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ABSTRACT

It is well known that every cubic polynomial with complex
coefficients has three not necessarily distinct complex zeros.
In this paper, zeros of cubic polynomials over complex zeons
are considered. In particular, a monic cubic polynomial with
zeon coefficients may have three spectrally simple zeros, un-
countably many zeros, or no zeros at all. A classification of
zeros is developed based on an extension of the cubic discrim-
inant to zeon polynomials. In indeterminate cases, sufficient
conditions are provided for existence of spectrally nonsim-
ple zeon zeros. We also show that when considering zeros of
cubic polynomials over the finite-dimensional complex zeon
algebra CZ2, there are no indeterminate cases.

RESUMEN

Es bien sabido que todo polinomio cúbico con coeficientes
complejos tiene tres ceros complejos no necesariamente dis-
tintos. En este artículo consideramos los ceros de polinomios
cúbicos sobre los complejos zeones. En particular, un poli-
nomio cúbico mónico con coeficientes zeones puede tener tres
ceros espectralmente simples, una cantidad no numerable
de ceros, o no tener ceros. Desarrollamos una clasificación
de ceros en base a una extensión del discriminante cúbico
a polinomios zeones. En casos indeterminados, entregamos
condiciones suficientes para la existencia de ceros zeones es-
pectralmente no simples. También mostramos que cuando
consideramos ceros de polinomios cúbicos sobre el álgebra
de complejos zeones finito-dimensional CZ2, no hay casos in-
determinados.
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1 Introduction

The n-particle (real) zeon algebra is a commutative R-algebra generated by a fixed collection

{ζ{i} : 1 ≤ i ≤ n} and the scalar identity 1 = ζ∅, whose generators satisfy the zeon commutation

relations

ζ{i}ζ{j} + ζ{j}ζ{i} =

2ζ{i}ζ{j} i ̸= j,

0 otherwise.

We denote this algebra by Zn. Like fermions the algebra has null-square generators; like bosons,

the generators commute. Hence the name “zeon algebra”, first suggested by Feinsilver [2].

Combinatorial properties of zeons have proven useful in problems ranging from enumerating paths

and cycles in finite graphs to routing problems in communication networks. Where classical ap-

proaches to routing problems require construction of trees and the use of heuristics to prevent

combinatorial explosion, the zeon algebraic approach avoids tree constructions and heuristics.

Much of the essential background on algebraic and combinatorial properties and applications of

zeons is summarized in the books [9] and [13]. Other works involving zeons include combinatorial

identities developed by Neto [5–8] and first and second order differential equations considered by

Mansour and Schork [4].

Polynomials over the n-particle complex zeon algebra, denoted by CZn, were first considered in [11].

We extend the finite-dimensional zeon algebras to the infinite-dimensional complex zeon algebra

CZ and focus on zeros of cubic polynomials over CZ. Our study is restricted to monic polynomials

of the form φ(u) = u3 + αu2 + βu + γ ∈ CZ[u], which generalize naturally to non-monic cubic

polynomials with invertible leading coefficients. Observing that

φ
(
u− α

3

)
= u3 + 3qu− 2r,

where q = 1
3β −

1
9α

2 and r = 1
6 (βα − 3γ) − 1

27α
3, our work is further simplified by focusing on

solutions of the depressed cubic equation u3 + 3qu− 2r = 0.

Traditionally, the cubic discriminant ∆f = 18abc− 4a3b+ a2b2 − 4b3 − 27c2 is used to classify the

zeros of the real monic cubic function f(x) = x3 + ax2 + bx + c ∈ R[x]. In particular, ∆f = 0

implies that the polynomial has a repeated zero, ∆f < 0 implies distinct real zeros, and ∆f > 0

indicates that the polynomial has one real zero and a conjugate pair of complex zeros.

To classify the zeon zeros of monic zeon cubic function φ(u), we define the zeon cubic discriminant

by ∆φ = q3 + r2. When ∆φ is invertible, the zeon cubic φ has three spectrally simple zeon

zeros. If q is also invertible, the zeros can be obtained from the depressed zeon cubic formula (or

general extension thereof). If q is nilpotent, zeros can be obtained using the spectrally simple zeros

algorithm recalled in Section 2. By contrast, when ∆φ is not invertible, the zeon cubic φ either
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has no zeros or uncountably many of them. Some examples and special cases are considered in

detail in Section 4.

We proceed as follows. Terminology, notational conventions, and essential results on kth roots of

complex zeons are established in Subsections 1.1 and 1.4. Essential background on zeon polynomials

is recalled in Section 2.

Main results appear in Sections 3 and 4, where depressed and general cubic formulas are presented

and a classification of zeros based on the cubic discriminant is established. Beginning with Theorem

3.2, we show that a depressed cubic φ(u) = u3 +3qu− 2r ∈ CZ[u] with invertible q has zeon zeros

given by u = A1/3 − qA−1/3 for the cube roots of A = r ±
√
q3 + r2 with either choice of sign,

provided q3 + r2 has square roots. The restrictions are relaxed to allow nilpotent q in Theorem

3.5, where we find that if r is invertible, then φ(u) has three spectrally simple zeros, while if r is

nilpotent, then φ has either no zeros or uncountably many nilpotent zeros. Section 3 concludes

with the establishment of a general cubic formula for zeon polynomials in Theorem 3.16.

