Souriau (KKS). Esta propiedad de estrechez provee
una restriccion geométrica significativa, indicando que las
subvariedades son localmente minimas y no pueden defor-
marse infinitesimalmente para reducir ain mas su volumen
en el espacio ambiente. Ademas entregamos una clasificacion
completa de estas inmersiones, detallando las condiciones
bajo las cuales tales subvariedades existen entre varios pares
simétricos. Esta clasificacion aclara la relacion entre la es-
tructura de las banderas reales y las banderas complejas aso-
ciadas, contribuyendo a un entendimiento mas profundo de
la interaccion entre la geometria simpléctica y la teoria de

representaciones.
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1 Introduction

Lagrangian submanifolds in symplectic homogeneous spaces have been extensively studied, with
significant contributions to their classification in various contexts. For instance, compact symplec-
tic homogeneous manifolds have been classified in [24]. In this paper, we focus on the coadjoint
orbits of semisimple Lie groups, exploring the applications of semisimple Lie theory to symplectic
geometry, specifically in identifying Lagrangian submanifolds within adjoint orbits. Our motiva-
tion stems from the homological mirror symmetry conjecture and, in particular, from concepts
in Fukaya—Seidel categories, where objects and morphisms are generated by Lagrangian vanishing
cycles and their thimbles, exhibiting specific behaviors within symplectic fibrations (see [10] and
12]).

The primary objective of this paper is to investigate the locally, globally, and infinitesimally tight
Lagrangian submanifolds on adjoint orbits, a concept first introduced by Y.-G. Oh in 1991 (see

[17]). Oh defined tightness for closed Lagrangian submanifolds in compact Hermitian symmetric

spaces as follows:

Definition 1.1. Let (M,w,J) be a Hermitian symmetric space of compact type and L a closed
embedded Lagrangian submanifold of M. Then L is said to be globally tight (resp. locally
tight) if it satisfies

#(Lng-L)=SB(L,Zs)

for any isometry g € G (resp. sufficiently close to the identity) such that L intersects g- L trans-
versely. Here, SB(L,Z3) denotes the sum of the Zo-Betti numbers of L.

In the same work, Oh demonstrated that the standard RP" inside CP" is tight and minimizes
volume among all its Hamiltonian deformations (see [17]), linking tightness to Hamiltonian volume
minimization (see [18]). This concept is further connected to the Arnold-Givental conjecture,
which posits that the number of intersection points between a Lagrangian £ and its image under

a Hamiltonian flow ¢(£) is bounded below by the sum of its Z,-Betti numbers:
H#(LG(L)) 2D b (L5 Zs).

The study of tight Lagrangian submanifolds is therefore of significant interest in symplectic geom-

etry. Oh also posed the open problem:

Problem 1.2. Classify all possible tight Lagrangian submanifolds in other Hermitian symmetric

spaces.

By [17], Oh proposed the following conjecture:
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Conjecture 1.3. Are the real forms in these spaces the only possible tight Lagrangian submani-

folds?

While Oh’s conjecture suggests that real forms may be the only possible tight Lagrangian sub-
manifolds in Hermitian symmetric spaces, our study is restricted to the case of flag manifolds.
In particular, we examine the natural immersion of real flag manifolds into their corresponding
complex flag manifolds and demonstrate that they can be characterized as infinitesimally tight La-
grangian submanifolds with respect to the Kirillov-Kostant-Souriau (KKS) symplectic form. This
characterization provides a significant geometric constraint, indicating that these submanifolds
are locally minimal and cannot be deformed infinitesimally to further reduce their volume in the

ambient space.

Furthermore, we provide a comprehensive classification of these immersions, detailing the con-
ditions under which such submanifolds exist across various symmetric pairs. This classification
elucidates the relationship between the structure of real flags and their associated complex flag
manifolds, contributing to a deeper understanding of the interplay between symplectic geometry

and representation theory.

In a similar vein, Iriyeh and Sakai classified tight Lagrangian submanifolds in S x S? (see [15]),
showing that if £ is a closed, embedded, tight Lagrangian surface in S? x §2, then £ must be one

of the following:

o L={(z,~2)€S?x8%: xeS5%} (global tight submanifold).

o L =2S5%a)x S*(b) c §% x S?, where S'(a) is a round circle of radius 0 < a < 1 (locally tight

submanifold).

This classification forms a special case of tight submanifolds in products of flag manifolds, which
were studied in [13]. There, the authors demonstrated that a product of flag manifolds Fg, x Fe,
admits a Lagrangian orbit under the diagonal action (or shifted diagonal action) if and only if
O, = O, where Oy = 001 with ¢ being the symmetry of the Dynkin diagram, given by o = —wy,
and wg being the longest element of the Weyl group W. Such a Lagrangian orbit is described by
the graph of

—id: Ad(U)(iH) > Ad(U) (ic(H)),

or by the graph of — Ad(m), where m € U for the shifted diagonal action.

