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ABSTRACT

It is well known that every cubic polynomial with complex
coefficients has three not necessarily distinct complex zeros.
In this paper, zeros of cubic polynomials over complex zeons
are considered. In particular, a monic cubic polynomial with
zeon coefficients may have three spectrally simple zeros, un-
countably many zeros, or no zeros at all. A classification of
zeros is developed based on an extension of the cubic discrim-
inant to zeon polynomials. In indeterminate cases, sufficient
conditions are provided for existence of spectrally nonsim-
ple zeon zeros. We also show that when considering zeros of
cubic polynomials over the finite-dimensional complex zeon

algebra C32, there are no indeterminate cases.
RESUMEN

Es bien sabido que todo polinomio cubico con coeficientes
complejos tiene tres ceros complejos no necesariamente dis-
tintos. En este articulo consideramos los ceros de polinomios
cibicos sobre los complejos zeones. En particular, un poli-
nomio ciibico moénico con coeficientes zeones puede tener tres
ceros espectralmente simples, una cantidad no numerable
de ceros, o no tener ceros. Desarrollamos una clasificacién
de ceros en base a una extension del discriminante ctbico
a polinomios zeones. En casos indeterminados, entregamos
condiciones suficientes para la existencia de ceros zeones es-
pectralmente no simples. También mostramos que cuando
consideramos ceros de polinomios cubicos sobre el algebra
de complejos zeones finito-dimensional C33, no hay casos in-

determinados.
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1 Introduction

The n-particle (real) zeon algebra is a commutative R-algebra generated by a fixed collection
{¢giy 1 £ < n} and the scalar identity 1 = (5, whose generators satisfy the zeon commutation
relations

20y Cry 1 F I

otherwise.

CyCiy + Syl =

We denote this algebra by Z,,. Like fermions the algebra has null-square generators; like bosons,

the generators commute. Hence the name “zeon algebra”, first suggested by Feinsilver [2].

Combinatorial properties of zeons have proven useful in problems ranging from enumerating paths
and cycles in finite graphs to routing problems in communication networks. Where classical ap-
proaches to routing problems require construction of trees and the use of heuristics to prevent
combinatorial explosion, the zeon algebraic approach avoids tree constructions and heuristics.
Much of the essential background on algebraic and combinatorial properties and applications of
zeons is summarized in the books [9] and [13]|. Other works involving zeons include combinatorial
identities developed by Neto [5-8] and first and second order differential equations considered by
Mansour and Schork [4].

Polynomials over the n-particle complex zeon algebra, denoted by C3,,, were first considered in [11].
We extend the finite-dimensional zeon algebras to the infinite-dimensional complex zeon algebra
C3 and focus on zeros of cubic polynomials over C3. Our study is restricted to monic polynomials
of the form op(u) = u® + au?® + pu + v € C3[u], which generalize naturally to non-monic cubic

polynomials with invertible leading coefficients. Observing that

ap(u—%) = u® + 3qu — 2r,

3

where ¢ = %ﬁ — %aQ and r = %(ﬁa —3y) — 2—17a , our work is further simplified by focusing on

solutions of the depressed cubic equation u® + 3qu — 2r = 0.

Traditionally, the cubic discriminant Ay = 18abc — 4a3b + a®b? — 4b® — 27¢% is used to classify the
zeros of the real monic cubic function f(z) = 2% + ax?® + bz + ¢ € R[z]. In particular, Ay = 0
implies that the polynomial has a repeated zero, Ay < 0 implies distinct real zeros, and Ay > 0

indicates that the polynomial has one real zero and a conjugate pair of complex zeros.

To classify the zeon zeros of monic zeon cubic function ¢(u), we define the zeon cubic discriminant
by A, = ¢* + 7% When A, is invertible, the zeon cubic ¢ has three spectrally simple zeon
zeros. If ¢ is also invertible, the zeros can be obtained from the depressed zeon cubic formula (or
general extension thereof). If ¢ is nilpotent, zeros can be obtained using the spectrally simple zeros

algorithm recalled in Section 2. By contrast, when A, is not invertible, the zeon cubic ¢ either
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has no zeros or uncountably many of them. Some examples and special cases are considered in

detail in Section 4.

We proceed as follows. Terminology, notational conventions, and essential results on kth roots of
complex zeons are established in Subsections 1.1 and 1.4. Essential background on zeon polynomials

is recalled in Section 2.

Main results appear in Sections 3 and 4, where depressed and general cubic formulas are presented
and a classification of zeros based on the cubic discriminant is established. Beginning with Theorem
3.2, we show that a depressed cubic ¢(u) = u? + 3qu — 2r € C3[u] with invertible ¢ has zeon zeros
given by u = A3 — gA=1/3 for the cube roots of A = r & /3 + r2 with either choice of sign,
provided ¢ + 72 has square roots. The restrictions are relaxed to allow nilpotent ¢ in Theorem
3.5, where we find that if r is invertible, then ¢(u) has three spectrally simple zeros, while if r is
nilpotent, then ¢ has either no zeros or uncountably many nilpotent zeros. Section 3 concludes

with the establishment of a general cubic formula for zeon polynomials in Theorem 3.16.

In Section 4, our attention turns to classification via the cubic discriminant. In Theorem 4.1, we
consider zeon cubic p(u) = u® + au? + fu+ v € C3[u], and define the discriminant A, = ¢* + r?,
where ¢ = %B - éoﬂ, and r = é(ﬁa —3y) — 2—17()3. We show that if A, is invertible, then ¢ has
three spectrally simple zeros. On the other hand, if A, is nilpotent, then ¢ either has no zeros
or has uncountably many zeros. Section 4 concludes with a discussion of classification of cubic

polynomials over the finite-dimensional zeon algebra C3s.

Examples appearing throughout the paper have been computed using Mathematica with the “Zeon
Essentials” package freely available online via the “Research” link at https://www.siue.edu/

“sstaple.

1.1 Preliminaries

Throughout the paper N, R, and C represent the natural numbers (i.e., positive integers), real

numbers, and complex numbers, respectively.

Let C3 denote the infinite-dimensional complex Abelian algebra generated by a fixed collection

{¢gy + 7 € N} along with the scalar 1 = (g subject to the zeon commutation relation (ZCR):

{Char St = Sy + S = 2065¢a ¢y = 206G 51

where we employ multi-index notation for the final equality. For each finite subset I of N, define

(r = H ¢,. Letting the finite subsets of positive integers be denoted by [N]<%, the algebra C3 has

el
a canonical basis of the form {{; : I € [N]<“}. Elements of this basis are referred to as the basis

blades of C3. The algebra C3 is called the (complez) zeon algebra.
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While nonzero scalar multiples of generators also generate the algebra C3, nontrivial linear combi-
nations of generators are not generators. For example, i # j and a,b # 0 imply (alg;y + bg{j})2 =
2abCy; 3, which is not a generator of the algebra. Hence, the representation is unique up to

generator labeling and scaling.

