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ABSTRACT

In this paper, we study the geometry of real flag manifolds
within complex flag manifolds, focusing on their Lagrangian
properties. We prove that the natural immersion of real
flag manifolds into their corresponding complex flag mani-
folds can be characterized as infinitesimally tight Lagrangian
submanifolds with respect to the Kirillov-Kostant-Souriau
(KKS) symplectic form. This property of tightness provides
a significant geometric constraint, indicating that the sub-
manifolds are locally minimal and cannot be deformed in-
finitesimally to reduce their volume further in the ambient
space. We further provide a comprehensive classification of
these immersions, detailing the conditions under which such
submanifolds exist across various symmetric pairs. This clas-
sification elucidates the relationship between the structure of
the real flags and the associated complex flags, contributing
to a deeper understanding of the interplay between symplec-
tic geometry and representation theory.
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RESUMEN

En este artículo, estudiamos la geometría de variedades ban-
dera reales dentro de variedades bandera complejas, con foco
en sus propiedades Lagrangianas. Demostramos que la in-
mersión natural de variedades bandera reales en sus corres-
pondientes variedades bandera complejas puede caracteri-
zarse como subvariedades Lagrangianas infinitesimalmente
estrechas con respecto a la forma simpléctica de Kirillov-
Kostant-Souriau (KKS). Esta propiedad de estrechez provee
una restricción geométrica significativa, indicando que las
subvariedades son localmente mínimas y no pueden defor-
marse infinitesimalmente para reducir aún más su volumen
en el espacio ambiente. Además entregamos una clasificación
completa de estas inmersiones, detallando las condiciones
bajo las cuales tales subvariedades existen entre varios pares
simétricos. Esta clasificación aclara la relación entre la es-
tructura de las banderas reales y las banderas complejas aso-
ciadas, contribuyendo a un entendimiento más profundo de
la interacción entre la geometría simpléctica y la teoría de
representaciones.
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1 Introduction

Lagrangian submanifolds in symplectic homogeneous spaces have been extensively studied, with

significant contributions to their classification in various contexts. For instance, compact symplec-

tic homogeneous manifolds have been classified in [24]. In this paper, we focus on the coadjoint

orbits of semisimple Lie groups, exploring the applications of semisimple Lie theory to symplectic

geometry, specifically in identifying Lagrangian submanifolds within adjoint orbits. Our motiva-

tion stems from the homological mirror symmetry conjecture and, in particular, from concepts

in Fukaya–Seidel categories, where objects and morphisms are generated by Lagrangian vanishing

cycles and their thimbles, exhibiting specific behaviors within symplectic fibrations (see [10] and

[12]).

The primary objective of this paper is to investigate the locally, globally, and infinitesimally tight

Lagrangian submanifolds on adjoint orbits, a concept first introduced by Y.-G. Oh in 1991 (see

[17]). Oh defined tightness for closed Lagrangian submanifolds in compact Hermitian symmetric

spaces as follows:

Definition 1.1. Let (M,ω,J) be a Hermitian symmetric space of compact type and L a closed

embedded Lagrangian submanifold of M . Then L is said to be globally tight (resp. locally

tight) if it satisfies

# (L ∩ g ⋅ L) = SB (L,Z2)

for any isometry g ∈ G (resp. sufficiently close to the identity) such that L intersects g ⋅ L trans-

versely. Here, SB (L,Z2) denotes the sum of the Z2-Betti numbers of L.

In the same work, Oh demonstrated that the standard RPn inside CPn is tight and minimizes

volume among all its Hamiltonian deformations (see [17]), linking tightness to Hamiltonian volume

minimization (see [18]). This concept is further connected to the Arnold–Givental conjecture,

which posits that the number of intersection points between a Lagrangian L and its image under

a Hamiltonian flow ϕ(L) is bounded below by the sum of its Z2-Betti numbers:

# (L ∩ ϕ(L)) ≥ ∑ bk(L;Z2).

The study of tight Lagrangian submanifolds is therefore of significant interest in symplectic geom-

etry. Oh also posed the open problem:

Problem 1.2. Classify all possible tight Lagrangian submanifolds in other Hermitian symmetric

spaces.

By [17], Oh proposed the following conjecture:
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Conjecture 1.3. Are the real forms in these spaces the only possible tight Lagrangian submani-

folds?

While Oh’s conjecture suggests that real forms may be the only possible tight Lagrangian sub-

manifolds in Hermitian symmetric spaces, our study is restricted to the case of flag manifolds.

In particular, we examine the natural immersion of real flag manifolds into their corresponding

complex flag manifolds and demonstrate that they can be characterized as infinitesimally tight La-

grangian submanifolds with respect to the Kirillov-Kostant-Souriau (KKS) symplectic form. This

characterization provides a significant geometric constraint, indicating that these submanifolds

are locally minimal and cannot be deformed infinitesimally to further reduce their volume in the

ambient space.

Furthermore, we provide a comprehensive classification of these immersions, detailing the con-

ditions under which such submanifolds exist across various symmetric pairs. This classification

elucidates the relationship between the structure of real flags and their associated complex flag

manifolds, contributing to a deeper understanding of the interplay between symplectic geometry

and representation theory.

In a similar vein, Iriyeh and Sakai classified tight Lagrangian submanifolds in S2 × S2 (see [15]),

showing that if L is a closed, embedded, tight Lagrangian surface in S2 × S2, then L must be one

of the following:

• L = {(x,−x) ∈ S2 × S2 ∶ x ∈ S2} (global tight submanifold).

• L = S1(a) × S1(b) ⊂ S2 × S2, where S1(a) is a round circle of radius 0 < a ≤ 1 (locally tight

submanifold).