In Section 4, our attention turns to classification via the cubic discriminant. In Theorem 4.1, we

consider zeon cubic φ(u) = u3 + αu2 + βu+ γ ∈ CZ[u], and define the discriminant ∆φ = q3 + r2,

where q = 1
3β −

1
9α

2, and r = 1
6 (βα − 3γ) − 1

27α
3. We show that if ∆φ is invertible, then φ has

three spectrally simple zeros. On the other hand, if ∆φ is nilpotent, then φ either has no zeros

or has uncountably many zeros. Section 4 concludes with a discussion of classification of cubic

polynomials over the finite-dimensional zeon algebra CZ2.

Examples appearing throughout the paper have been computed using Mathematica with the “Zeon

Essentials” package freely available online via the “Research” link at https://www.siue.edu/

~sstaple.

1.1 Preliminaries

Throughout the paper N, R, and C represent the natural numbers (i.e., positive integers), real

numbers, and complex numbers, respectively.

Let CZ denote the infinite-dimensional complex Abelian algebra generated by a fixed collection

{ζ{i} : i ∈ N} along with the scalar 1 = ζ∅ subject to the zeon commutation relation (ZCR):

{ζ{i}, ζ{j}} = ζ{i}ζ{j} + ζ{j}ζ{i} = 2δijζ{i}ζ{j} := 2δijζ{i,j},

where we employ multi-index notation for the final equality. For each finite subset I of N, define

ζI =
∏
ι∈I

ζι. Letting the finite subsets of positive integers be denoted by [N]<ω, the algebra CZ has

a canonical basis of the form {ζI : I ∈ [N]<ω}. Elements of this basis are referred to as the basis

blades of CZ. The algebra CZ is called the (complex) zeon algebra.

https://www.siue.edu/~sstaple
https://www.siue.edu/~sstaple
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While nonzero scalar multiples of generators also generate the algebra CZ, nontrivial linear combi-

nations of generators are not generators. For example, i ̸= j and a, b ̸= 0 imply (aζ{i} + bζ{j})
2 =

2abζ{i,j}, which is not a generator of the algebra. Hence, the representation is unique up to

generator labeling and scaling.

By the null-square property of the generators {ζi : i ∈ N}, the basis blade product satisfies

ζIζJ =

ζI∪J I ∩ J = ∅,

0 otherwise.
(1.1)

An element u ∈ CZ has canonical expansion u =
∑

I uIζI , where each I is a finite subset of N,

uI ∈ C, and only finitely many of the coefficients uI are nonzero. Two elements u, v are equal if

and only if uI = vI for every multi-index in the canonical expansions.

We note that CZ is graded. For non-negative integer k, the grade-k part of element u =
∑

I uIζI

is defined as

⟨u⟩k =
∑

{I:|I|=k}

uIζI . (1.2)

The mapping ⟨·⟩k : CZ → CZ is clearly a projection onto the subspace of CZ spanned by {ζI :

|I| = k}.

Given z ∈ CZ we write Cz = ⟨z⟩0 for the complex (scalar) part of z, and Dz = z − Cz for the

dual part of z. Here, the term “dual” is motivated by regarding zeons as higher-dimensional dual

numbers.

Remark 1.1. The algebra CZ can be regarded as the algebra of polynomials in commuting null-

square variables ζ{1}, ζ{2}, . . . Equivalently, CZ ∼= C[z1, z2, . . .]/⟨z12, z22, . . .⟩, the quotient of the

algebra of complex polynomials in commuting variables zi by the ideal generated by squares of

variables. The basis blades of CZ correspond to basis monomials of the polynomial algebra.

Definition 1.2. The minimal grade of u ∈ CZ is defined by

♮u =

min {k ∈ N : ⟨Du⟩k ̸= 0} Du ̸= 0,

0 u = Cu.
(1.3)

We emphasize that ♮u = 0 if and only if u is a scalar, in which case u is said to be trivial. As

it is often useful to refer to the minimal grade part of an element u ∈ CZ, we further define the

following notation:

u♮ := ⟨u⟩♮u.
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Example 1.3. Let u = 3 − ζ{2} + 5ζ{3} − 12ζ{1,2,3}. We are looking for the minimal grade and

the minimal grade part of u. Appealing to (1.2), we see that u has nonzero grade-k parts for

k ∈ {0, 1, 3}. In particular,

⟨u⟩0 = 3,

⟨u⟩1 = −ζ{2} + 5ζ{3},

⟨u⟩3 = −12ζ{1,2,3}.