By the null-square property of the generators {(; : ¢ € N}, the basis blade product satisfies

InJ=g,
Gy = o (1.1)

0 otherwise.

An element u € C3 has canonical expansion u = ), u;(r, where each I is a finite subset of N,
uy; € C, and only finitely many of the coefficients u; are nonzero. Two elements u,v are equal if

and only if u; = vy for every multi-index in the canonical expansions.

We note that C3 is graded. For non-negative integer k, the grade-k part of element u = >, ur(s

is defined as

(uhk = Z urCr. (1.2)

(I 1=k}

The mapping (-); : C3 — C3 is clearly a projection onto the subspace of C3 spanned by {(; :
1] = k}.

Given z € C3 we write €z = (z)g for the complex (scalar) part of z, and Dz = z — €z for the
dual part of z. Here, the term “dual” is motivated by regarding zeons as higher-dimensional dual

numbers.

Remark 1.1. The algebra C3 can be regarded as the algebra of polynomials in commuting null-
square variables Cr1y,Cray, - .. Equivalently, C3 = Clzy, 22, . . /(1% 29%,...), the quotient of the
algebra of complex polynomials in commuting variables z; by the ideal generated by squares of

variables. The basis blades of C3 correspond to basis monomials of the polynomial algebra.

Definition 1.2. The minimal grade of u € C3 is defined by

= min {k € N: (Du)y, # 0} Du#0, (1.3)
0 u = Cu.

We emphasize that ju = 0 if and only if u is a scalar, in which case u is said to be trivial. As
it is often useful to refer to the minimal grade part of an element u € C3, we further define the

following notation:

Uy = (Upy.-
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Example 1.3. Let u = 3 — (g2 + 5((3y — 12((1,2,33- We are looking for the minimal grade and
the minimal grade part of u. Appealing to (1.2), we see that u has nonzero grade-k parts for

k €{0,1,3}. In particular,

(u)o = 3,
(u)1 = —Cqay + 533,

(u)z = —12((1,2,3}-

Hence, by Definition 1.8, the minimal grade of u is hu = 1 and the minimal grade part of u is

up = (u)1 = —(g2y + 5(33-

Finally, we note that the nilpotent elements of C3 form a maximal ideal, which we denote by
C3°={ueC3:Cu=0}.

The invertible elements form a multiplicative abelian group denoted by

C3* =C3\C3° = {ueC3: Cu#0}.

1.2 Finite-dimensional complex zeon algebras

Letting [n] denote the n-set {1,...,n}, the complex zeon algebra generated by {(f; : i € [n]}

along with the unit scalar 1 is denoted by C3,,. As a vector space over C, C3,, has dimension 2".

Given any zeon u € C3, we define the maximum index of u to be the least positive integer n such
that
uw€C3, CC341 CClpyaC---.

Equivalently, we have the following definition.

Definition 1.4. The maximum index of u € C3 is the unique positive integer n such that u € C3,

and u ¢ C3,_1.

For example, if u = 1+ 3((1 4y — 2({1,3,5), the maximum index of u is n = 5.

1.3 Multiplicative properties of zeons

The elements of C3 form a multiplicative semigroup, and it is not difficult to establish convenient
formulas for expanding products of zeons. Moreover, u € C3 is invertible if and only if €u # 0.

The following result is recalled from [1] for reference.
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Proposition 1.5. Let u € C3, and let k denote the index of nilpotency' of Du. It follows that u
is uniquely invertible if and only if €u # 0, and the inverse is given by

k—1

> (1) (€u) ™ (Du)’. (1.4)

Jj=0

_1:L
Cu

u
One way to see Proposition 1.5 is to first recall that if the geometric series Z;io 27 converges, its
limit is ﬁ Again letting a = €u # 0 and writing v = a + Du, we see that
1 k—1
-1 —1 1 1 . .
uw=((a+Du) =a  ———=a -1 a 7 (Du),
(a+Du) g~ L@
where nilpotency of ®wu reduces the infinite series to a finite sum, eliminating any concern about

lack of convergence.

1.3.1 Products and partitions

For convenience, we recall without proof the multinomial theorem. Let {1, ..., 2} be a collection

of commuting variables. For any positive integer m and any nonnegative integer n, one has

n m
(T1+zo 4o )" = Z (lﬁ ko k > Hw}w, ()
) A m E:1

ky+-dkm=n
ky,kg,.. km >0

where

" o
kl,k2;~-~7knl o kl'k2|km|
is a multinomial coefficient. We further take 2° = 1 even when z = 0.

When n = 2, (1.5) reduces to the more commonly seen binomial theorem. The importance of the
multinomial theorem when considering powers of zeons becomes evident when one realizes that
the nonnegative integers k1, ..., k,, are restricted to values 0 or 1 when x1,...,x,, are zeon basis

blades.

For an immediate consequence, let u,v € C3, write v = > ;us{; and v = ) ;vr(s, and let

the product w = uwv be written w = Zun( 7- Then for fixed multi-index I, the corresponding
I

wr = E quI\K.

KCI

coefficient of (; in w is given by

Extending to powers of zeons, let u = Zw([ € C3. For positive integer k, let w = u* be written
I

Hn particular, » is the least positive integer such that (Du)” = 0.
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w = Z wyr. For any fixed multi-index I, the corresponding coefficient of {; in w is given by
I

PR
wy = g f‘ugj g T
=0 reP(I)
Iml=k—j

Here, P(I) denotes the collection of partitions of the multi-index I. When = € P(I) is a partition,
|| denotes the number of blocks (nonempty subsets of I) in the partition 7 and uy := [],c, us;
i.e., the product of coefficients u; in the expansion of u corresponding to blocks b in the partition

7. Note that the scalar part of u is €u = ugy. By convention, we define ug? = 1 when uy = 0.

1.4 Complex zeon roots: Existence and recursive formulations

Invertible zeons have roots of all positive integer orders. Generalizing the result established in [1]

for Z,, their existence is established recursively as follows.

Theorem 1.6. Let w € C3*, and let k € N. Then, there exists some z € C3* such that 2k = w.