A significant contribution of [13] was the introduction of the concept of infinitesimally tight sub-
manifolds. The authors proved that Lagrangian orbits resulting from the diagonal (or shifted

diagonal) action are infinitesimally tight. This notion is formally defined as follows:
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Definition 1.4. Let £ be a submanifold of M = G/H. An element X € g = Lie(G) is called

transversal to L if it satisfies the following two conditions:

(1) For any z € L, if X(x) € T,L, then X (z) = 0.

(2) The set
fe(X)={zeL: 0=X(z)eT,L}

1s finite.
That is, X is tangent to L only at finitely many points where it vanishes.

A Lagrangian submanifold £ in M = G/H is called infinitesimally tight if

# (f(X)) =SB (L, Z2)

for any X e g such that X is transversal to £. Moreover, [13] presents the following theorem:

Theorem 1.5. Let M = G/H be a homogeneous space with a G-invariant symplectic form w. Then

a Lagrangian submanifold £ c M is infinitesimally tight if and only if it is locally tight.

As discussed in [6] and [13], isotropic submanifolds can be characterized through the moment
map of a Hamiltonian action. In particular, Gorodski and Podesta [6] classified compact tight
Lagrangian submanifolds in irreducible compact homogeneous Kéhler manifolds that have the Zo-
homology of a sphere. This classification is closely related to our study, as it provides structural
constraints on the existence of tight Lagrangian submanifolds within compact homogeneous spaces.
Our work builds upon these ideas by characterizing the complex flag manifolds that admit real

flag manifolds as Lagrangian submanifolds.

To establish this characterization, we equip the complex flag manifolds with the Kirillov-Kostant-
Souriau (KKS) symplectic form and consider the compact orbits of the real forms of the associated
complex Lie group. This approach aligns with recent developments related to the Ph.D. thesis of
Béez, where the author studied Lagrangian submanifolds of adjoint semisimple orbits. The results
from this thesis are directly related to the findings presented in this paper, further reinforcing the
connection between Lagrangian submanifolds and the geometry of adjoint orbits in semisimple Lie

theory.

Regarding the work of Gorodski and Podesta [6], although our conclusions share similarities, the
methodologies differ significantly. While their approach focuses on homogeneous Kéhler manifolds
with topological constraints on homology, our classification provides a systematic study of complex
flag manifolds and their real forms that possess compact Lagrangian orbits. This classification is
explicitly detailed in Table 1 at the end of Subsection 3.1, with a case-by-case proof given in

Appendix A.
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Specifically, in Section 4, we prove that real flag manifolds can be seen as infinitesimally tight
submanifolds of the corresponding complex flag manifolds. This result establishes a direct link
between the structure of flag manifolds, symplectic geometry, and representation theory, offering
a broader perspective on the classification of Lagrangian orbits within homogeneous symplectic

spaces.

2 Flag manifolds

Flag manifolds play a central role in the study of Lie groups and their geometric structures.
However, their treatment varies significantly depending on whether they are considered within
the framework of complex semisimple Lie groups or real semisimple Lie groups. This distinction
is crucial, as notation and conventions often diverge in the literature, with most works focusing
exclusively on either the real or the complex setting. To provide a unified perspective, this section
introduces both real and complex flag manifolds, along with fundamental concepts such as Weyl
chambers and Weyl groups. The goal is to establish a consistent notation and clarify potential

ambiguities, ensuring that the reader can navigate seamlessly through subsequent discussions.

There exist several equivalent definitions of flag manifolds, and they are sometimes referred to
as generalized flag manifolds. This terminology appears in various sources, with one of the most
well-known references being Alekseevsky’s work (see [1]), where these spaces are studied from a
broader geometric perspective. A fundamental definition, which serves as a starting point for our

discussion, is the following:

Definition 2.1. Let g be a semisimple non-compact Lie algebra, and let G be a connected Lie

group with Lie algebra g. The flag manifold Fyg is the homogeneous space
Fyg =G/Py,

where Py is a parabolic subgroup of G, determined by an element H € g, which can be chosen

within the closure of a positive Weyl chamber of g.

The construction of the parabolic subgroup Py depends on whether g is a real or complex Lie alge-
bra. In what follows, we shall present these constructions using fundamental tools from semisimple
Lie theory. Although different approaches provide valuable insights, in this work, we adopt the
perspective that complex flag manifolds are most naturally understood as adjoint orbits of compact
semi-simple Lie groups. This viewpoint not only highlights their intrinsic geometric structure but
also establishes a direct connection with symplectic geometry and representation theory, which will

be further explored in the subsequent discussion.
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To avoid confusion, let us denote the following:

e The notation g€ will be used to explicitly indicate that g is considered as a complex Lie
algebra, and similarly, G® will denote a complex Lie group when necessary. When this
notation is omitted, g and G should be understood in a general sense or as real structures,

depending on the context.

e The notation g¢ denotes the complexification of the Lie algebra g, which in this case is a real

Lie algebra.