This classification forms a special case of tight submanifolds in products of flag manifolds, which

were studied in [13]. There, the authors demonstrated that a product of flag manifolds FΘ1 × FΘ2

admits a Lagrangian orbit under the diagonal action (or shifted diagonal action) if and only if

Θ2 = Θ
∗
1, where Θ2 = σΘ1 with σ being the symmetry of the Dynkin diagram, given by σ = −w0,

and w0 being the longest element of the Weyl group W. Such a Lagrangian orbit is described by

the graph of

− id ∶ Ad(U)(iH) → Ad(U)(iσ(H)),

or by the graph of −Ad(m), where m ∈ U for the shifted diagonal action.

A significant contribution of [13] was the introduction of the concept of infinitesimally tight sub-

manifolds. The authors proved that Lagrangian orbits resulting from the diagonal (or shifted

diagonal) action are infinitesimally tight. This notion is formally defined as follows:
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Definition 1.4. Let L be a submanifold of M = G/H. An element X ∈ g = Lie(G) is called

transversal to L if it satisfies the following two conditions:

(1) For any x ∈ L, if X̃(x) ∈ TxL, then X̃(x) = 0.

(2) The set

fL(X) = {x ∈ L ∶ 0 = X̃(x) ∈ TxL}

is finite.

That is, X̃ is tangent to L only at finitely many points where it vanishes.

A Lagrangian submanifold L in M = G/H is called infinitesimally tight if

# (fL(X)) = SB (L,Z2)

for any X ∈ g such that X̃ is transversal to L. Moreover, [13] presents the following theorem:

Theorem 1.5. Let M = G/H be a homogeneous space with a G-invariant symplectic form ω. Then

a Lagrangian submanifold L ⊂M is infinitesimally tight if and only if it is locally tight.

As discussed in [6] and [13], isotropic submanifolds can be characterized through the moment

map of a Hamiltonian action. In particular, Gorodski and Podestà [6] classified compact tight

Lagrangian submanifolds in irreducible compact homogeneous Kähler manifolds that have the Z2-

homology of a sphere. This classification is closely related to our study, as it provides structural

constraints on the existence of tight Lagrangian submanifolds within compact homogeneous spaces.

Our work builds upon these ideas by characterizing the complex flag manifolds that admit real

flag manifolds as Lagrangian submanifolds.

To establish this characterization, we equip the complex flag manifolds with the Kirillov-Kostant-

Souriau (KKS) symplectic form and consider the compact orbits of the real forms of the associated

complex Lie group. This approach aligns with recent developments related to the Ph.D. thesis of

Báez, where the author studied Lagrangian submanifolds of adjoint semisimple orbits. The results

from this thesis are directly related to the findings presented in this paper, further reinforcing the

connection between Lagrangian submanifolds and the geometry of adjoint orbits in semisimple Lie

theory.

Regarding the work of Gorodski and Podestà [6], although our conclusions share similarities, the

methodologies differ significantly. While their approach focuses on homogeneous Kähler manifolds

with topological constraints on homology, our classification provides a systematic study of complex

flag manifolds and their real forms that possess compact Lagrangian orbits. This classification is

explicitly detailed in Table 1 at the end of Subsection 3.1, with a case-by-case proof given in

Appendix A.
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Specifically, in Section 4, we prove that real flag manifolds can be seen as infinitesimally tight

submanifolds of the corresponding complex flag manifolds. This result establishes a direct link

between the structure of flag manifolds, symplectic geometry, and representation theory, offering

a broader perspective on the classification of Lagrangian orbits within homogeneous symplectic

spaces.

2 Flag manifolds

Flag manifolds play a central role in the study of Lie groups and their geometric structures.

However, their treatment varies significantly depending on whether they are considered within

the framework of complex semisimple Lie groups or real semisimple Lie groups. This distinction

is crucial, as notation and conventions often diverge in the literature, with most works focusing

exclusively on either the real or the complex setting. To provide a unified perspective, this section

introduces both real and complex flag manifolds, along with fundamental concepts such as Weyl

chambers and Weyl groups. The goal is to establish a consistent notation and clarify potential

ambiguities, ensuring that the reader can navigate seamlessly through subsequent discussions.

There exist several equivalent definitions of flag manifolds, and they are sometimes referred to

as generalized flag manifolds. This terminology appears in various sources, with one of the most

well-known references being Alekseevsky’s work (see [1]), where these spaces are studied from a

broader geometric perspective. A fundamental definition, which serves as a starting point for our

discussion, is the following:

Definition 2.1. Let g be a semisimple non-compact Lie algebra, and let G be a connected Lie

group with Lie algebra g. The flag manifold FH is the homogeneous space

FH = G/PH ,

where PH is a parabolic subgroup of G, determined by an element H ∈ g, which can be chosen

within the closure of a positive Weyl chamber of g.

The construction of the parabolic subgroup PH depends on whether g is a real or complex Lie alge-

bra. In what follows, we shall present these constructions using fundamental tools from semisimple

Lie theory. Although different approaches provide valuable insights, in this work, we adopt the

perspective that complex flag manifolds are most naturally understood as adjoint orbits of compact

semi-simple Lie groups. This viewpoint not only highlights their intrinsic geometric structure but

also establishes a direct connection with symplectic geometry and representation theory, which will

be further explored in the subsequent discussion.
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To avoid confusion, let us denote the following:

• The notation gC will be used to explicitly indicate that g is considered as a complex Lie

algebra, and similarly, GC will denote a complex Lie group when necessary. When this

notation is omitted, g and G should be understood in a general sense or as real structures,

depending on the context.