Hence, by Definition 1.3, the minimal grade of u is ♮u = 1 and the minimal grade part of u is

u♮ = ⟨u⟩1 = −ζ{2} + 5ζ{3}.

Finally, we note that the nilpotent elements of CZ form a maximal ideal, which we denote by

CZ◦ = {u ∈ CZ : Cu = 0}.

The invertible elements form a multiplicative abelian group denoted by

CZ× = CZ \ CZ◦ = {u ∈ CZ : Cu ̸= 0}.

1.2 Finite-dimensional complex zeon algebras

Letting [n] denote the n-set {1, . . . , n}, the complex zeon algebra generated by {ζ{i} : i ∈ [n]}
along with the unit scalar 1 is denoted by CZn. As a vector space over C, CZn has dimension 2n.

Given any zeon u ∈ CZ, we define the maximum index of u to be the least positive integer n such

that

u ∈ CZn ⊂ CZn+1 ⊂ CZn+2 ⊂ · · · .

Equivalently, we have the following definition.

Definition 1.4. The maximum index of u ∈ CZ is the unique positive integer n such that u ∈ CZn

and u /∈ CZn−1.

For example, if u = 1 + 3ζ{1,4} − 2ζ{1,3,5}, the maximum index of u is n = 5.

1.3 Multiplicative properties of zeons

The elements of CZ form a multiplicative semigroup, and it is not difficult to establish convenient

formulas for expanding products of zeons. Moreover, u ∈ CZ is invertible if and only if Cu ̸= 0.

The following result is recalled from [1] for reference.
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Proposition 1.5. Let u ∈ CZ, and let κ denote the index of nilpotency1 of Du. It follows that u

is uniquely invertible if and only if Cu ̸= 0, and the inverse is given by

u−1 =
1

Cu

κ−1∑
j=0

(−1)j(Cu)−j(Du)j . (1.4)

One way to see Proposition 1.5 is to first recall that if the geometric series
∑∞

j=0 x
j converges, its

limit is 1
1−x . Again letting a = Cu ̸= 0 and writing u = a+Du, we see that

u−1 = (a+Du)−1 = a−1 1

1− (−aDu)
= a−1

κ−1∑
j=0

(−1)ja−j(Du)j ,

where nilpotency of Du reduces the infinite series to a finite sum, eliminating any concern about

lack of convergence.

1.3.1 Products and partitions

For convenience, we recall without proof the multinomial theorem. Let {x1, . . . , xm} be a collection

of commuting variables. For any positive integer m and any nonnegative integer n, one has

(x1 + x2 + · · ·+ xm)n =
∑

k1+···+km=n
k1,k2,...,km≥0

(
n

k1, k2, . . . , km

) m∏
ℓ=1

xℓ
kℓ , (1.5)

where (
n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!

is a multinomial coefficient. We further take x0 = 1 even when x = 0.

When n = 2, (1.5) reduces to the more commonly seen binomial theorem. The importance of the

multinomial theorem when considering powers of zeons becomes evident when one realizes that

the nonnegative integers k1, . . . , km are restricted to values 0 or 1 when x1, . . . , xm are zeon basis

blades.

For an immediate consequence, let u, v ∈ CZ, write u =
∑

I uIζI and v =
∑

I vIζI , and let

the product w = uv be written w =
∑
I

wIζI . Then for fixed multi-index I, the corresponding

coefficient of ζI in w is given by

wI =
∑
K⊆I

uKvI\K .

Extending to powers of zeons, let u =
∑
I

uIζI ∈ CZ. For positive integer k, let w = uk be written

1In particular, κ is the least positive integer such that (Du)κ = 0.
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w =
∑
I

wIζI . For any fixed multi-index I, the corresponding coefficient of ζI in w is given by

wI =

k∑
j=0

k!

j!
u∅

j
∑

π∈P(I)
|π|=k−j

uπ.

Here, P(I) denotes the collection of partitions of the multi-index I. When π ∈ P(I) is a partition,

|π| denotes the number of blocks (nonempty subsets of I) in the partition π and uπ :=
∏

b∈π ub;

i.e., the product of coefficients ub in the expansion of u corresponding to blocks b in the partition

π. Note that the scalar part of u is Cu = u∅. By convention, we define u∅0 = 1 when u∅ = 0.

1.4 Complex zeon roots: Existence and recursive formulations

Invertible zeons have roots of all positive integer orders. Generalizing the result established in [1]

for Zn, their existence is established recursively as follows.

Theorem 1.6. Let w ∈ CZ×, and let k ∈ N. Then, there exists some z ∈ CZ× such that zk = w.

Further, writing w = u+ vζ{n}, where u, v ∈ CZn−1, z is computed recursively by

z = w1/k = u1/k +
1

k
u−(k−1)/kvζ{n}.

Proof. Proof is by induction on the maximum index n of w. When n = 1, let w = w∅ + bζ{1},

where w∅ = Cw ̸= 0 and b ∈ C. Applying the binomial theorem and null-square properties of zeon

generators, one finds

(
w∅

1/k +
b

kw∅(k−1)/k
ζ{1}

)k

= w∅ + kw∅
(k−1)/k b

kw∅(k−1)/k
ζ{1} = w∅ + bζ{1}.