For a more detailed study of these flag manifolds, we recommend referring to [1-3,19]. Additionally,

for further geometric insights, see [4, 8].

2.1 Complex flag manifolds

Let g€ be a semisimple complex Lie algebra, and let h be a Cartan subalgebra of g¢. We define

the following:

e Il¢ is a root system, where for each o € I, there exists an element H, € h* such that
o(H) = (Hy, H), VHehC,

where (-,-) denotes the Cartan-Killing form of g©.

e Y¢ is a simple root system, such that II{ denotes the set of positive roots in Il¢, and

{H,: aeXc} forms a basis of hC.

e a' is the corresponding positive Weyl chamber, given by

at={Heh®: a(H)>0, VaeXc}.

Thus, we have the root space decomposition:

=00 Y of,

OLGHC

where each root space is given by

gn ={X eg®: [H,X]=a(H)-X, VHeh"}.
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The Borel subalgebra b, which is the maximal solvable subalgebra, is defined as

b=h"a > of.

aell?,
C

A subalgebra p of g€ is called parabolic if it contains a Borel subalgebra. The parabolic subalgebra

associated with an element H is defined as

pr=b%e > g5 (2.1)

a(H)>0

Remark 2.2. In some sources, the parabolic subalgebra defined in Equation (2.1) is denoted by

Po,, where Oy = {aeXc:a(H)=0}.

Let G€ be a connected Lie group with Lie algebra g®. The parabolic subgroup Py is the normalizer
of py in G©, given by
Py ={geG": Ad(9) -pu =pu}.

The complex flag manifold associated with H is then defined as the quotient space:
Fi = G/ Py.

Furthermore, we will see that the complex flag manifold can be seen as an adjoint orbit of a
compact Lie group. For instance, choosing a Weyl basis given by H, for a € ¥¢ and X, € gg for

«a € I, we have:

L4 [XomX—a] =H,,

o [X,,Xg] = mapXarp with mq g € R, where my g = 0 if o+ 5 is not a root and mq g =

—M_q,-8-
Defining A, = X, - X_o and S, =i(X, + X_o), we obtain the compact real form:

u=spang{iH, Ao, Sa : a € II{}.

Let U = expu be a compact real form of G*, and define

UHZPHOU.
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The adjoint action of U is transitive on Fgy with isotropy subgroup Uy at H, yielding

Fp ~U/Ug ~ Ad(U) - H.

Additionally, denoting by = 1-Upg as the origin of Fy, its tangent space at by is given by

Ty, Fru =spang{Aq, Soa: a(H) >0} = > u,,
a(H)>0

where u, = (g5 @ ¢5,) nu = spang{Aq,, Sa}.

Remark 2.3. Given a complex semisimple Lie algebra g©, a real Lie algebra go is called a real
form of g€ if its complezification satisfies go ® C = g©. A real form of g€ can be either compact or

non-compact. Additionally, all compact semisimple Lie algebras are real.

2.2 Real flag manifolds

Let g be a semisimple, non-compact real Lie algebra. To construct real flag manifolds, we introduce

the following fundamental elements of real semisimple Lie theory:

e Let 0 be a Cartan involution, that is, an involutive automorphism such that the associated
bilinear form

Bo(X,Y)=—(X,0Y), X,Yeg

defines an inner product on g, where (-,-) denotes the Cartan—Killing form of g. The Cartan

involution induces a Cartan decomposition
g=taos,

where

E={Xeg:0X=X}, and s={Yeg:0Y =-Y}.

The subspaces ¢ and s are orthogonal with respect to both By and the Cartan—Killing form.
Notably, ¢ is often referred to as the compact component of the Cartan decomposition,
although it is not necessarily compact. Furthermore, we define the maps x : g — ¢ and
0:g— s, given by

X+0X X-0X

K(X) = 5 and o(X)= 5

which correspond to the parallel projections onto ¢ and s, respectively.



532

J. Baez & L. A. B. San Martin CUBO

27, 3 (2025)

e Let a c s be a maximal Abelian subalgebra. Then, there exists a Cartan subalgebra § of g

that contains a. Given a pair (6,a), we denote by IIg the set of roots associated with (6,a),

where each root is a linear functional « : a - R satisfying

By(Hu,H) = a(H), VHea.

These roots can be interpreted as restrictions of the roots of h®, the Cartan subalgebra of

the complexification of g, denoted as gc.

The Weyl group associated with a is the finitely generated group of reflections across the
hyperplanes defined by o = 0 in a, for « in the root system of a. The generators of the Weyl

group corresponding to these reflections are called simple reflections.
The Weyl chambers associated with (0, a) are the connected components of
{Hea: a(H)+0, Vaellg}.