• The notation gC denotes the complexification of the Lie algebra g, which in this case is a real

Lie algebra.

For a more detailed study of these flag manifolds, we recommend referring to [1–3,19]. Additionally,

for further geometric insights, see [4, 8].

2.1 Complex flag manifolds

Let gC be a semisimple complex Lie algebra, and let h be a Cartan subalgebra of gC. We define

the following:

• ΠC is a root system, where for each α ∈ ΠC, there exists an element Hα ∈ h
C such that

α(H) = ⟨Hα,H⟩, ∀H ∈ hC,

where ⟨⋅, ⋅⟩ denotes the Cartan–Killing form of gC.

• ΣC is a simple root system, such that Π+C denotes the set of positive roots in ΠC, and

{Hα ∶ α ∈ ΣC} forms a basis of hC.

• a+ is the corresponding positive Weyl chamber, given by

a+ = {H ∈ hC ∶ α(H) > 0, ∀α ∈ ΣC}.

Thus, we have the root space decomposition:

gC = hC ⊕ ∑
α∈ΠC

gCα,

where each root space is given by

gCα = {X ∈ g
C
∶ [H,X] = α(H) ⋅X, ∀H ∈ hC}.



530 J. Báez & L. A. B. San Martin CUBO
27, 3 (2025)

The Borel subalgebra b, which is the maximal solvable subalgebra, is defined as

b = hC ⊕ ∑
α∈Π+C

gCα.

A subalgebra p of gC is called parabolic if it contains a Borel subalgebra. The parabolic subalgebra

associated with an element H is defined as

pH = h
C
⊕ ∑

α(H)≥0

gCα. (2.1)

Remark 2.2. In some sources, the parabolic subalgebra defined in Equation (2.1) is denoted by

pΘH
, where ΘH = {α ∈ ΣC ∶ α(H) = 0}.

Let GC be a connected Lie group with Lie algebra gC. The parabolic subgroup PH is the normalizer

of pH in GC, given by

PH = {g ∈ G
C
∶ Ad(g) ⋅ pH = pH}.

The complex flag manifold associated with H is then defined as the quotient space:

FH = G
C
/PH .

Furthermore, we will see that the complex flag manifold can be seen as an adjoint orbit of a

compact Lie group. For instance, choosing a Weyl basis given by Hα for α ∈ ΣC and Xα ∈ g
C
α for

α ∈ ΠC, we have:

• [Xα,X−α] =Hα,

• [Xα,Xβ] = mα,βXα+β with mα,β ∈ R, where mα,β = 0 if α + β is not a root and mα,β =

−m−α,−β .

Defining Aα =Xα −X−α and Sα = i(Xα +X−α), we obtain the compact real form:

u = spanR{iHα,Aα, Sα ∶ α ∈ Π
+
C}.

Let U = expu be a compact real form of GC, and define

UH = PH ∩U.
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The adjoint action of U is transitive on FH with isotropy subgroup UH at H, yielding

FH ≃ U/UH ≃ Ad(U) ⋅H.

Additionally, denoting bH = 1 ⋅UH as the origin of FH , its tangent space at bH is given by

TbHFH = spanR{Aα, Sα ∶ α(H) > 0} = ∑
α(H)>0

uα,

where uα = (g
C
α ⊕ gC−α) ∩ u = spanR{Aα, Sα}.

Remark 2.3. Given a complex semisimple Lie algebra gC, a real Lie algebra g0 is called a real

form of gC if its complexification satisfies g0 ⊗C = gC. A real form of gC can be either compact or

non-compact. Additionally, all compact semisimple Lie algebras are real.

2.2 Real flag manifolds

Let g be a semisimple, non-compact real Lie algebra. To construct real flag manifolds, we introduce

the following fundamental elements of real semisimple Lie theory:

• Let θ be a Cartan involution, that is, an involutive automorphism such that the associated

bilinear form

Bθ(X,Y ) = −⟨X,θY ⟩, X,Y ∈ g

defines an inner product on g, where ⟨⋅, ⋅⟩ denotes the Cartan–Killing form of g. The Cartan

involution induces a Cartan decomposition

g = k⊕ s,

where

k = {X ∈ g ∶ θX =X}, and s = {Y ∈ g ∶ θY = −Y }.

The subspaces k and s are orthogonal with respect to both Bθ and the Cartan–Killing form.

Notably, k is often referred to as the compact component of the Cartan decomposition,

although it is not necessarily compact. Furthermore, we define the maps κ ∶ g → k and

σ ∶ g→ s, given by

κ(X) =
X + θX

2
, and σ(X) =

X − θX

2
,

which correspond to the parallel projections onto k and s, respectively.
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• Let a ⊂ s be a maximal Abelian subalgebra. Then, there exists a Cartan subalgebra h of g

that contains a. Given a pair (θ,a), we denote by ΠR the set of roots associated with (θ,a),

where each root is a linear functional α ∶ a→ R satisfying

Bθ(Hα,H) = α(H), ∀H ∈ a.

These roots can be interpreted as restrictions of the roots of hC, the Cartan subalgebra of

the complexification of g, denoted as gC.

• The Weyl group associated with a is the finitely generated group of reflections across the

hyperplanes defined by α = 0 in a, for α in the root system of a. The generators of the Weyl

group corresponding to these reflections are called simple reflections.

• The Weyl chambers associated with (θ,a) are the connected components of

{H ∈ a ∶ α(H) ≠ 0, ∀α ∈ ΠR}.

Selecting one of these chambers as the positive Weyl chamber a+, we define the set of positive

roots as

Π+R = {α ∈ ΠR ∶ α∣a+ > 0}.