Next, suppose the result holds for some n−1 ≥ 1 and let w ∈ CZn be written w = u+vζ{n}, where

u, v ∈ CZn−1. In particular, this implies u ∈ CZn
×. Let α = u1/k, and let z = α+

1

k
ζ{n}α

−(k−1)v.

Then

zk =

(
α+

1

k
α−(k−1)vζ{n}

)k

= u+ kα(k−1) 1

k
α−(k−1)vζ{n} = u+ vζ{n} = w.

Theorem 1.6 establishes the existence of kth roots of invertible zeons. The following corollary

shows that for each kth root of Cw, there exists exactly one zeon kth root of w.
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Corollary 1.7. Let w ∈ CZ×, and let k ∈ N. Then, w has exactly k distinct kth roots; i.e.,

♯{u : uk = w} = k.

Proof. Given any invertible zeon w, the nonzero scalar part Cw has precisely k distinct kth roots

in C. We claim that for each of these scalars λ, there is precisely one zeon z satisfying Cz = λ and

zk = w.

To see this, suppose uk = w = vk, where Cu = Cv = λ and observe that u− v is nilpotent because

u = λ+Du and v = λ+Dv. Note that the product wδ of invertible w and nilpotent δ, is zero if

and only if δ = 0, since 0 = w−10 = δ. With the assumption uk = vk, we then have

uk − vk = (u− v)(uk−1 + uk−2v + · · ·+ vk−1)

= (u− v)
[
(λk−1 + δ1) + (λk−1 + δ2) + · · ·+ (λk−1 + δk)

]
= (u− v)

[
kλk−1 + δ

]
,

where δ = δ1+ · · ·+ δk is nilpotent because CZ◦ is an ideal. It is clear that kλk−1+ δ is invertible,

so (u− v)(kλk−1 + δ) = 0 implies (u− v) = 0.

Given invertible u ∈ CZ and positive integer k, the principal kth root of u is defined to be the zeon

kth root of u whose scalar part is the principal kth root of Cu ∈ C.

1.4.1 Roots of nilpotent zeons

Generally, for positive integer k ≥ 2, a nilpotent zeon has either no kth roots or uncountably many

of them. We restrict our attention to square roots and cube roots here because these are the only

roots of interest when dealing with cubic polynomials.

An element u =
∑

{I∈N≤ω} uIζI has a square root w =
∑

J wJζJ if for each coefficient uI in the

expansion of u, the coefficients of w satisfy

∑
K⊂I

wKwI\K = uI . (1.6)

For each nonempty multi index I, (1.6) is an equation in 2|I| − 1 variables. Letting n denote

the smallest positive integer such that u ∈ CZn
◦, and observing that squares of elements in the

maximal ideal CZ◦ always have minimal grade greater than 1, it follows that there are 2n − n− 1

such equations to consider. The resulting underdetermined system of 2n−n−1 equations in 2n−2

variables then has either no solution or uncountably many solutions.
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Example 1.8. Consider the nilpotent zeon u = 4ζ{1,2} − 5ζ{1,3} − 10ζ{2,3} − 5ζ{1,2,3}. A square

root w =
∑

I wIζI of u must satisfy the following system of equations:

w{1}w{2} = 2,

w{1}w{3} = −5

2
,

w{2}w{3} = −5,

w{3}w{1,2} + w{2}w{1,3} + w{1}w{2,3} = −5

2
.

One such solution is

w = −ζ{1} − 2ζ{2} +
5

2
ζ{3} + ζ{1,2} + ζ{1,3} + 3ζ{2,3}.

Similarly, a nilpotent zeon of minimal grade 3 or more having expansion u =
∑

{I∈N≤ω:|I|≥3} uIζI

has cube root w =
∑

J wJζJ if for each coefficient uI , the coefficients of w satisfy

∑
{K,L⊂I:K∩L=∅}

wKwLwI\(K∪L) = uI .

This leads to an underdetermined system of 2n −
(
n
2

)
− n − 1 equations in 2n − 2 variables with

either no solution or uncountably many solutions.

We turn now to a simple special case for which symbolic computation is straightforward.

1.4.2 Fundamental roots of nonzero null monomials

In this section we consider kth roots of aζI for a ∈ C× and nonempty I ⊂ N. Such elements are

referred to as nonzero null monomials2 of CZ.

Remark 1.9. Nonzero null monomials are square roots of zero. It follows that every kth root of

a nonzero null monomial is a 2kth root of zero.

Definition 1.10. Given a nonzero null monomial w = aζI and a k-block partition π of I, a

fundamental kth root of w is any nilpotent zeon of the form

uπ =
∑
J∈π

uJζJ , (1.7)

satisfying (uπ)
k = w.