Selecting one of these chambers as the positive Weyl chamber a*, we define the set of positive
roots as

I} = {a eIk : a|q+ >0}

Consequently, we define

n= Z ga, and n” = Z 9-a

+ +
aelly aelly

where g, = g-o and In = n~. Furthermore, there exists a simple root system ¥r associated

with a*, such that {H, € a: o e g} forms a basis of a.

Moreover, we obtain the Bg-orthogonal decomposition

s=ado(n).

The triplet (6,a,a") is called an admissible triple of g, and it gives rise to the decomposition

g=t®a®n,

known as the Twasawa decomposition. Let G be a connected Lie group with Lie algebra g. If K, A,

and N are the connected subgroups generated by £, a, and n, respectively, then G is diffeomorphic

to K x A x N. This leads to the global Iwasawa decomposition:

G =KAN.
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Remark 2.4. If H ea”, i.e., H is a regular element, then n = nj; and n~ =ny. In some literature,

nj, is denoted by n§, where © = {ov e Xp : a(H) = 0}.
Given an admissible triple (6, a,a*), the parabolic subalgebra associated with H € cl(a*) is

pH:EHGBCl@l‘L.

Let G be a connected Lie group with Lie algebra g. The parabolic subgroup associated with H is

defined as the normalizer of py in GG. By the global Iwasawa decomposition of G, we obtain:

K= {keK: Ad(k)a, = ida, }

where ay = aea(H) and a(H) be a subalgebra generated by { H,, : a(H) # 0}. Then, the parabolic
subgroup Py is given by:
Py=Kyg-A-N.

Consequently, we have the quotient structure:

K-A-N

G/Py = — 22
[P Kg-A-N

ZK/KH,

and it follows that:
K/Kg~Ad(K)-H

which represents the K-adjoint orbit passing through H, commonly known as the real flag man-

ifold.

Remark 2.5. Given H € s, we have that Ad(K)-Hncl(a*) # @. Since the action of K is transitive,

we can choose an element H € cl(a®) which determines the same manifold.

Remark 2.6. We denote by Fy the flag manifold passing through H € cl(a®) when there is no
ambiguity regarding the compact group acting on it. Otherwise, we will specify it as an adjoint
orbit. To maintain clarity, we will represent flag manifolds in terms of the adjoint action (as the

orbit of U in the complex case and K in the real case).
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3 Lagrangian immersion of real flags on complex flag

In this section, we investigate the conditions under which a given real flag manifold can be realized
as a Lagrangian submanifold within a complex flag manifold. Specifically, given an adjoint orbit
Ad(K) - H corresponding to a real flag manifold, we determine in which complex flag manifolds
it can be immersed as a Lagrangian submanifold. Importantly, this classification depends on the
choice of H, which we analyze using Satake diagrams, as well as the structural properties of K.
Contrary to a universal embedding, our approach highlights the interplay between the choice of H

and the ambient complex flag manifold.

As discussed in [3], given a compact semisimple Lie group U with Lie algebra u, the adjoint orbits
of U in u correspond to the flag manifolds of its complexified Lie group Uc, whose Lie algebra is
uc. These adjoint orbits naturally inherit a symplectic structure, providing a geometric foundation

for our analysis.

The Kostant-Kirillov-Souriau (KKS) symplectic form on an adjoint orbit Ad(U) - H is given by
we (X (2),Y(2)) = (2, [X, Y]}y, X,Y eu, (3.1)

where (-,-), denotes the Cartan-Killing form on u, and X = ad(X) represents the Hamiltonian
vector field associated with the Hamiltonian function Hx(z) = (z,X),. As a consequence, the

moment map g of the U-adjoint action is simply the identity map, which is inherently equivariant.

To identify specific isotropic submanifolds within Ad(U) - H, we rely on the following key result:

Proposition 3.1. Let (M,w) be a connected symplectic manifold equipped with a Hamiltonian
action of a Lie group G, given by G x M — M, along with an equivariant moment map p. Let

L c G be a Lie subgroup.

Then, the orbit L-x is isotropic if and only if p(x) belongs to the annihilator ([’)0 of the derived
algebra U of L.

This proposition was established in [13] and [14] using distinct methodologies.

3.1 Lagrangian immersion of real flags

Let U be a compact semisimple Lie group with Lie algebra u, and let £ c u be a Lie subalgebra.

The pair (u,t) is called a symmetric pair if
[e,8'] ct, and [&'E']cé,

where L denotes the orthogonal complement with respect to the Cartan—Killing form on u.



Infinitesimally tight Lagrangian submanifolds in adjoint orbits... 535

For any symmetric pair (u,£), if we define K = (expt), then the quotient space U/K forms a
symmetric space. The dual symmetric pair is given by (g, £), where g is a non-compact semisimple

Lie algebra that serves as the real form of uc and admits a Cartan decomposition
g=t@s, where s=it"cuc.