Consequently, we define

n = ∑
α∈Π+R

gα, and n− = ∑
α∈Π+R

g−α,

where θgα = g−α and θn = n−. Furthermore, there exists a simple root system ΣR associated

with a+, such that {Hα ∈ a ∶ α ∈ ΣR} forms a basis of a.

Moreover, we obtain the Bθ-orthogonal decomposition

s = a⊕ σ(n).

The triplet (θ,a,a+) is called an admissible triple of g, and it gives rise to the decomposition

g = k⊕ a⊕ n,

known as the Iwasawa decomposition. Let G be a connected Lie group with Lie algebra g. If K, A,

and N are the connected subgroups generated by k, a, and n, respectively, then G is diffeomorphic

to K ×A ×N . This leads to the global Iwasawa decomposition:

G =KAN.
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For H ∈ cl(a+), we define

n+H = ∑
α(H)>0

gα, and n−H = ∑
α(H)<0

gα.

Remark 2.4. If H ∈ a+, i.e., H is a regular element, then n = n+H and n− = n−H . In some literature,

n+H is denoted by n+Θ, where Θ = {α ∈ ΣR ∶ α(H) = 0}.

Given an admissible triple (θ,a,a+), the parabolic subalgebra associated with H ∈ cl(a+) is

pH = kH ⊕ a⊕ n.

Let G be a connected Lie group with Lie algebra g. The parabolic subgroup associated with H is

defined as the normalizer of pH in G. By the global Iwasawa decomposition of G, we obtain:

KH = {k ∈K ∶ Ad(k)∣aH
= idaH

}

where aH = a⊖a(H) and a(H) be a subalgebra generated by {Hα ∶ α(H) ≠ 0}. Then, the parabolic

subgroup PH is given by:

PH =KH ⋅A ⋅N.

Consequently, we have the quotient structure:

G/PH =
K ⋅A ⋅N

KH ⋅A ⋅N
≃K/KH ,

and it follows that:

K/KH ≃ Ad(K) ⋅H

which represents the K-adjoint orbit passing through H, commonly known as the real flag man-

ifold.

Remark 2.5. Given H̃ ∈ s, we have that Ad(K)⋅H̃∩cl(a+) ≠ ∅. Since the action of K is transitive,

we can choose an element H ∈ cl(a+) which determines the same manifold.

Remark 2.6. We denote by FH the flag manifold passing through H ∈ cl(a+) when there is no

ambiguity regarding the compact group acting on it. Otherwise, we will specify it as an adjoint

orbit. To maintain clarity, we will represent flag manifolds in terms of the adjoint action (as the

orbit of U in the complex case and K in the real case).
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3 Lagrangian immersion of real flags on complex flag

In this section, we investigate the conditions under which a given real flag manifold can be realized

as a Lagrangian submanifold within a complex flag manifold. Specifically, given an adjoint orbit

Ad(K) ⋅H corresponding to a real flag manifold, we determine in which complex flag manifolds

it can be immersed as a Lagrangian submanifold. Importantly, this classification depends on the

choice of H, which we analyze using Satake diagrams, as well as the structural properties of K.

Contrary to a universal embedding, our approach highlights the interplay between the choice of H

and the ambient complex flag manifold.

As discussed in [3], given a compact semisimple Lie group U with Lie algebra u, the adjoint orbits

of U in u correspond to the flag manifolds of its complexified Lie group UC, whose Lie algebra is

uC. These adjoint orbits naturally inherit a symplectic structure, providing a geometric foundation

for our analysis.

The Kostant–Kirillov–Souriau (KKS) symplectic form on an adjoint orbit Ad(U) ⋅H is given by

ωx (X̃(x), Ỹ (x)) = ⟨x, [X,Y ]⟩u, X,Y ∈ u, (3.1)

where ⟨⋅, ⋅⟩u denotes the Cartan–Killing form on u, and X̃ = ad(X) represents the Hamiltonian

vector field associated with the Hamiltonian function HX(x) = ⟨x,X⟩u. As a consequence, the

moment map µ of the U -adjoint action is simply the identity map, which is inherently equivariant.

To identify specific isotropic submanifolds within Ad(U) ⋅H, we rely on the following key result:

Proposition 3.1. Let (M,ω) be a connected symplectic manifold equipped with a Hamiltonian

action of a Lie group G, given by G ×M → M , along with an equivariant moment map µ. Let

L ⊂ G be a Lie subgroup.

Then, the orbit L ⋅ x is isotropic if and only if µ(x) belongs to the annihilator (l′)0 of the derived

algebra l′ of l.

This proposition was established in [13] and [14] using distinct methodologies.

3.1 Lagrangian immersion of real flags

Let U be a compact semisimple Lie group with Lie algebra u, and let k ⊂ u be a Lie subalgebra.

The pair (u, k) is called a symmetric pair if

[k, k⊥] ⊂ k⊥, and [k⊥, k⊥] ⊂ k,

where ⊥ denotes the orthogonal complement with respect to the Cartan–Killing form on u.
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For any symmetric pair (u, k), if we define K = ⟨exp k⟩, then the quotient space U/K forms a

symmetric space. The dual symmetric pair is given by (g, k), where g is a non-compact semisimple

Lie algebra that serves as the real form of uC and admits a Cartan decomposition

g = k⊕ s, where s = ik⊥ ⊂ uC.

By construction, the orbits of the K-isotropy representation on s (or equivalently on k⊥) correspond

to the flag manifolds of g.