Further, writing w = u + v(y,y, where u,v € C3,,_1, 2 is computed recursively by

1
1/k 1/k k—1)/k
z=wl/k =Y/ —|—Eu (k=1)/ V{n}-

Proof. Proof is by induction on the maximum index n of w. When n = 1, let w = wg + b({13,
where wy = Cw # 0 and b € C. Applying the binomial theorem and null-square properties of zeon

generators, one finds

b g b
1/k _ k—1)/k —
(wg * 4 kng(k—l)/k’g{l}) = wy + kwg *~V/ WCU} = Wy + by

Next, suppose the result holds for some n—1 > 1 and let w € C3,, be written w = u+v(y,}, where
u,v € C3,_1. In particular, this implies u € C3,*. Let o = v'/*, and let z = o + %ﬁ{n}a_(k_l)v.
Then
1 r 1
2k = (a + kOé_(k_l)UC{n}> =u-+ k‘a(k_l)ga_(k_l)’UC{n} =u+ ’UC{n} = w. O

Theorem 1.6 establishes the existence of kth roots of invertible zeons. The following corollary

shows that for each kth root of €w, there exists exactly one zeon kth root of w.
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Corollary 1.7. Let w € C3*, and let k € N. Then, w has exactly k distinct kth roots; i.e.,
Hu:uF =w} =k.

Proof. Given any invertible zeon w, the nonzero scalar part €w has precisely k distinct kth roots

in C. We claim that for each of these scalars A, there is precisely one zeon z satisfying €z = X and
k

2 =w.

k

To see this, suppose u* = w = v¥, where €u = €v = X and observe that « — v is nilpotent because

u=A+Duand v =\ + Dv. Note that the product wd of invertible w and nilpotent ¢, is zero if
and only if § = 0, since 0 = w10 = §. With the assumption u* = v*, we then have
uk _ ’Uk — (’LL _ ,U)(uk—l +uk—2,u N _’_vk—l)
= (u—0) [N +61) + (WL 4 80) + -+ (W7 +65)]
= (u—v) [kA*1 4 4],

where § = §; + - - - + 65, is nilpotent because C3° is an ideal. It is clear that kA*~1 +§ is invertible,
so (u — v)(kA*=1 +§) = 0 implies (u — v) = 0. O

Given invertible u € C3 and positive integer k, the principal kth root of u is defined to be the zeon
kth root of u whose scalar part is the principal kth root of €u € C.

1.4.1 Roots of nilpotent zeons

Generally, for positive integer k > 2, a nilpotent zeon has either no kth roots or uncountably many
of them. We restrict our attention to square roots and cube roots here because these are the only

roots of interest when dealing with cubic polynomials.

An element u = Z{IeNSw} ur(r has a square root w = ) ;w;(; if for each coefficient u; in the

expansion of u, the coefficients of w satisfy

Z WRWP\ K = U] (1.6)
KCI

For each nonempty multi index I, (1.6) is an equation in 2111 — 1 variables. Letting n denote
the smallest positive integer such that u € C3,°, and observing that squares of elements in the
maximal ideal C3° always have minimal grade greater than 1, it follows that there are 2" —n — 1
such equations to consider. The resulting underdetermined system of 2 —n — 1 equations in 2" — 2

variables then has either no solution or uncountably many solutions.
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Example 1.8. Consider the nilpotent zeon u = 4(f1 2y — 5C(1,3) — 10(q2,3y — 5¢1,2,3)- A square

root w =Y, wilr of u must satisfy the following system of equations:

wiywigy =2,
w{i1yw{zy = _ia
U){Q}’(U{g} = —5’
5
W3 W12y T W{2yW13) T WyWi23) = 5

One such solution is
5
w=—C{1y — 2C0y + 5@{3} + Cq1,2y + Cq1,3y + 3C2,3)-

Similarly, a nilpotent zeon of minimal grade 3 or more having expansion u =3 {TeN<w:|1|>3} urCr

has cube root w = ; w;(s if for each coefficient us, the coefficients of w satisfy

E WKWLWI\(KUL) = UI-
{K,LCI:KNL=2}

This leads to an underdetermined system of 2" — (;‘) —n — 1 equations in 2" — 2 variables with

either no solution or uncountably many solutions.

We turn now to a simple special case for which symbolic computation is straightforward.

1.4.2 Fundamental roots of nonzero null monomials

In this section we consider kth roots of a(; for a € C* and nonempty I C N. Such elements are

referred to as nonzero null monomials® of C3.

Remark 1.9. Nonzero null monomials are square roots of zero. It follows that every kth root of

a nonzero null monomial is a 2kth root of zero.

Definition 1.10. Given a nonzero null monomial w = a(; and a k-block partition @ of I, a

fundamental kth root of w is any nilpotent zeon of the form

Un =3 sy, (1.7)

Jem

satisfying (u;)¥ = w.

2In particular, aCs is a zero of the monomial ¢(u) = u? for any I # @.
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For purposes of symbolic computation, two forms of roots are particularly convenient. Roots of
the form (1.8) are referred to as flat form fundamental kth roots of u, while roots of the form (1.9)

will be referred to as spike form fundamental kth roots of wu.

Lemma 1.11. Given a nonzero null monomial w = aly, a nilpotent zeon of the form

up = & %ZQ, (1.8)

Jerm
satisfies u,"* = w for any k-block partition © of the multi index I and any complex kth root of -
Moreover,
a
Up M = Z Cr+ HCM (1.9)
Jem\M

satisfies u,® = w for any fized block M of the k-block partition © of the multi index I.

Proof. By direct computation via the multinomial theorem,

k k
(ﬁZCJ> I:!k!el_[@a@ Z CJ+%<M . a
=1

Jer\M
Hence, the result.

Example 1.12. The flat form fundamental square roots of aCy12,3) are

a a

Uj23 = :t\/g(C{l} + Cr2,31), Ug|13 = i\/g(C{z} + Cq1,3})5
a

ugj2 = =+ §(C{3} + Cf1,2}),

and the spike form fundamental square roots are

a a

U1)23,{2,3} = (C{1} + 54{2,3}) ; U2|13,{1,3} = (C{z} + §C{1,3}) )
a a

ug|12,{1,2} = (C{s} + 5({1,2}) , U1)23,{1} = (§C{1} + 4{2,3}) ,
a a

Ug(13,{2) = (§<{2} + 4{1,3}) ; u3|12,{(3}) = (§C{3} + C{1,2}> .