By construction, the orbits of the K-isotropy representation on s (or equivalently on €*) correspond

to the flag manifolds of g.

Given H € ', the Lagrangian immersion of real flag manifolds into their corresponding complex
flag manifolds is constructed as follows: Let a c s be a maximal abelian subalgebra. Then, there
exists a Cartan subalgebra b of g such that a c b and h® is a Cartan subalgebra of gc. Consequently,
for H € a, we obtain

K/Ky=Ad(K)-H < Ad(U)-iH =U/Uy =Fy. (3.2)

Thus, the flag manifolds of g are determined by the adjoint action of K on H and are immersed
in the flag manifolds of g¢ (complexification), which are determined by the adjoint action of U on
1H. Moreover, since u is compact, the connected component of the identity of €+ corresponds to
the orthogonal complement of ¢ with respect to the invariant scalar product on u. Consequently,

we arrive at the following proposition:

Proposition 3.2. Given a symmetric pair (u,€) and an element H € a c i€, the real flag manifold
Ad(K)- H is a Lagrangian submanifold of F g with respect to the Kirillov-Kostant-Souriau (KKS)

symplectic form.

Proof. Since ¥ c ¢, then ¢* c (¢)* and Ad(K) - H c ¢ = is, then Ad(K)-H n (¢)* # @ and by
Proposition 3.1, the adjoint K-orbit (real flag) is an isotropic submanifold.
Furthermore, if by =1 K, we have that

dim(TbHAd(K)~H):dim( > ga):#{aeﬂ(c: a(H) <0},
a(H)<0

and as the root spaces of gc are 1-dimensional complex spaces (i.e., 2-dimensional real spaces),
then

Hence Ad(K) - H is a Lagrangian submanifold of Fy. O
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Remark 3.3. Intuitively, one can observe that each complex root space effectively doubles its
dimension when considered as a real vector space. However, this identification is purely at the
level of vector spaces and does not yet take into account the underlying Lie algebraic or geometric
structure. In [16, 21, 23], the authors provide a detailed exposition of this vector space approach,

emphasizing how the real and complex structures relate in the context of flag manifolds.

Our focus now shifts to identifying the complex flag manifolds of g¢ (complexification of g real
non-compact semi-simple) that admit a real flag manifold, generated by the action of K = (exp )
for the symmetric pair (u, £), as a Lagrangian submanifold. Consider a maximal abelian subalgebra
a c s and a Cartan subalgebra h of g such that a c h. Let TI¢ be the set of roots of hc, where the

roots of a correspond to their restrictions on fhc.

If 6 is a Cartan involution associated with the Cartan decomposition g = €@ s, then there exists an
involutive extension of 8 to g¢, which we also denote by 6. As shown in [21], the restriction of Il¢
to a is given by

1
P:§(1—0*), where 0"a=ao6.

Define II;,, c Tlc as the set of imaginary roots, where « € Il if and only if P(a) = 0. Letting
I, = Mg \ iy, the set of restricted roots is given by P(I1,).

Considering an appropriate ordering (such as the lexicographic order on a*), let ¥;,, denote the
system of imaginary simple roots, and let Y., be its complement. The projection of ¥, onto a*
forms a system of restricted roots 3, with a* denoting the positive Weyl chamber of g determined
by 3.
For H ecl(a*), define

Oy ={BeX: B(H)=0}cX.

Next, define Oy c ¢ by
Oy =P Y(Ox) USin, (3.3)

which is determined by the Satake diagram of g (see [16,21]).

Remark 3.4. In general, we select H € cl(a*) because for any other choice H' € a such that the
orbits remain the same, there exists a Weyl conjugation o satisfying o- H = H'. Consequently, the

associated sets of admissible roots remain unchanged, i.e., O = O .
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Proposition 3.5. Oy = {a € Y¢: a(H) = 0}.
Proof. If H € a, then for all a € X¢
0*a(H)=aob(H) =-a(H), (3.4)

because 0|s = —id. Also, if @ € 3y, then 8*a = «, and by (3.4) we have that a(H) = 0, therefore it is
enough to see for roots in Xeo. If € P71(Op), then (a—0*a)(H) = 0 implies that a(H) = 0*a(H),
and by (3.4) we have that o(H) = 0. Thus Oy ¢ {a € ¢ : a(H) =0}. Conversely, if o € ¥, such
that a(H) = 0, then 0*«(H) = —a(H) = 0, thus P(a)(H) = 0 and implies that P(«) € O, i.e.
Q€ P_l(@H). O
Therefore,

Theorem 3.6. Given a symmetric pair (u,t), the complex flags of uc of type O c X¢ admit, as
Lagrangian submanifold, the real flag of g = €@ i€t of type © c X if and only if

0 =P HO)UTin.