Given H ∈ k⊥, the Lagrangian immersion of real flag manifolds into their corresponding complex

flag manifolds is constructed as follows: Let a ⊂ s be a maximal abelian subalgebra. Then, there

exists a Cartan subalgebra h of g such that a ⊂ h and hC is a Cartan subalgebra of gC. Consequently,

for H ∈ a, we obtain

K/KH = Ad(K) ⋅H ↪ Ad(U) ⋅ iH = U/UH = FH . (3.2)

Thus, the flag manifolds of g are determined by the adjoint action of K on H and are immersed

in the flag manifolds of gC (complexification), which are determined by the adjoint action of U on

iH. Moreover, since u is compact, the connected component of the identity of k′⊥ corresponds to

the orthogonal complement of k′ with respect to the invariant scalar product on u. Consequently,

we arrive at the following proposition:

Proposition 3.2. Given a symmetric pair (u, k) and an element H ∈ a ⊂ ik⊥, the real flag manifold

Ad(K) ⋅H is a Lagrangian submanifold of FH with respect to the Kirillov-Kostant-Souriau (KKS)

symplectic form.

Proof. Since k′ ⊂ k, then k⊥ ⊂ (k′)
⊥ and Ad(K) ⋅H ⊂ k⊥ = is, then Ad(K) ⋅H ∩ (k′)

⊥
≠ ∅ and by

Proposition 3.1, the adjoint K-orbit (real flag) is an isotropic submanifold.

Furthermore, if bH = 1 ⋅K, we have that

dim (TbH Ad(K) ⋅H) = dim
⎛

⎝
∑

α(H)<0

gα
⎞

⎠
=#{α ∈ ΠC ∶ α(H) < 0} ,

and as the root spaces of gC are 1-dimensional complex spaces (i.e., 2-dimensional real spaces),

then

2dimR (Ad(K) ⋅H) = dimR(FH).

Hence Ad(K) ⋅H is a Lagrangian submanifold of FH .
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Remark 3.3. Intuitively, one can observe that each complex root space effectively doubles its

dimension when considered as a real vector space. However, this identification is purely at the

level of vector spaces and does not yet take into account the underlying Lie algebraic or geometric

structure. In [16, 21, 23], the authors provide a detailed exposition of this vector space approach,

emphasizing how the real and complex structures relate in the context of flag manifolds.

Our focus now shifts to identifying the complex flag manifolds of gC (complexification of g real

non-compact semi-simple) that admit a real flag manifold, generated by the action of K = ⟨exp k⟩

for the symmetric pair (u, k), as a Lagrangian submanifold. Consider a maximal abelian subalgebra

a ⊂ s and a Cartan subalgebra h of g such that a ⊂ h. Let ΠC be the set of roots of hC, where the

roots of a correspond to their restrictions on hC.

If θ is a Cartan involution associated with the Cartan decomposition g = k⊕ s, then there exists an

involutive extension of θ to gC, which we also denote by θ. As shown in [21], the restriction of ΠC

to a is given by

P =
1

2
(1 − θ∗) , where θ∗α = α ○ θ.

Define Πim ⊂ ΠC as the set of imaginary roots, where α ∈ Πim if and only if P (α) = 0. Letting

Πco = ΠC ∖Πim, the set of restricted roots is given by P (Πco).

Considering an appropriate ordering (such as the lexicographic order on a∗), let Σim denote the

system of imaginary simple roots, and let Σco be its complement. The projection of Σco onto a∗

forms a system of restricted roots Σ, with a+ denoting the positive Weyl chamber of g determined

by Σ.

For H ∈ cl (a+), define

ΘH = {β ∈ Σ ∶ β(H) = 0} ⊂ Σ.

Next, define Θ̃H ⊂ ΣC by

Θ̃H = P
−1
(ΘH) ∪Σim, (3.3)

which is determined by the Satake diagram of g (see [16,21]).

Remark 3.4. In general, we select H ∈ cl (a+) because for any other choice H ′ ∈ a such that the

orbits remain the same, there exists a Weyl conjugation σ satisfying σ ⋅H =H ′. Consequently, the

associated sets of admissible roots remain unchanged, i.e., Θ̃H = Θ̃H′ .
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Proposition 3.5. Θ̃H = {α ∈ ΣC ∶ α(H) = 0}.

Proof. If H ∈ a, then for all α ∈ ΣC

θ∗α(H) = α ○ θ(H) = −α(H), (3.4)

because θ∣s = − id. Also, if α ∈ Σim, then θ∗α = α, and by (3.4) we have that α(H) = 0, therefore it is

enough to see for roots in Σco. If α ∈ P −1(ΘH), then (α−θ∗α)(H) = 0 implies that α(H) = θ∗α(H),

and by (3.4) we have that α(H) = 0. Thus Θ̃H ⊆ {α ∈ ΣC ∶ α(H) = 0}. Conversely, if α ∈ Σco such

that α(H) = 0, then θ∗α(H) = −α(H) = 0, thus P (α)(H) = 0 and implies that P (α) ∈ ΘH , i.e.

α ∈ P −1(ΘH).

Therefore,

Theorem 3.6. Given a symmetric pair (u, k), the complex flags of uC of type Θ̃ ⊂ ΣC admit, as

Lagrangian submanifold, the real flag of g = k⊕ ik⊥ of type Θ ⊂ Σ if and only if

Θ̃ = P −1(Θ) ∪Σim.

That is, Θ̃ is determined by the Satake diagram of g.

In particular, we can conclude

Corollary 3.7. A maximal flag F of gC admits a real flag Ad(K) ⋅H as Lagrangian submanifold

if and only if Σim = ∅ and ∅ = ΘH .