Notation. The numbers of k-block partitions of sets containing m elements are given by Stirling

numbers of the second kind, denoted {1;:}
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Lemma 1.13. The number of fundamental kth roots of a null monomial of grade m > k is k{’,?},

Proof. Each partition of I into k nonempty subsets {I, : 1 < ¢ < {"}'}} gives a principal kth root
of a(y since

k
(a5 ¢r,)* = k(a5 ] ¢, = acr.
=1

Each a € C* has k distinct complex kth roots, so there are k zeon kth roots of the form seen in

(1.8) for each k-block partition 7 of I. O

2 Zeon polynomials

Let f(2) = amz™ 4+ -+ + a12 + ag (am # 0) be a polynomial function with complex coefficients,
and recall that by the Fundamental Theorem of Algebra, f(z) has exactly m complex zeros. If
f(2) can be written in the form f(2) = (z —r)‘g(2), where £ € N and g(r) # 0, then 7 is said to be
a zero of multiplicity £ of f(z). For convenience, u;(r) will denote the multiplicity of r as a zero
of f(2).

On the other hand, if p(u) = @pu™+---+oru+ap € C3[u] is a polynomial with zeon coefficients,
it is not obvious how many zeros this polynomial may have in C3. For example, p(u) = u? — Cr1y

has no zeon zeros because (;1} has no square root.

2.1 Spectrally simple zeros of zeon polynomials

Given a complex zeon polynomial ¢(u) = apmu™+---+a1u+ag, a complex polynomial f, : C — C

is induced by
It follows that

so that f,oC =Co.

We restrict our attention to zeon polynomials with invertible leading coefficients because when «,,

is nilpotent, the induced polynomial f,(z) is of lower degree than ¢(u). Moreover, as a matter of

1

convenience the zeros of p(u) are exactly the zeros of the monic polynomial o, ‘¢ (u).

The zeon extension of the Fundamental Theorem of Algebra developed in [11] shows that ¢(u) has

a simple zeon zero if the complex polynomial f,(z) has a simple complex zero.
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Let ¢(u) be a nonconstant monic zeon polynomial. A zeon A € C3 is said to be a simple zero of

@ if p(u) = (u— A)g(u) for some zeon polynomial g satisfying g(\) # 0.

The spectrum of an element u in a unital algebra is the collection of scalars A for which v — A is
not invertible. Hence, the spectrum of u € C3 is the singleton {A = €u}, motivating the next

definition.

Definition 2.1. A simple zero \g € C3 of ¢(u) is said to be a spectrally simple if €\g is a simple

zero of the complex polynomial f,(z).

2.1.1 Fundamental theorem of zeon algebra

The Fundamental Theorem of Zeon Algebra presented in [11] for the finite dimensional zeon algebra
C3,, shows that a zeon polynomial p(u) € C3,[u] has a spectrally simple zero A = X\g + D\
whenever the complex polynomial f,(z) € C[z] has a simple zero Ao € C. The theorem also holds
also for a polynomial over C3 by first defining the mazimum indezx of a zeon polynomial ¢ to be
the least positive integer n such that ¢(u) € C3,[u] and proceeding as in the finite-dimensional

zeon algebra.

For reference, the theorem is recalled here without proof. We note that it also provides a method

for calculating spectrally simple zeros of any zeon polynomial.

Theorem 2.2 (Fundamental Theorem of Zeon Algebra). Let o(u) € C3[u] be a monic zeon
polynomial of degree m and having mazimum index n, and let f,(z) € C[z] be induced by ¢. If
Xo € C is a simple zero of fy(z), let g be the unique complex polynomial such that f,(€u) =
(Cu — Xo)g(€(u)). Then @(u) has a simple zero A such that €\ = Xg. Letting n denote the
mazimum index of p(u), for 1 < k < n, the grade-k part of X (denoted \y) is given by

1 k—1
<>< (Z&Ai»k'

Moreover, such a zero A is unique.

The idea behind the proof is that when \¢ is a simple zero of f,(z), the remainder ¢(Ag) of p(u)
when divided by u — Ag has zero scalar part. The minimal grade part of the remainder w = ¢(\g)
can then be utilized to construct a new zeon element Ao+ Ay, having the property that ¢(Ag+ Agw)
has higher minimal grade than ¢(XAo). Grades of all remainders will be at most n (the maximum

index of ¢(u)), so the process terminates in a finite number of steps.

Of particular significance, Theorem 2.2 provides an algorithm by which a spectrally simple zeon
zero can be calculated. Algorithm 1 returns the spectrally simple zeon zero A of ¢ whose scalar

part g satisfies f,(Ag) = 0.
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Algorithm 1: Compute spectrally simple zeon zero.

input : Zeon polynomial p(u) over C3,, and a simple nonzero root Ao of the associated
complex polynomial €(p(u)).
output: Zeon zero A of p(u) with €X = Ao.

Initialize complex polynomial g(Cu).

C(p(u))
Cu — )\()7
Note g(Cu) satisfies €(p(u)) = (Cu — Ag)g(€u), where g(Ag) # 0.

£+ ©(Xo)y/g9(Xo);
A X — &

while 0 < ¢ < n do
£ o(N)g/9(Mo);
A= (A=)

return J;

g(Cu) +

When ¢(u) € C3[u] is of degree m > 1 and the zeros of f,(z) are all simple, we see that ¢(u) has
exactly m complex zeon zeros. For example, when o € C3*, ¢(u) = u* + o has exactly k distinct

complex zeon zeros.

2.2 Spectrally nonsimple zeon zeros

Algorithm 1 is useful for computing spectrally simple zeros of ¢(u), but it is not applicable to any
zero w whose scalar part €w is a multiple zero of the induced complex polynomial f,, satisfying

C(p(u)) = fo(C€u). These spectrally nonsimple zeros are considered next.

A zero Mg € C3 of p(u) € C3[u] is said to be spectrally nonsimple if €\ is a multiple zero of
the induced complex polynomial f,. We note that zeon zeros of multiplicity greater than one are

included among spectrally nonsimple zeros.

It was shown in [11] that if a monic polynomial p(u) € C3[u] has distinct complex zeon zeros wy, wa
satisfying €w; = €wy = wy, then ¢(u) has uncountably many zeros of the form w = wg + Dw.
As a consequence, if ¢ € C3[u] has a zero z € C3 of multiplicity two or greater, then ¢ has

uncountably many zeros w € C3 satisfying €w = €z .

Lacking an algorithm for computing spectrally nonsimple zeros of zeon polynomials, our attention

turns to zeon extensions of well-known special cases: quadratic and cubic polynomials.

2.2.1 The zeon quadratic formula

We close this review of zeon polynomials by recalling a basic result concerning zeros of quadratic

zeon polynomials. A zeon quadratic polynomial has solutions if and only if its discriminant has a
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square root [3].