That is, © is determined by the Satake diagram of g.

In particular, we can conclude

Corollary 3.7. A maximal flag F of gc admits a real flag AA(K) - H as Lagrangian submanifold
if and only if i =@ and @ =0Op.

Example 3.8. Let u = su(7), ¢ = s(u(2) ®u(b)) and g = su(2,5) that determine the symmetric
pair (u, ) and its respective dual symmetric pair (g,t). The Satake diagram of su(2,5) is

(651 (65) Q3
O O @
O O @
Qg (0% (&%}

By Theorem 3.6, the flags of type © c ¢ that admit as Lagrangian submanifold a real flag of type
©cX={p =P(a1) = P(ag), B2 = Plaz) = P(as5)} are

o IfOy =0, then O = Dy, = {as,a4}.
L] If @1 = {Bl}, then ("“jl = {041704370[47046}.

[ ] [f @2 = {52}, then @2 = {042704370547055}.
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Analogously, this is equivalent to that given in the Table 1, form ="7:

O

e Op=Xc\{ar, a2, 09,001},

O)

e O =Yc {2, an2},

e O=c{aq, a1}

Hence, using the Satake diagrams we can determine which are the complex flags of type © c X¢,

for which there exists © such that Theorem 3.6 is satisfied.

Corollary 3.9. The complex flags of type © c S¢ admits as Lagrangian submanifold a real flag
giwen by the K-adjoint orbit if and only Zf(:j appears in Table 1.

Remark 3.10. Corollary 3.9 states that given a complex flag manifold Fy associated with the
semisimple complex Lie algebra g€, we can determine which real flag manifolds of go are Lagrangian

submanifolds of Fg by analyzing the Satake diagram of go. Here, go denotes a real form of g©.

The proof of this result is given in the following subsection. For that we will use a convenient
notation of partitioning an integer, that is, we define h(n) for n € N, as the set of ordered I-tuples

of integers (nq,...,n;) such that 0 <my <--- < n; <n, for example:
b(3) = {(1),(2),(3),(1,2),(1,3),(2,3),(1,2,3)}.

Using this notation, we build the Table 1. The case-by-case analysis used to construct Table 1 is

detailed in Appendix A.

4 Infinitesimally tight

In this section, we establish the main result of this paper. Specifically, we demonstrate that the
Lagrangian submanifolds listed in Table 1 are infinitesimally tight. To achieve this, we compute
the sum of the Zy-Betti numbers of the real flag manifolds and identify the transversal elements.
To lay the groundwork for our proof, we first provide the necessary definitions to understand
Schubert cells, which play a fundamental role in computing the homology of real flag manifolds.

This exposition is based on [5] and [9].

Let g be a semisimple non-compact real Lie algebra, and let YW be the Weyl group associated with

a maximal abelian subalgebra a c g, with ¥ denoting the corresponding system of simple roots.
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Table 1: Complex flags that admit a Lagrangian immersion of the real flag determined by the

action of K =expt.
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e For © ¢ ¥, the subgroup We of W is generated by the roots in ©. This subgroup acts

transitively on the cosets of W.

e Given © ¢ X, the Bruhat decomposition of the real flag manifold Fg = G/Pg expresses it
as the disjoint union of N-orbits, where N is determined by the Iwasawa decomposition of
P@ = K@AN That iS,

IF@ = H N - wb@,
weW /We

where the equivalence relation N - w1bg = N - wabg if w1 - We = wo - We holds.

e FEach N-orbit passing through w € W is diffeomorphic to a Euclidean space, and the orbit

N - wbg is referred to as a Bruhat cell.
e Every Bruhat cell is open and dense in Fg.

e The Schubert cell associated with w € W/We is denoted by SO and defined as

SO = (N -wbe), weW/We.

Using the Schubert cells S9, the authors of [20] introduced a boundary map 9, which was employed
to compute the homology of the real flag manifold Fg. In particular, for any H € cl(a*), there
exists a subset Oy c X such that the Zs-homology of Fg,, = Ad(K) - H is freely generated by the
Schubert cells SO, where w e W/We,, .

Therefore,

That is, the cardinality of the quotient W/We.

Since Ad(K) - H cs =it', for z € Ad(K) - H we have:
T, (Ad(K)-H) ={ad(A)(x): Act}.
Then,

o If X ¢ ¢', then X = ad(X) is a Hamiltonian field of the function Hx = (X,z). Thus the
singularities of X are the singularities of Hx, and their number is finite, if and only if X is

regular.

Therefore, the transversal elements are the regular elements X, and they satisfy
# (faao) (X)) =# W/ We,,).

o If Y et then Y is tangent, thus it cannot be transversal.
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eIf Z=X+Y for X et and Y ¢ &, then Z(x) ¢ T, Ad(K) - H if X(x) # 0, so for Z to have
singularity in z we need that X (z) = Y (z) = 0 in a finite quantity. But this only happens
for X regular, such that [X,Y] =0. Thus:

# (faaro)yu(2)) =#W/We,,) .

Consequently,

Theorem 4.1. The real flags are infinitesimally tight submanifolds of their corresponding complex

flag manifolds, as listed in Table 1.