Example 3.8. Let u = su(7), k = s(u(2) ⊕ u(5)) and g = su(2,5) that determine the symmetric

pair (u, k) and its respective dual symmetric pair (g, k). The Satake diagram of su(2,5) is

α1 α2 α3

α4α5α6

By Theorem 3.6, the flags of type Θ̃ ⊂ ΣC that admit as Lagrangian submanifold a real flag of type

Θ ⊂ Σ = {β1 = P (α1) = P (α6), β2 = P (α2) = P (α5)} are

• If Θ0 = ∅, then Θ̃0 = Σim = {α3, α4}.

• If Θ1 = {β1}, then Θ̃1 = {α1, α3, α4, α6}.

• If Θ2 = {β2}, then Θ̃2 = {α2, α3, α4, α5}.



538 J. Báez & L. A. B. San Martin CUBO
27, 3 (2025)

Analogously, this is equivalent to that given in the Table 1, for n = 7:

• Θ̃0 = ΣC ∖ {α1, α2, αn−2, αn−1},

• Θ̃1 = ΣC ∖ {α2, αn−2},

• Θ̃2 = ΣC ∖ {α1, αn−1}.

Hence, using the Satake diagrams we can determine which are the complex flags of type Θ̃ ⊂ ΣC,

for which there exists Θ such that Theorem 3.6 is satisfied.

Corollary 3.9. The complex flags of type Θ̃ ⊂ ΣC admits as Lagrangian submanifold a real flag

given by the K-adjoint orbit if and only if Θ̃ appears in Table 1.

Remark 3.10. Corollary 3.9 states that given a complex flag manifold FH associated with the

semisimple complex Lie algebra gC, we can determine which real flag manifolds of g0 are Lagrangian

submanifolds of FH by analyzing the Satake diagram of g0. Here, g0 denotes a real form of gC.

The proof of this result is given in the following subsection. For that we will use a convenient

notation of partitioning an integer, that is, we define ♭(n) for n ∈ N, as the set of ordered l-tuples

of integers (n1, . . . , nl) such that 0 < n1 < ⋅ ⋅ ⋅ < nl ≤ n, for example:

♭(3) = {(1), (2), (3), (1,2), (1,3), (2,3), (1,2,3)}.

Using this notation, we build the Table 1. The case-by-case analysis used to construct Table 1 is

detailed in Appendix A.

4 Infinitesimally tight

In this section, we establish the main result of this paper. Specifically, we demonstrate that the

Lagrangian submanifolds listed in Table 1 are infinitesimally tight. To achieve this, we compute

the sum of the Z2-Betti numbers of the real flag manifolds and identify the transversal elements.

To lay the groundwork for our proof, we first provide the necessary definitions to understand

Schubert cells, which play a fundamental role in computing the homology of real flag manifolds.

This exposition is based on [5] and [9].

Let g be a semisimple non-compact real Lie algebra, and let W be the Weyl group associated with

a maximal abelian subalgebra a ⊂ g, with Σ denoting the corresponding system of simple roots.
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Table 1: Complex flags that admit a Lagrangian immersion of the real flag determined by the
action of K = exp k.
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• For Θ ⊆ Σ, the subgroup WΘ of W is generated by the roots in Θ. This subgroup acts

transitively on the cosets of W.

• Given Θ ⊆ Σ, the Bruhat decomposition of the real flag manifold FΘ = G/PΘ expresses it

as the disjoint union of N -orbits, where N is determined by the Iwasawa decomposition of

PΘ =KΘAN . That is,

FΘ = ∐
w∈W/WΘ

N ⋅wbΘ,

where the equivalence relation N ⋅w1bΘ = N ⋅w2bΘ if w1 ⋅ WΘ = w2 ⋅ WΘ holds.

• Each N -orbit passing through w ∈ W is diffeomorphic to a Euclidean space, and the orbit

N ⋅wbΘ is referred to as a Bruhat cell.

• Every Bruhat cell is open and dense in FΘ.

• The Schubert cell associated with w ∈ W/WΘ is denoted by SΘ
w and defined as

SΘ
w = cl(N ⋅wbΘ), w ∈ W/WΘ.

Using the Schubert cells SΘ
w , the authors of [20] introduced a boundary map ∂, which was employed

to compute the homology of the real flag manifold FΘ. In particular, for any H ∈ cl(a+), there

exists a subset ΘH ⊂ Σ such that the Z2-homology of FΘH
= Ad(K) ⋅H is freely generated by the

Schubert cells SΘH
w , where w ∈ W/WΘH

.

Therefore,

SB (Ad(K) ⋅H,Z2) =# (W/WΘH
) , (4.1)

That is, the cardinality of the quotient W/WΘ.

Since Ad(K) ⋅H ⊆ s = ik⊥, for x ∈ Ad(K) ⋅H we have:

Tx (Ad(K) ⋅H) = {ad(A)(x) ∶ A ∈ k} .

Then,

• If X ∈ k⊥, then X̃ = ad(X) is a Hamiltonian field of the function HX = ⟨X,x⟩. Thus the

singularities of X are the singularities of HX , and their number is finite, if and only if X is

regular.

Therefore, the transversal elements are the regular elements X, and they satisfy

# (fAd(K)⋅H(X)) =# (W/WΘH
) .

• If Y ∈ k, then Ỹ is tangent, thus it cannot be transversal.
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• If Z = X + Y for X ∈ k⊥ and Y ∈ k, then Z̃(x) ∉ TxAd(K) ⋅H if X̃(x) ≠ 0, so for Z to have

singularity in x we need that X̃(x) = Ỹ (x) = 0 in a finite quantity. But this only happens

for X regular, such that [X,Y ] = 0. Thus:

# (fAd(K)⋅H(Z)) =# (W/WΘH
) .

Consequently,

Theorem 4.1. The real flags are infinitesimally tight submanifolds of their corresponding complex

flag manifolds, as listed in Table 1.