Theorem 2.3 (Zeon Quadratic Formula). Let ¢(u) = au?® + Bu + v be a quadratic function with
zeon coefficients from C3, where €a # 0. Let A, = % — 4ary denote the zeon discriminant of .

The zeros of ¢ are given by

In particular,

(1) When A, = 0, the zeros of ¢ are given by u = —a~'3/2 +n for any n € C3 satisfying
2
n* = 0.

(2) When €A, #0, ¢(u) =0 has two distinct solutions.

(3) If A, # 0 is nilpotent and p(u) =0 has a solution, then it has uncountably many solutions.

To see the result, begin by writing au? + Bu + v = %((Qau + B)? — (8% — 4ay)) and expand.
This reduces the problem to seeking square roots of the zeon discriminant. We are now ready to

turn our attention to cubic polynomials over C3.

3 Cubic polynomials with zeon coefficients

Beginning with the general zeon cubic equation 23 + az? + 8z + v = 0, where o, 8,7 € C3 and

a # 0, the depressed cubic equation is obtained via the substitution z = u — /3. In particular,

0= (u-2) 40 (u-2) +8(u-2) tr=u s (5-L)usr 2Py

3 3 3 27 3
2 3
3 B« — af v 3
“+(3 9)” (27+6 2) WS A
where ¢ = % — %aQ and r = %(Ba —3v)— %ag’. It follows that depressed cubics are sufficient for

our purposes.

We note that any monic cubic polynomial having a spectrally simple zero A can be reduced via
polynomial division to the product ¢(u) = (u — A)¥(u), where ¥(A) # 0 is a quadratic polynomial
over C3. The remaining zeros of ¢(u) can then be classified by the zeon quadratic formula of

Theorem 2.3.
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Example 3.1. To motivate our discussion, consider the depressed zeon cubic equation ¢(u) = 0

where

o(u) = u® +u (—18({1 2,31 — 6¢[1y + 92y — 9) — 101,23 — 6((1,2,3}- (3.1)

The induced scalar cubic polynomial is f,(z) = z3 — 9z, which has simple zeros {—3,0,3}. Con-

sequently, o(u) has three spectrally simple zeon zeros, each of which can be found by applying

Algorithm 1. Applying the algorithm with simple zero Ao = —3 of f,(z), we obtain the first zero:
3¢z

1 8
up = —3+ TSC{I’Q} - gC{Lz,s} —Cuy + 5

At this point, we may either repeat the algorithm with the other two zeros of f,(z) or we may
perform polynomial division to write p(u) = (u —u1)¥(u) and apply the zeon quadratic formula to
Y(u) to obtain the remaining zeros. In the latter method, we apply the quadratic formula to

1 8 3¢ 10
Y(u) = v’ +u (ISC{LQ} - gC{1,2,3} - C{l} + ;2} - 3> - §C{1,2} - 2({1,2,3}7

which yields the remaining zeros:

10 2
U = _HC{M} - g({1,2,3}7

19 10 3
us = 3+ 7202y + 5 ¢z — 56

We point out that the approach taken in Example 3.1 involves the application of Algorithm 1 once,
followed by polynomial division and an application of the zeon quadratic formula. Alternatively,

since the zeros of ¢(u) were all spectrally simple, we could have applied Algorithm 1 three times.

We further point out that when the scalar polynomial f,(z) has a single zero of multiplicity three,

the approach taken in Example 3.1 fails completely.

To treat such cases as well as to gain deeper insight on zeros of zeon cubics for all cases, we
now consider a zeon extension of the cubic formula. The complex zeon result below is based on

Cardano’s approach to cubic polynomials with real coefficients, as presented in [10].

Theorem 3.2 (Depressed Zeon Cubic Formula). Let p(u) = u® + 3qu — 2r € C3[u], where
€q # 0 and square roots of ¢* + r? are assumed to exist. The zeon zeros of p(u) are given by

u=AY3 —qA=1/3, for the cube roots of A =1+ +/q3 + r2 with either choice of sign.

Proof. Note that A is invertible if and only if €¢ # 0, since €A = 0 if and only if €r =
FC (x/q3 + ’I“2>. Squaring both sides yields €¢3 = 0. Proof is then by direct substitution, where
all necessary cube roots, square roots, and inverses exist. Assuming A = r + /g3 + 72, it follows

that
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P(AS — gAT5) = (A5 — gA™5)" 4 3g(A5 —qA™5) — 2
= A—3A5qAT5 +3ATPATS — PAT £ 3945 —3¢7AT5 — 2
— A —3¢A% +37A7F — PA 4 3¢A —32AE — 2
= A— q3A—1 — 9
= (P +2rV/@ P =P+ VP )T =2

=2r(r+ V@R +r)r+ V@ +r2)7 = 2r =2r —2r = 0.
Similar calculations establish the result for A = r — \/q¢3 + r2. O

Since A is assumed to be invertible in Theorem 3.2, there are three distinct zeon cube roots of A

for any square root of ¢° + r2.

Example 3.3 (€q # 0, ¢> + r? invertible). Consider the zeon cubic ¢(u) = u® + 3qu — 2r defined
by
p(u) = v’ +u (6¢.2y = 12C(2,3) — 3C(ay — 36) +6C(2y — 4((5)-

We note that €q # 0, since
q=—12+42(( 2y — 4Cq2,31 — (433

Further, ¢3 + r? is invertible since r is clearly nilpotent. The zeros of p(u) are then found via
Theorem 3.2:
1 215 5 Croy 7
up = —6+ 5{{1,2} - %C{z,s} - @4{1,2,3} T~ %Cm}a

G2 Sq3y

1 1
uz = —ﬁf{m} - 52({1,2,3} + 9

1 109 13 1 11
uz =6 — §C{1,2} + @C{z,g} + @4{1,2,3} - EC{Q} + %C{3}~

When ¢* + r? € C3 is nilpotent and has a square root, uncountably many square roots exist. In
this case, the associated cubic equation has infinitely many solutions.
Example 3.4 (€q # 0, ¢3 + 1% € C3°). Consider the depressed zeon cubic p(u) = u® + 3qu — 2r,

where

q=—C1,2y + 3y + (a3 +2¢0y — 2¢y — 1,
r = —3Cq1y + 3¢y + 1.
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The nilpotent element ¢* + r? = 3Cq1,2) + 3C(1,3) + 3C(2,3) has uncountably many square roots;

3
for example, p = \/; (C{l} + (o + C{3}). It follows that p(u) has uncountably many zeros of the
form (1 + p)'/% — q(r + p)~/3. In particular,

10 2 2
ug =2 —2(p1y + 2((2y + ?C{LQ} - gC{1,3} - 5C{2,3}

satisfies p(up) = 0.