As a result of Theorem 1.5, we have:

Corollary 4.2. The real flags are locally tight submanifolds of their corresponding complex flag

manifolds.

A Appendix

In this appendix, we analyze each Satake diagram case by case to identify all complex flag manifolds
that permit the Lagrangian immersion of the corresponding real flag, as determined by the possible
symmetric pairs. This analysis culminates in the construction of Table 1, where for the classical

cases AI, CI, Go, Fyl, E¢l, E7I, and Esl, all possible sets © c X¢ are admissible.

Type AIl

In this case, we have g = sl(n, H), with g¢c = s[(2n,C). The Satake diagram is represented as:

e—0—0—  —0—0—@

aq Q2 Qs Qp-3 Qp-2 0Onp_1

Here, i = {agj_1: 1<j<n}and ¥ ={f; = P(agj): 1<j<n-1}. The sets © that satisfy the

Theorem 3.6 are given by:

O =c~{aas,, .., a0t (51,...,8) €b(n—-1)}. (A1)
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Type AIIl
For g = su(k,n—-k)

o If k <n -k, the Satake diagram is

(o7} (oD (7% O+l
O O O ?
|
?
O O O ®
Qp-1 Qp-2 -k Qp—k-1

As Zim =
satisfy the Theorem 3.6 are given by:

{oj : k<j<n-k}and ¥ ={B; = P(oj) = P(an—j) : 1 < j <k}. The sets O that

O=Yc~ {Qsyyevy Qs Qpgyy vy Qg & (S1,..0,81) €b(K) e (A.2)

o If k =n -k, the Satake diagram is

(e 71 (6% Q-1
O O O\
O
/ o
O O O
-1 e 759 O+l

As Yim = @ and X = {B; = P(a;) = P(an_j), Bx = P(ag): 1 <j <k—1}. The sets © that

satisfy the Theorem 3.6 are given by:

O =3 {0y s sy Uy ey Oy (S15-..,8) €b(k-1)}, (A.3)

or

(A4)

@=Z(c\{asl,...,asl,ak,an,sl,...,an,sl s (81,.,8) €b(k-1)}.
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Type B

For g =so(k,2n + 1 - k), then the Satake diagram is

O— —0—0— —@&=0

aq g [07°F8} Op-2 Qp-1

As Yim={a;: k<j<n}and ¥ ={f; = P(cj): 1 <j<k}. If k=n then g is normal, and the sets
O that satisfy the Theorem 3.6 are given by:

O =S¢~ {00 (51,...,8) eb(k)}. (A.5)

Type CI1
For g =sp(k,n—k).

o If k <n -k, the Satake diagram is

e—0—0—  —0—0—  —@=@

(€51 (&%) ag Qg (k41 Qp-1  Qp

As i = {agj 1,04 1<j <k, ¢>2k} and ¥ = {; = P(ay;): 1 <j <k}. The sets © that
satisfy the Theorem 3.6 are given by:

O =3¢~ {aas,, .. a0t (51,...,51) €b(k)}. (A.6)

e If n=2m and k = m, the Satake diagram is

e—0—0—  —O0—@<&0

g (&%) ag Qp-2 Qp-1 Qp

As Yim ={agj-1: 1<j<m} and ¥ = {5 = P(ag;): 1<j<m}. The sets © that satisfy the
Theorem 3.6 are given by:

O =3¢~ {aas,, ... a0t (51,...,51) €b(k)}. (A7)
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Type DI

For g =so(k,2n - k).

e If £ =n then g is a normal form.

e If k <n—1 then the Satake diagram is

Q-1
(o1 (o7 Oyl Qp—2
@
Qp

As Yy ={aj: j>k}and £ ={B; = P(a;): 1<j<k}. The sets © that satisfy the Theorem
3.6 are given by:
O=c~{ag,. .., aq: (51,...,8) eb(k)}. (A.8)

e If k =n—1 then the Satake diagram is

Q
Q-1

0—O—+—0— I

o Qg Q-2

« n

As Yip = @ and ¥ = {B; = P(«;), Br = P(ag) = P(ay) @ 1<j <k}. The sets © that satisfy
the Theorem 3.6 are given by:

O =S¢ {ag,. ot (51,...,8) eb(k-1)}, (A.9)

or

O =%~ {5, ant (s1,...,5) eb(k-1)}. (A.10)
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Type DII

For g =s0*(2n).

e If n is even, the Satake diagram is

Q-1
Qp-2 .
e—0—0—  —O0—
aq Qo o%:} On-3
O
Qp

As Dip = {aj : jisodd} and ¥ = {B; = P(ag;) : 1 <j <n}. The sets © that satisfy the