2In particular, aζI is a zero of the monomial φ(u) = u2 for any I ̸= ∅.
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For purposes of symbolic computation, two forms of roots are particularly convenient. Roots of

the form (1.8) are referred to as flat form fundamental kth roots of u, while roots of the form (1.9)

will be referred to as spike form fundamental kth roots of u.

Lemma 1.11. Given a nonzero null monomial w = aζI , a nilpotent zeon of the form

uπ = k

√
a

k!

∑
J∈π

ζJ (1.8)

satisfies uπk = w for any k-block partition π of the multi index I and any complex kth root of a
k! .

Moreover,

uπ,M =
∑

J∈π\M

ζJ +
a

k!
ζM (1.9)

satisfies uπk = w for any fixed block M of the k-block partition π of the multi index I.

Proof. By direct computation via the multinomial theorem,

(
k

√
a

k!

∑
J∈π

ζJ

)k

=
a

k!
k!

k∏
ℓ=1

ζIℓ = aζI =

 ∑
J∈π\M

ζJ +
a

k!
ζM

k

.

Hence, the result.

Example 1.12. The flat form fundamental square roots of aζ{1,2,3} are

u1|23 = ±
√
a

2
(ζ{1} + ζ{2,3}), u2|13 = ±

√
a

2
(ζ{2} + ζ{1,3}),

u3|12 = ±
√
a

2
(ζ{3} + ζ{1,2}),

and the spike form fundamental square roots are

u1|23,{2,3} =
(
ζ{1} +

a

2
ζ{2,3}

)
, u2|13,{1,3} =

(
ζ{2} +

a

2
ζ{1,3}

)
,

u3|12,{1,2} =
(
ζ{3} +

a

2
ζ{1,2}

)
, u1|23,{1} =

(a
2
ζ{1} + ζ{2,3}

)
,

u2|13,{2} =
(a
2
ζ{2} + ζ{1,3}

)
, u3|12,{3} =

(a
2
ζ{3} + ζ{1,2}

)
.

Notation. The numbers of k-block partitions of sets containing m elements are given by Stirling

numbers of the second kind, denoted
{
m
k

}
.
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Lemma 1.13. The number of fundamental kth roots of a null monomial of grade m ≥ k is k
{
m
k

}
.

Proof. Each partition of I into k nonempty subsets {Iℓ : 1 ≤ ℓ ≤
{
m
k

}
} gives a principal kth root

of aζI since

(a1/kζIℓ)
k = k!(a1/k)k

k∏
ℓ=1

ζIℓ = aζI .

Each a ∈ C× has k distinct complex kth roots, so there are k zeon kth roots of the form seen in

(1.8) for each k-block partition π of I.

2 Zeon polynomials

Let f(z) = amz
m + · · · + a1z + a0 (am ̸= 0) be a polynomial function with complex coefficients,

and recall that by the Fundamental Theorem of Algebra, f(z) has exactly m complex zeros. If

f(z) can be written in the form f(z) = (z− r)ℓg(z), where ℓ ∈ N and g(r) ̸= 0, then r is said to be

a zero of multiplicity ℓ of f(z). For convenience, µf (r) will denote the multiplicity of r as a zero

of f(z).

On the other hand, if φ(u) = αmu
m+ · · ·+α1u+α0 ∈ CZ[u] is a polynomial with zeon coefficients,

it is not obvious how many zeros this polynomial may have in CZ. For example, φ(u) = u2 − ζ{1}
has no zeon zeros because ζ{1} has no square root.

2.1 Spectrally simple zeros of zeon polynomials

Given a complex zeon polynomial φ(u) = αmu
m+ · · ·+α1u+α0, a complex polynomial fφ : C→ C

is induced by

fφ(z) =

m∑
ℓ=0

(Cαℓ)z
ℓ.

It follows that

fφ(Cu) =

m∑
ℓ=0

(Cαℓ)(Cu)
ℓ = C(φ(u)),

so that fφ ◦ C = C ◦ φ.

We restrict our attention to zeon polynomials with invertible leading coefficients because when αm

is nilpotent, the induced polynomial fφ(z) is of lower degree than φ(u). Moreover, as a matter of

convenience the zeros of φ(u) are exactly the zeros of the monic polynomial αm
−1φ(u).

The zeon extension of the Fundamental Theorem of Algebra developed in [11] shows that φ(u) has

a simple zeon zero if the complex polynomial fφ(z) has a simple complex zero.
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Let φ(u) be a nonconstant monic zeon polynomial. A zeon λ ∈ CZ is said to be a simple zero of

φ if φ(u) = (u− λ)g(u) for some zeon polynomial g satisfying g(λ) ̸= 0.

The spectrum of an element u in a unital algebra is the collection of scalars λ for which u − λ is

not invertible. Hence, the spectrum of u ∈ CZ is the singleton {λ = Cu}, motivating the next

definition.

Definition 2.1. A simple zero λ0 ∈ CZ of φ(u) is said to be a spectrally simple if Cλ0 is a simple

zero of the complex polynomial fφ(z).