As a result of Theorem 1.5, we have:

Corollary 4.2. The real flags are locally tight submanifolds of their corresponding complex flag

manifolds.

A Appendix

In this appendix, we analyze each Satake diagram case by case to identify all complex flag manifolds

that permit the Lagrangian immersion of the corresponding real flag, as determined by the possible

symmetric pairs. This analysis culminates in the construction of Table 1, where for the classical

cases AI, CI, G2, F4I, E6I, E7I, and E8I, all possible sets Θ̃ ⊂ ΣC are admissible.

Type AII

In this case, we have g = sl(n,H), with gC = sl(2n,C). The Satake diagram is represented as:

α1 αn−1αn−3 αn−2α3α2

. . .

Here, Σim = {α2j−1 ∶ 1 ≤ j ≤ n} and Σ = {βj = P (α2j) ∶ 1 ≤ j ≤ n − 1}. The sets Θ̃ that satisfy the

Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {α2s1 , . . . , α2sl ∶ (s1, . . . , sl) ∈ ♭ (n − 1)}. (A.1)
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Type AIII

For g = su(k,n − k)

• If k < n − k, the Satake diagram is

α1 α2 αk αk+1

αn−k αn−k−1αn−2αn−1

. . .

. . .

⋮

As Σim = {αj ∶ k < j < n − k} and Σ = {βj = P (αj) = P (αn−j) ∶ 1 ≤ j ≤ k}. The sets Θ̃ that

satisfy the Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {αs1 , . . . , αsl , αn−sl , . . . , αn−s1 ∶ (s1, . . . , sl) ∈ ♭ (k)}. (A.2)

• If k = n − k, the Satake diagram is

α1 α2 αk−1

αk+1αn−2αn−1

αk

. . .

. . .

As Σim = ∅ and Σ = {βj = P (αj) = P (αn−j), βk = P (αk) ∶ 1 ≤ j ≤ k − 1}. The sets Θ̃ that

satisfy the Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {αs1 , . . . , αsl , αn−sl , . . . , αn−s1 ∶ (s1, . . . , sl) ∈ ♭ (k − 1)}, (A.3)

or

Θ̃ = ΣC ∖ {αs1 , . . . , αsl , αk, αn−sl , . . . , αn−s1 ∶ (s1, . . . , sl) ∈ ♭ (k − 1)}. (A.4)
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Type B

For g = so(k,2n + 1 − k), then the Satake diagram is

α1 αn−1αn−2αk+1αk

. . . . . .

As Σim = {αj ∶ k < j ≤ n} and Σ = {βj = P (αj) ∶ 1 ≤ j ≤ k}. If k = n then g is normal, and the sets

Θ̃ that satisfy the Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {αs1 , . . . , αsl ∶ (s1, . . . , sl) ∈ ♭ (k)}. (A.5)

Type CII

For g = sp(k,n − k).

• If k < n − k, the Satake diagram is

α3α2α1 αnαn−1α2k+1α2k

. . . . . .

As Σim = {α2j−1, αq ∶ 1 ≤ j ≤ k, q > 2k} and Σ = {βj = P (α2j) ∶ 1 ≤ j ≤ k}. The sets Θ̃ that

satisfy the Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {α2s1 , . . . , α2sl ∶ (s1, . . . , sl) ∈ ♭ (k)}. (A.6)

• If n = 2m and k =m, the Satake diagram is

α3α2α1 αnαn−1αn−2

. . .

As Σim = {α2j−1 ∶ 1 ≤ j ≤m} and Σ = {βj = P (α2j) ∶ 1 ≤ j ≤m}. The sets Θ̃ that satisfy the

Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {α2s1 , . . . , α2sl ∶ (s1, . . . , sl) ∈ ♭ (k)}. (A.7)
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Type DI

For g = so(k,2n − k).

• If k = n then g is a normal form.

• If k < n − 1 then the Satake diagram is

αn−2αk αk+1α1

. . . . . .

αn

αn−1

As Σim = {αj ∶ j > k} and Σ = {βj = P (αj) ∶ 1 ≤ j ≤ k}. The sets Θ̃ that satisfy the Theorem

3.6 are given by:

Θ̃ = ΣC ∖ {αs1 , . . . , αsl ∶ (s1, . . . , sl) ∈ ♭ (k)}. (A.8)

• If k = n − 1 then the Satake diagram is

αk−1

α2α1 αk−2

. . .

αn

αk

As Σim = ∅ and Σ = {βj = P (αj), βk = P (αk) = P (αn) ∶ 1 ≤ j < k}. The sets Θ̃ that satisfy

the Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {αs1 , . . . , αsl ∶ (s1, . . . , sl) ∈ ♭ (k − 1)}, (A.9)

or

Θ̃ = ΣC ∖ {αs1 , . . . , αsl , αk, αn ∶ (s1, . . . , sl) ∈ ♭ (k − 1)}. (A.10)
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Type DII

For g = so∗(2n).

• If n is even, the Satake diagram is

αn−2

α3α2α1 αn−3

. . .

αn

αn−1

As Σim = {αj ∶ j is odd} and Σ = {βj = P (α2j) ∶ 1 ≤ j ≤ n}. The sets Θ̃ that satisfy the

Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {α2s1 , . . . , α2sl ∶ (s1, . . . , sl) ∈ ♭ (k)}. (A.11)

• If n is odd, the Satake diagram is

αn−2

α3α2α1 αn−3

. . .