Theorem 3.6 are given by:

O =S¢~ {aas,, .., a0t (s1,...,5) €b(k)}. (A.11)

e If n is odd, the Satake diagram is

aq Q2 Q3 On-3

O
e—0—e—  —0— I
O

As ¥ip, = {a; ¢ jisodd and j < n} and ¥ = {; = P(w;), Bk = P(an-1) = P(ay,) : 1 <5 <
k, k= (n-1)/2}. The sets © that satisfy the Theorem 3.6 are given by:

~ -3
(—):EC\{QQSI,...,OZQSI: (81,...,81) € b(nT)}, (A.12)

or

_ 3
6=%cn {agsl, ey Oyt (81,0001 81) € b(nT)} (A.13)
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Exceptional cases
Type FAIT

For g = F;?°, then the Satake diagram is

—0—>0—O

Q2 as Qg

Therefore the only non-trivial possibility of O that satisfy the Theorem 3.6 is

é = {041,042,043} = Eim- (A14)

Type E6I1

For g = EZ, then the Satake diagram is

Therefore the non-trivial possibilities for © that satisfy Theorem 3.6 are:

L] (:j:@, o 6:{a23a37a4}7
° @:{ag}, ° @:{al,ag,oz5},
« &-{as), _
{013} [ ) @ = {041,052,044,045},

) (:j = {012,044}, —

~ e O= {a27a37a4aa6}7
e O= {041,045}7

— [ ] (:j: a1,Q03,05,06,
[ ] @ = {013,046}, { ! ° ° 6}

o O ={a, a4, a5}, o O={o,an,aq,as5 06},

. (:):{041,045,06}, ° é:{()q,OéQ,(Jég,Oé4,0é5}.



Infinitesimally tight Lagrangian submanifolds in adjoint orbits...

047

Type E6II]

For g = Eg'%, then the Satake diagram is

aq

Q2

Oy

Qs

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:

° C:):{ag,aga4}, ° (:):{a1,a2,a3,a4,oz5 }.

° (:j = {a27a37a47a6}7

Type E6IV

For g = E5?5, then the Satake diagram is

@ o

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:

° C:):{ag,aga4,a6}, ° C:):{ag,ag,a4,a5,oz6 }.

° (:j = {0[1,042,(13,&47626},

Type ETII

For g = E75, then the Satake diagram is

@ r
@—O O—0O—O0O
o1 2 as oy (6% Qg

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:
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b é:{a13a3?a7}7 L4 é:{alaa3va4va57a7}~

e O={ai,a,as,ar}, o 8= {a1, a3 a0, a6 a7},

L] (:j: 1,03, 06,0 ~
{ 1,63, 046, 7}7 ° @:{al’OJS’Q{5’a67a7},

L (:52{0[1,0(3,&4,Ck7}, _
e O= {011,0627043,04470657(17},

°
D

= {al,a3,a5,a7},

° @ = {alaa27a37a47a67a7};

.
D

= {011,042,043,044,047},

e O= {01,043,0[4704570167047},

e O={a1,as, 03,05, a7},

e O={ay,a,a3,a4,ar}, e O={ay,qs,a3,as,qs,ar}.

Type ETII]

For g = E?° then the Satake diagram is

o—0—@
o

851 as Oy

Q
o

&7

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:

hd 63{03,044,&57047}, hd é:{al,OéQ,Oég,Oé47Oé57O[7},

.
D

= {Oll,Oég,Oé4,Oé57a7}, .
~ e O= {a1,a3,a4,0¢5,a67a7},
e O= {027053’&470‘57047};

e O={as3,a4,qas a6,a7}, o O={ay, a3,04,05,06,07}.

Type ESII

For g = Eg 24 then the Satake diagram is

@ s
O—0O0—0—@
(€3] Q2 as Qg Qs Qg (%4

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:



CUBO

o
27,

3 (2025)

©
e

©

D D D

o)

Infinitesimally tight Lagrangian submanifolds in adjoint orbits...

549

= {ay, a5, a6, a8},

={a1, a4, 05,06, 08},

= {ag, a4, 05,06, 08},
={a3,a4,a5,06,038},
={ay,as,a6,07,03},
={a1,a2,a4, 05,06, as},

= {O[l,a3704470457066,018},

e O= {(X2,063,044,Oé570467058},

° é = {OZQ,OC470457Q67047’C¥8}3
e ©={a1,a4,as, a4 ar,as},
° C:) = {043,064,045704670477048}7
° E:) = {al,ag,ag,a4,a57a6,a8}7
° é = {al,a27a47a57a67a77a8}7
° @ = {ozl,oeg,a4,04570467047»0é8}a

o O={a, a3, 04,05, 06,07,08}.
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