2.1.1 Fundamental theorem of zeon algebra

The Fundamental Theorem of Zeon Algebra presented in [11] for the finite dimensional zeon algebra

CZn shows that a zeon polynomial φ(u) ∈ CZn[u] has a spectrally simple zero λ = λ0 + Dλ

whenever the complex polynomial fφ(z) ∈ C[z] has a simple zero λ0 ∈ C. The theorem also holds

also for a polynomial over CZ by first defining the maximum index of a zeon polynomial φ to be

the least positive integer n such that φ(u) ∈ CZn[u] and proceeding as in the finite-dimensional

zeon algebra.

For reference, the theorem is recalled here without proof. We note that it also provides a method

for calculating spectrally simple zeros of any zeon polynomial.

Theorem 2.2 (Fundamental Theorem of Zeon Algebra). Let φ(u) ∈ CZ[u] be a monic zeon

polynomial of degree m and having maximum index n, and let fφ(z) ∈ C[z] be induced by φ. If

λ0 ∈ C is a simple zero of fφ(z), let g be the unique complex polynomial such that fφ(Cu) =

(Cu − λ0)g(C(u)). Then φ(u) has a simple zero λ such that Cλ = λ0. Letting n denote the

maximum index of φ(u), for 1 ≤ k ≤ n, the grade-k part of λ (denoted λk) is given by

λk = − 1

g(λ0)

〈
φ

(
k−1∑
i=0

λi

)〉
k

.

Moreover, such a zero λ is unique.

The idea behind the proof is that when λ0 is a simple zero of fφ(z), the remainder φ(λ0) of φ(u)

when divided by u− λ0 has zero scalar part. The minimal grade part of the remainder w = φ(λ0)

can then be utilized to construct a new zeon element λ0+λ♮w having the property that φ(λ0+λ♮w)

has higher minimal grade than φ(λ0). Grades of all remainders will be at most n (the maximum

index of φ(u)), so the process terminates in a finite number of steps.

Of particular significance, Theorem 2.2 provides an algorithm by which a spectrally simple zeon

zero can be calculated. Algorithm 1 returns the spectrally simple zeon zero λ of φ whose scalar

part λ0 satisfies fφ(λ0) = 0.



CUBO
27, 3 (2025)

Zeros of cubic polynomials in zeon algebra 565

Algorithm 1: Compute spectrally simple zeon zero.
input : Zeon polynomial φ(u) over CZn and a simple nonzero root λ0 of the associated

complex polynomial C(φ(u)).
output: Zeon zero λ of φ(u) with Cλ = λ0.

Initialize complex polynomial g(Cu).

g(Cu)← C(φ(u))

Cu− λ0
;

Note g(Cu) satisfies C(φ(u)) = (Cu− λ0)g(Cu), where g(λ0) ̸= 0.

ξ ← φ(λ0)♮/g(λ0);
λ← λ0 − ξ;
while 0 < ♮ξ ≤ n do

ξ ← φ(λ)♮/g(λ0);

λ← (λ− ξ);
return λ;

When φ(u) ∈ CZ[u] is of degree m ≥ 1 and the zeros of fφ(z) are all simple, we see that φ(u) has

exactly m complex zeon zeros. For example, when α ∈ CZ×, φ(u) = uk + α has exactly k distinct

complex zeon zeros.

2.2 Spectrally nonsimple zeon zeros

Algorithm 1 is useful for computing spectrally simple zeros of φ(u), but it is not applicable to any

zero w whose scalar part Cw is a multiple zero of the induced complex polynomial fφ satisfying

C(φ(u)) = fφ(Cu). These spectrally nonsimple zeros are considered next.

A zero λ0 ∈ CZ of φ(u) ∈ CZ[u] is said to be spectrally nonsimple if Cλ0 is a multiple zero of

the induced complex polynomial fφ. We note that zeon zeros of multiplicity greater than one are

included among spectrally nonsimple zeros.

It was shown in [11] that if a monic polynomial φ(u) ∈ CZ[u] has distinct complex zeon zeros w1, w2

satisfying Cw1 = Cw2 = w∅, then φ(u) has uncountably many zeros of the form w = w∅ +Dw.

As a consequence, if φ ∈ CZ[u] has a zero z ∈ CZ of multiplicity two or greater, then φ has

uncountably many zeros w ∈ CZ satisfying Cw = Cz .

Lacking an algorithm for computing spectrally nonsimple zeros of zeon polynomials, our attention

turns to zeon extensions of well-known special cases: quadratic and cubic polynomials.

2.2.1 The zeon quadratic formula

We close this review of zeon polynomials by recalling a basic result concerning zeros of quadratic

zeon polynomials. A zeon quadratic polynomial has solutions if and only if its discriminant has a
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square root [3].

Theorem 2.3 (Zeon Quadratic Formula). Let φ(u) = αu2 + βu+ γ be a quadratic function with

zeon coefficients from CZ, where Cα ̸= 0. Let ∆φ = β2 − 4αγ denote the zeon discriminant of φ.