αn

αn−1

As Σim = {αj ∶ j is odd and j < n} and Σ = {βj = P (α2j), βk = P (αn−1) = P (αn) ∶ 1 ≤ j ≤

k, k = (n − 1)/2}. The sets Θ̃ that satisfy the Theorem 3.6 are given by:

Θ̃ = ΣC ∖ {α2s1 , . . . , α2sl ∶ (s1, . . . , sl) ∈ ♭ (
n − 3

2
)} , (A.12)

or

Θ̃ = ΣC ∖ {α2s1 , . . . , α2sl , αn−1, αn ∶ (s1, . . . , sl) ∈ ♭ (
n − 3

2
)} . (A.13)
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Exceptional cases

Type F4II

For g = F −204 , then the Satake diagram is

α1 α4α3α2

Therefore the only non-trivial possibility of Θ̃ that satisfy the Theorem 3.6 is

Θ̃ = {α1, α2, α3} = Σim. (A.14)

Type E6II

For g = E2
6 , then the Satake diagram is

α6 α3

α2

α4

α1

α5

Therefore the non-trivial possibilities for Θ̃ that satisfy Theorem 3.6 are:

• Θ̃ = ∅,

• Θ̃ = {α6},

• Θ̃ = {α3},

• Θ̃ = {α2, α4},

• Θ̃ = {α1, α5},

• Θ̃ = {α3, α6},

• Θ̃ = {α2, α4, α6},

• Θ̃ = {α1, α5, α6},

• Θ̃ = {α2, α3, α4},

• Θ̃ = {α1, α3, α5},

• Θ̃ = {α1, α2, α4, α5},

• Θ̃ = {α2, α3, α4, α6},

• Θ̃ = {α1, α3, α5, α6},

• Θ̃ = {α1, α2, α4, α5, α6},

• Θ̃ = {α1, α2, α3, α4, α5}.
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Type E6III

For g = E−146 , then the Satake diagram is

α6 α3

α2

α4

α1

α5

Therefore the non-trivial possibilities for Θ̃ that satisfy the Theorem 3.6 are:

• Θ̃ = {α2, α3α4},

• Θ̃ = {α2, α3, α4, α6},

• Θ̃ = {α1, α2, α3, α4, α5 }.

Type E6IV

For g = E−266 , then the Satake diagram is

α1 α2 α5α4α3

α6

Therefore the non-trivial possibilities for Θ̃ that satisfy the Theorem 3.6 are:

• Θ̃ = {α2, α3α4, α6},

• Θ̃ = {α1, α2, α3, α4, α6},

• Θ̃ = {α2, α3, α4, α5, α6 }.

Type E7II

For g = E−57 , then the Satake diagram is

α2 α3 α6α5α4

α7

α1

Therefore the non-trivial possibilities for Θ̃ that satisfy the Theorem 3.6 are:
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• Θ̃ = {α1, α3, α7},

• Θ̃ = {α1, α2, α3, α7},

• Θ̃ = {α1, α3, α6, α7},

• Θ̃ = {α1, α3, α4, α7},

• Θ̃ = {α1, α3, α5, α7},

• Θ̃ = {α1, α2, α3, α4, α7},

• Θ̃ = {α1, α2, α3, α5, α7},

• Θ̃ = {α1, α2, α3, α6, α7},

• Θ̃ = {α1, α3, α4, α5, α7}.

• Θ̃ = {α1, α3, α4, α6, α7},

• Θ̃ = {α1, α3, α5, α6, α7},

• Θ̃ = {α1, α2, α3, α4, α5, α7},

• Θ̃ = {α1, α2, α3, α4, α6, α7},

• Θ̃ = {α1, α3, α4, α5, α6, α7},

• Θ̃ = {α1, α2, α3, α5, α6, α7}.

Type E7III

For g = E−257 , then the Satake diagram is

α2 α3 α6α5α4

α7

α1

Therefore the non-trivial possibilities for Θ̃ that satisfy the Theorem 3.6 are:

• Θ̃ = {α3, α4, α5, α7},

• Θ̃ = {α1, α3, α4, α5, α7},

• Θ̃ = {α2, α3, α4, α5, α7},

• Θ̃ = {α3, α4, α5, α6, α7},

• Θ̃ = {α1, α2, α3, α4, α5, α7},

• Θ̃ = {α1, α3, α4, α5, α6, α7},

• Θ̃ = {α2, α3, α4, α5, α6, α7}.

Type E8II

For g = E−248 , then the Satake diagram is

α3 α4 α7α6α5

α8

α2α1

Therefore the non-trivial possibilities for Θ̃ that satisfy the Theorem 3.6 are:
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• Θ̃ = {α4, α5, α6, α8},

• Θ̃ = {α1, α4, α5, α6, α8},

• Θ̃ = {α2, α4, α5, α6, α8},

• Θ̃ = {α3, α4, α5, α6, α8},

• Θ̃ = {α4, α5, α6, α7, α8},

• Θ̃ = {α1, α2, α4, α5, α6, α8},

• Θ̃ = {α1, α3, α4, α5, α6, α8},

• Θ̃ = {α2, α3, α4, α5, α6, α8},

• Θ̃ = {α2, α4, α5, α6, α7, α8},

• Θ̃ = {α1, α4, α5, α6, α7, α8},

• Θ̃ = {α3, α4, α5, α6, α7, α8},

• Θ̃ = {α1, α2, α3, α4, α5, α6, α8},

• Θ̃ = {α1, α2, α4, α5, α6, α7, α8},

• Θ̃ = {α1, α3, α4, α5, α6, α7, α8},

• Θ̃ = {α2, α3, α4, α5, α6, α7, α8}.
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