Next we consider the depressed cubic p(u) = u® + 3qu — 2r, where €q = 0. It follows that the
complex polynomial induced by ¢ is f,(z) = 2% — 2€r. If € = 0, then f,(z) = 2z* has one zero 0
of multiplicity three. Hence, if ¢ has zeros, there are uncountably many and they are all nilpotent.
On the other hand, if €r # 0, then f,(z) has exactly three distinct complex zeros, so that ¢ has

three spectrally simple zeros. Thus, we have derived the following theorem.

Theorem 3.5 (Depressed Cubic Zeros I1). Let ¢(u) = u® +3qu—2r € C3[u], where €g = 0. Then

the following are true.

(1) If €&r #£ 0, then w(u) has three spectrally simple zeros.

(2) If €r =0, then @ has either no zeros or uncountably many nilpotent zeros.

We illustrate Theorem 3.5 with the following example.

Example 3.6. The case €q = 0 is illustrated by the zeon cubic polynomial
2 4 4 8 8
3
o(u) =u’ + <—3C{1,2} + g({1,3} + gC{m} - 3C{1,273}) u— §C{172,3}~

In this example r = %C{1,273}, so that @(u) either has no zeros or uncountably many. Letting

s = Cq1y + 2y — Gy + Cqu2y — (1,35 it is seen that o(s) = 0. Moreover, p(s + alf123y) =0 for
any a € C.

3.1 Special case: ¢(u) = u® + 3qu

Note that if r = 0, the zeros of ¢(u) include {0,4+/—3q}, provided the square roots exist. When
q is invertible (i.e., €q # 0), these are the three distinct zeros of ¢(u). When €q = 0, p(u) =0

has uncountably many solutions.
Our goal in this subsection is to describe some of the zeros of u® + 3qu when ¢ is nilpotent.
Definition 3.7. Let ¢ =, qi(;r € C3. The index support of q is defined to be

b= J I (3.2)

{I:q1#0}
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The index support of a nilpotent ¢ is used to obtain a null monomial that “annihilates” ¢; i.e.,
q€q) = 0. For this reason, (|, will be referred to as an annihilator of ¢ € C3°. More generally,

qClq = (€q)(jq for arbitrary ¢ € C3, so that (|4 is an annihilator of Dgq.

Example 3.8. Let ¢ = 3 + 4(9y — 5Cq1,3,4)- Then [q] = {1,2,3,4} and
qClq) = (3 +4Cq2y — 5C41,3,43)Cq1,2,3.4) = 3C[1,2,3,4}-

While it is clear that when ¢ is nilpotent, ¢(; = 0 for all I D [g], a nilpotent ¢ may also be
annihilated by a basis blade ¢; for one or more I C [q]. Letting N, = {I C [¢] : ¢(; = 0}, it follows

that w
¢ ar(r=0
IeN,

for any linear combination of basis blades indexed by A;. The resulting subspace of C3 is denoted

by Anns(q).

It is clear that Annsz(u) N Anns(v) C Annz(u + v) because z € Annsz(u) N Anns(v) implies
z(u +v) = zu+ zv = 0. However, the reverse inclusion need not hold, as illustrated in Example

3.9.

Example 3.9. Let u = ({1} + (23, v = —(qoy € C3°. Letting z = ({1, we see that
2(u+v) = ¢y Sy + Gy — Goy) = ¢y =0,

so that z € Annz(u + v) even though z ¢ Anns(u) and z ¢ Annsz(v).

With the concept of zeon annihilators in hand, we are ready to present our result on zeros of

o(u) = u® + 3qu when ¢ is nilpotent.

Theorem 3.10 (Zeros of p(u) = u? + 3qu when €q = 0). Let ¢(u) = u® + 3qu € C3[u], where
q# 0 and €q=0. Then,

(1) @(z) =0 for any z € Anns(q) satisfying k(=) < 3; and
(2) if q has square roots, then p(z) =0 for any z € {+/—3q¢}.

In particular, p(alq) =0 for a € C.

Proof. First, for any z € Annsz(q) satisfying k(z) < 3,

0(2) =2 +3¢z=0+0=0.
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Second, let (—3¢)'/? = {z € C3 : 22 = —3¢} and recall that this set has infinite cardinality when

it is nonempty. It follows that for each z € (—3q)'/2,

©(z) = 2(22 +3q) = 2(=3q + 3q) = 0.
Finally, ([q € Ann3(q) satisfies x((jq) = 2, s0 p(a(jq) = 0 for all a € C. O

Theorem 3.10 does not characterize all zeros of the cubic ¢(u) = u3+3qu, as illustrated by Example
3.11.

Example 3.11. Consider the cubic p(u) = u® + 3qu, where
1 2 2 2
q= §<{1,2,3} - 54{1,2} - gC{l,:&} - §4{2,3}~

Letting z = Cg1y + Cp2y + (ay» one finds that 22 = 2(Cp101 + Cr1,3y +C2.31)s 2° + 3¢ = ((1,2,33, and
2% = 6((1,2,3}, so that k(z) > 3 and z ¢ (—3q)'/?. Further, z ¢ Annz(q) because

1
qz = g(({l,z,s} —2¢(1,23 — 2Cq1,3y — 2¢2,33) (Cray + oy +Cqay) = —2C(,2,3)-

Clearly, z fails to satisfy the sufficient conditions described in Theorem 3.10. However, z € ¢~ (0)

since

p(z) = 2° +3qz = 6((1 231 — 6({1,2,3) = 0.

Corollary 3.12. Let ¢(u) = u® — alyu € C3[u], where a # 0 and |I| > 2. Then ¢(u) = 0 has
{IQ} flat form solutions of the form
a
Ur = \/gz CJ»

where ™ ranges over the 2-block partitions of the multi index I.

Proof. Note that u® — alju = u(u® — al;) = 0. Let m be a 2-block partition of I. Let K be one
block of the partition. It follows that

Up = \/E(CK +{nK),
0(ur) = ur(ur? — aly) = ug <<\/§(CK + C]\K))2 - ag})

= Uﬂ%@aﬁl —a(r) = ur(alr — acr) = 0.

so that
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The number of two block partitions 7 of I is {'él}, so the result follows from Lemma 1.13. O

3.2 Special case: ¢ =0

Lemma 3.13 (Depressed cubics: ¢ = 0). Let ¢(u) = u® — 2r € C3[u]. Then the following are

true.