The zeros of φ are given by

φ−1(0) =

{
α−1

2
(w − β) : w2 = β2 − 4αγ

}
.

In particular,

(1) When ∆φ = 0, the zeros of φ are given by u = −α−1β/2 + η for any η ∈ CZ satisfying

η2 = 0.

(2) When C∆φ ̸= 0, φ(u) = 0 has two distinct solutions.

(3) If ∆φ ̸= 0 is nilpotent and φ(u) = 0 has a solution, then it has uncountably many solutions.

To see the result, begin by writing αu2 + βu + γ = α−1

4 ((2αu + β)2 − (β2 − 4αγ)) and expand.

This reduces the problem to seeking square roots of the zeon discriminant. We are now ready to

turn our attention to cubic polynomials over CZ.

3 Cubic polynomials with zeon coefficients

Beginning with the general zeon cubic equation z3 + αz2 + βz + γ = 0, where α, β, γ ∈ CZ and

α ̸= 0, the depressed cubic equation is obtained via the substitution z = u− α/3. In particular,

0 =
(
u− α

3

)3
+ α

(
u− α

3

)2
+ β

(
u− α

3

)
+ γ = u3 +

(
β − α

3

)
u+

2α3

27
− αβ

3
+ γ

= u3 + 3

(
β

3
− α2

9

)
u− 2

(
−α3

27
+
αβ

6
− γ

2

)
= u3 + 3qu− 2r

where q = 1
3β−

1
9α

2 and r = 1
6 (βα− 3γ)− 1

27α
3. It follows that depressed cubics are sufficient for

our purposes.

We note that any monic cubic polynomial having a spectrally simple zero λ can be reduced via

polynomial division to the product φ(u) = (u− λ)ψ(u), where ψ(λ) ̸= 0 is a quadratic polynomial

over CZ. The remaining zeros of φ(u) can then be classified by the zeon quadratic formula of

Theorem 2.3.
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Example 3.1. To motivate our discussion, consider the depressed zeon cubic equation φ(u) = 0

where

φ(u) = u3 + u
(
−18ζ{1,2,3} − 6ζ{1} + 9ζ{2} − 9

)
− 10ζ{1,2} − 6ζ{1,2,3}. (3.1)

The induced scalar cubic polynomial is fφ(z) = z3 − 9z, which has simple zeros {−3, 0, 3}. Con-

sequently, φ(u) has three spectrally simple zeon zeros, each of which can be found by applying

Algorithm 1. Applying the algorithm with simple zero λ0 = −3 of fφ(z), we obtain the first zero:

u1 = −3 + 1

18
ζ{1,2} −

8

3
ζ{1,2,3} − ζ{1} +

3ζ{2}

2
.

At this point, we may either repeat the algorithm with the other two zeros of fφ(z) or we may

perform polynomial division to write φ(u) = (u− u1)ψ(u) and apply the zeon quadratic formula to

ψ(u) to obtain the remaining zeros. In the latter method, we apply the quadratic formula to

ψ(u) = u2 + u

(
1

18
ζ{1,2} −

8

3
ζ{1,2,3} − ζ{1} +

3ζ{2}

2
− 3

)
− 10

3
ζ{1,2} − 2ζ{1,2,3},

which yields the remaining zeros:

u2 = −10

9
ζ{1,2} −

2

3
ζ{1,2,3},

u3 = 3 +
19

18
ζ{1,2} +

10

3
ζ{1,2,3} + ζ{1} −

3

2
ζ{2}.

We point out that the approach taken in Example 3.1 involves the application of Algorithm 1 once,

followed by polynomial division and an application of the zeon quadratic formula. Alternatively,

since the zeros of φ(u) were all spectrally simple, we could have applied Algorithm 1 three times.

We further point out that when the scalar polynomial fφ(z) has a single zero of multiplicity three,

the approach taken in Example 3.1 fails completely.

To treat such cases as well as to gain deeper insight on zeros of zeon cubics for all cases, we

now consider a zeon extension of the cubic formula. The complex zeon result below is based on

Cardano’s approach to cubic polynomials with real coefficients, as presented in [10].

Theorem 3.2 (Depressed Zeon Cubic Formula). Let φ(u) = u3 + 3qu − 2r ∈ CZ[u], where

Cq ̸= 0 and square roots of q3 + r2 are assumed to exist. The zeon zeros of φ(u) are given by

u = A1/3 − qA−1/3, for the cube roots of A = r ±
√
q3 + r2 with either choice of sign.