(1) If r =0, then ¢=(0) = {n € C3° : k(1) < 3}.
(2) If €r # 0, then @ has three spectrally simple zeros: ¢~ 1(0) = (2r)'/3.

(3) If r # 0 and €r = 0, then ¢ has either no zeros or uncountably many zeros; in particular,

0 H0) = {w : w? = 2r}.
Proof. Consider the zeon cubic ¢(u) = u?® — 2r.

(1) Clearly ¢(n) =3 = 0 if and only if 7 is nilpotent of index 3 or less.

(2) If r is invertible, then u3 — 27 = 0 if and only if u is a cube root of 27. There are three such

zeros, one for each complex cube root of €2r.

(3) When r is nonzero and nilpotent, the zeros of ¢(u) are precisely the nilpotent cube roots of

2r. As seen in Section 1.4.1, 2r has either no cube roots or uncountably many of them. [

Corollary 3.14. Let p(u) = u® — al; € C3[u], where a # 0 and |I| > 3. It follows that (u) = 0
has {lél} flat form solutions of the form

Ur = \S/gzgh

Jemw

where ™ ranges over the 3-block partitions of the multi index I.

Proof. Proceeding as in the proof of Corollary 3.12, let m be a 3-block partition of I. Let J, K, L
be the blocks of partition 7. It follows that

Ur = \3/5(@1 +Cx +Cr),

so that

3
p(ur) = (f/g(CJ +Cx + CL)> —a(y = %GCJCKCL —ar = alr — alr = 0.

The number of three block partitions 7 of I is {lél}, so the result follows from Lemma 1.13. O
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Example 3.15. Consider the cubic polynomial

p(u) =u® +u® (3—Cay) +u(—Cuoy —2¢uy +3) +1—Cay — (e

Writing p(u) = u® + au? + Bu + 7, let ¢ = (g — %2) and let r = %(ﬁa - 3y) — 717a3, so that
o(u) = u + 3qu — 2r. It follows that Clq) = Cq1,2y and that q has spike form fundamental square

roots (r1y — %<{2} and ({2y — %C{l}, the (uncountably many) zeros of p(u) include the following:
1
up=—-1+ gC{1} + 1,23

4 3
ug = -1+ gf{l} - §C{2}’

7
ug = —1— 6({1} + ((23-

These zeros are easily confirmed by evaluating the polynomial.

3.3 A general cubic formula

For convenience in symbolic computation, a general cubic formula is now obtained as a corollary

of Theorem 3.2.

Theorem 3.16 (General Zeon Cubic Formula). Let p(u) = u? + au® + Bu + v € C3[u], let

q= %B — %aQ and let r = %(ﬁa —3y) — %as. Suppose €q # 0 and set A, = ¢ + r2. Suppose

A, has a square root §. Letting s1 € (r+ 0)Y/% and sy € (r — 8)'/3, it follows that ¢(u) has zeros
given by

«
up = (81+82)—§»

ai\/§

1
uy = —5(81 +82) — 5 + —— (51— s2),

3 2
1 a Z\/§
us = _5(31 +32) — g — 7(81 — 82).

Proof. First, the general cubic equation ¢(u) = u® + au? + fu + v = 0 is depressed by the

substitution u — z — /3 as follows

p(z—a/3) = (2~ a/3) + alz — a/3)* + Bz — a/3) + v

2 3
_ .3 _ o 200 af
=z +(ﬂ 3>z+ o7 3+'y

_ .3 o? _ @_&3_1
_Z“L(ﬂ_:s)Z 2(6 27 2)'
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Since €q # 0, the zeros of p(z — «/3) are given by the depressed cubic formula of Theorem 3.2. In

particular, the zeros are given by
Z:Al/?)_ é_iz A*l/S
3 9 ’
corresponding to the cube roots of

A:(aﬁ_v_a?))iw_a?):(aﬁ_&_v)f
6 2 27 3 9 6 27 2

Letting ¢ = 8/3 — a?/9 and r = (a3 — 37)/6 — /27, we have z = A3 — gA=1/3 where

A=r=E/¢3+1r2

Letting § be a square root of A, = ¢+ r?, we have A = r £ 4. Next, observe that (r+4)(r —4) =
r? — 6% = —¢3, so that

(r+0)~ =—(r—08)q"

It follows that gA=/3 = —(r — §)*/3. Hence, the first zero of the depressed cubic is z; = s1 + 59,
where 51 = (r 4+ §)Y/3 and sy = (r — §)'/3. Letting x( be a fixed cube root of A, it follows that

0i27/3 iam/3

zo and e o are the remaining cube roots, where e*4™/3 = (¢?27/3)=1, Thus, the remaining

zeros of the depressed cubic are

- . 1 3 1 3 1 3
2y = 61271'/381 _|_ez47r/3s2 — <_ +Z\[> 51+ (_2 — Z{) So = —5(51 + 52) +@§(31 — 32)

2 2
and
23 = 4/3g; 4 €2™/3gy = (2 — 12> s1 + (2 +z2> Sg = *5(51 +52) — 17(51 — 82).
Translating by «/3 gives the zeros u; = z; — /3 of the general cubic for j =1,2,3. O

4 Classification

As we have seen since beginning with Example 3.1, there can be multiple possible approaches to
finding solutions of zeon cubic equations. It would be helpful to have a method for determining
which methods are appropriate for a given zeon cubic. For that, we turn to a zeon extension of

the cubic discriminant.
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We recall that given a monic cubic polynomial (with real coefficients) f(z) = 23+ax?+br+c € Rz],

the cubic discriminant of f(x) is defined to be
Ay = 18abc — 4a®b + a®b* — 4b* — 272 (4.1)

Letting g = g — % and r = (ab— 3c) — ;—;, the discriminant is given by

Ay = —4(39)% — 27(2r)? = —108(¢® + r?).

Traditionally, the cubic discriminant is used to characterize the zeros of f(z). In particular, the

following properties are well known.

e When Ay = 0, the cubic has a repeated root.
e When A; <0, the cubic has three distinct real roots.

e When Ay > 0, the cubic has one real root and a conjugate pair of complex roots.

We extend the cubic discriminant to zeon cubic polynomials by defining A, = ¢ +72. In view of

Theorems 3.2, and 3.5, the following classification is sensible for cubic polynomials over C3.
Theorem 4.1 (Classification). Let p(u) = u® + au® + Bu + v € C3[u]. Let A, = ¢ + r?, where

1, 1, 1 1,
¢=3h—-ga, r=g(fa=3y) - a”

Then the following hold.

(1) If €A, # 0, then ¢ has three spectrally simple zeros. When €q # 0, the zeros are given by
the cubic formula of Theorem 3.16. When €q = 0, the zeros are obtained from Algorithm 1

using the scalar zeros of f.

(2) If €A, =0, then ¢ either has no zeros or has uncountably many zeros.

Proof. Observing that Ay, = —108€A,, we see that the scalar polynomial f, has three distinct
complex zeros when the discriminant is nonzero. Hence, ¢ has three spectrally simple zeon zeros
when €A, # 0.

It is clear that €A, = 0 implies €q # 0 < €r # 0. It follows that the induced complex polynomial
Jo(z — €a/3) = 23 + 3€qz — 2€r has a repeated root, A\g. Thus, ¢ has no zeros or uncountably
many zeros. If the repeated root Ay has multiplicity 2, there exists a spectrally simple zero p of
©(u) and uncountably many other zeros having common scalar part A\g — €a/3. If \g is a zero of

multiplicity three and ¢ has zeros, then all zeros of ¢(u) have common scalar part A\g — €a/3. O
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Example 4.2. Consider the zeon cubic polynomial o(u) = u® + Crr2yu — (1 +3Cq2y). The zeon
cubic discriminant of ¢ is A, = i+c{273}, which s invertible. Hence, ¢ has three spectrally simple

zeros. However, since ¢ = %C{LQ} is nilpotent, the cubic formula of Theorem 3.2 fails.

1 3 1 3
The scalar zeros of f,(z) = z3—1 are {1, —3 + gi, —5~ gi . Applying Algorithm 1, rational

approximations of the spectrally simple zeros are as follows:

1 2

Ar=1- §C{1,2} + gf{z,s},

o (L, 181 1+125i< 1 153@'C
27\ 72" 209 6 ' 433 )14 T\ 3 265 ) ~{23b

oo (L 181N (1 153 i 1 153 ¢
37 \72 7 209 6 530 ) >tHZ T \3 7 965 ) {23k

4.1 Cubic polynomials over C3,

In this section, the special case of cubic polynomials over C35 are considered. When ¢ is a cubic

polynomial in C35[u], there are no indeterminate cases.
Proposition 4.3. Let o(u) = u® + 3qu — 2r € C3z[u]. Let A, = ¢® + %, where

1, 1, 1 1,
¢=3h—-ga’, r=g(fa=3y)-a”

(1) If A, is invertible, then ¢(u) has three spectrally simple zeon zeros. The zeros are given by

the cubic formula of Theorem 3.2 if €q # 0. Otherwise, the zeros are obtained from Algorithm

1 using the scalar zeros of f,.
(2) If A, is a nonzero null monomial of grade 2, then

(a) o(u) has one spectrally simple zero and a set of spectrally non-simple zeros if q is

invertible;

(b) o(u) has no zeros if q is a nonzero nilpotent in C3z.
(3) If A, is a nonzero nilpotent of minimal grade 1, then ¢(u) has no zeros.
(4) If A, =0, then

(a) o(u) has a spectrally simple zeon zero and a set of spectrally non-simple zeon zeros if r
is invertible;
(b) p(u) has a set of spectrally non-simple zeros if r = aCjy) for a € C;

(c) p(u) has no zeros if r # 0 is nilpotent and not a null monomial of grade 2.
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Proof. The results follow from Theorems 3.2 and 3.5 along with the following observations.

(1) Nilpotent cube roots do not exist in C3s.

(2) In C32, nilpotent square roots only exist for null monomials a(jy).

To prove 2(b), suppose A, = a(jy for nonzero a € C. If ¢ is a nonzero nilpotent in C33, then
¢® = 0so that A, = r2. It follows that r = bC{1} +cCq2y for nonzero b,c € C. Any zeros of ¢ must

also be nilpotent. Hence, any zero z € C35 must satisfy
o(z) = 2%+ 3qz — 2r = 3¢z — 2(bCq1y + cCray) =0,

where the minimal grade of ¢z is either 0 or 2. In either case, we have a contradiction.
Part 3 follows from the fact that a nilpotent of minimal grade 1 has no square roots.

Next, 4(b) is established as follows. If r = a(js) and A, = 0, then €¢q = 0 so that ¢ =0.If g = s

for any nonzero s, then

3
2a 2a 2a
v (384[2]\{2'}> = <3C[21\{i}) +35C(3 (354[21\{1‘}> — 2a(p2) = 0+ 2a¢p3) — 2a(p) = 0.

Turning to 4(c), suppose r = aCy1y + b(y2y where a,b € C are not both zero. If a and b are both
nonzero, then r? = 2ab(p. Thus A, = 0 requires ¢° = —r?, which is impossible in C35. We
conclude that r = a(y;; for nonzero a € C and i € {1,2}; further, we see that ¢ is nilpotent.

Hence, if z € C32 is a zero of ¢, it follows that
o(2) = 2% +3qz — 2r = 3¢z — 2a((;y = 0,

where the minimal grade of ¢z is either 0 or 2. Again, we have a contradiction. O

5 Conclusion & avenues for further research

Zeros of cubic polynomials over C3 have been classified up to two indeterminate cases. In those
indeterminate cases, sufficient conditions have been provided for existence of spectrally nonsimple
zeon zeros. In the special case of cubic polynomials over C3o, the zeros have been completely

classified.

One obvious goal of future work is the consideration of zeros of quartic zeon polynomials over C3,
particularly since the quartic is the highest order polynomial equation that can be solved by radicals
in the general case. Based on existing results, a quartic polynomial ¢(u) = u* +au® + Bu? +yu+4

having one spectrally simple zeon zero w can be reduced by polynomial division to the product
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(v — w)(u), where 1(u) is a monic cubic polynomial in C3[u]. The classification of cubic zeros
established here can then be applied to 1 (u). If p(u) has two simple zeros, the zeon quadratic
formula can be applied to the remaining factor. If ¢(u) splits, all zeros can be found using
Algorithm 1. If all zeros of ¢(u) are spectrally nonsimple, additional tools are needed: either an
effective algorithm for computing spectrally nonsimple zeros or a zeon extension of the quartic

formula.

More broadly, zeros of zeon polynomials are essential for considering spectral properties of zeon
matrices. Letting ¥ denote an m X m matrix with entries from C3, eigenvalues of ¥ are spectrally
simple zeon zeros of the characteristic polynomial of W. Here V¥ is appropriately regarded as a C3-
linear operator on the module C3™. The zeon combinatorial Laplacian has recently been shown
to enumerate paths and cycles in finite graphs, so its spectral properties are of particular interest
[12]. With zeon eigenvalues in hand Putzer’s theorem can also be useful for computing zeon matrix

exponentials.
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