Proof. Note that A is invertible if and only if Cq ̸= 0, since CA = 0 if and only if Cr =

∓C
(√

q3 + r2
)
. Squaring both sides yields Cq3 = 0. Proof is then by direct substitution, where

all necessary cube roots, square roots, and inverses exist. Assuming A = r +
√
q3 + r2, it follows

that
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φ(A
1
3 − qA− 1

3 ) = (A
1
3 − qA− 1

3 )3 + 3q(A
1
3 − qA− 1

3 )− 2r

= A− 3A
2
3 qA− 1

3 + 3A
1
3 q2A− 2

3 − q3A−1 + 3qA
1
3 − 3q2A− 1

3 − 2r

= A− 3qA
1
3 + 3q2A− 1

3 − q3A−1 + 3qA
1
3 − 3q2A− 1

3 − 2r

= A− q3A−1 − 2r

= (r2 + 2r
√
q3 + r2 + q3 + r2 − q3)(r +

√
q3 + r2)−1 − 2r

= 2r(r +
√
q3 + r2)(r +

√
q3 + r2)−1 − 2r = 2r − 2r = 0.

Similar calculations establish the result for A = r −
√
q3 + r2.

Since A is assumed to be invertible in Theorem 3.2, there are three distinct zeon cube roots of A

for any square root of q3 + r2.

Example 3.3 (Cq ̸= 0, q3 + r2 invertible). Consider the zeon cubic φ(u) = u3 + 3qu− 2r defined

by

φ(u) = u3 + u
(
6ζ{1,2} − 12ζ{2,3} − 3ζ{3} − 36

)
+ 6ζ{2} − 4ζ{3}.

We note that Cq ̸= 0, since

q = −12 + 2ζ{1,2} − 4ζ{2,3} − ζ{3}.

Further, q3 + r2 is invertible since r is clearly nilpotent. The zeros of φ(u) are then found via

Theorem 3.2:

u1 = −6 + 1

2
ζ{1,2} −

215

216
ζ{2,3} −

5

432
ζ{1,2,3} −

ζ{2}

12
− 7

36
ζ{3},

u2 = − 1

72
ζ{2,3} −

1

54
ζ{1,2,3} +

ζ{2}

6
−
ζ{3}

9
,

u3 = 6− 1

2
ζ{1,2} +

109

108
ζ{2,3} +

13

432
ζ{1,2,3} −

1

12
ζ{2} +

11

36
ζ{3}.

When q3 + r2 ∈ CZ is nilpotent and has a square root, uncountably many square roots exist. In

this case, the associated cubic equation has infinitely many solutions.

Example 3.4 (Cq ̸= 0, q3 + r2 ∈ CZ◦). Consider the depressed zeon cubic φ(u) = u3 + 3qu− 2r,

where

q = −ζ{1,2} + ζ{1,3} + ζ{2,3} + 2ζ{1} − 2ζ{2} − 1,

r = −3ζ{1} + 3ζ{2} + 1.
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The nilpotent element q3 + r2 = 3ζ{1,2} + 3ζ{1,3} + 3ζ{2,3} has uncountably many square roots;

for example, ρ =

√
3

2

(
ζ{1} + ζ{2} + ζ{3}

)
. It follows that φ(u) has uncountably many zeros of the

form (r + ρ)1/3 − q(r + ρ)−1/3. In particular,

u0 = 2− 2ζ{1} + 2ζ{2} +
10

3
ζ{1,2} −

2

3
ζ{1,3} −

2

3
ζ{2,3}

satisfies φ(u0) = 0.

Next we consider the depressed cubic φ(u) = u3 + 3qu − 2r, where Cq = 0. It follows that the

complex polynomial induced by φ is fφ(z) = z3 − 2Cr. If Cr = 0, then fφ(z) = z3 has one zero 0

of multiplicity three. Hence, if φ has zeros, there are uncountably many and they are all nilpotent.

On the other hand, if Cr ̸= 0, then fφ(z) has exactly three distinct complex zeros, so that φ has

three spectrally simple zeros. Thus, we have derived the following theorem.

Theorem 3.5 (Depressed Cubic Zeros II). Let φ(u) = u3+3qu−2r ∈ CZ[u], where Cq = 0. Then

the following are true.

(1) If Cr ̸= 0, then φ(u) has three spectrally simple zeros.

(2) If Cr = 0, then φ has either no zeros or uncountably many nilpotent zeros.

We illustrate Theorem 3.5 with the following example.

Example 3.6. The case Cq = 0 is illustrated by the zeon cubic polynomial

φ(u) = u3 +

(
−2

3
ζ{1,2} +

4

3
ζ{1,3} +

4

3
ζ{2,3} −

8

3
ζ{1,2,3}

)
u− 8

9
ζ{1,2,3}.

In this example r = 4
9ζ{1,2,3}, so that φ(u) either has no zeros or uncountably many. Letting

s = ζ{1} + ζ{2} − ζ{3} + ζ{1,2} − ζ{1,3}, it is seen that φ(s) = 0. Moreover, φ(s+ aζ{1,2,3}) = 0 for

any a ∈ C.

3.1 Special case: φ(u) = u3 + 3qu

Note that if r = 0, the zeros of φ(u) include {0,±
√
−3q}, provided the square roots exist. When

q is invertible (i.e., Cq ̸= 0), these are the three distinct zeros of φ(u). When Cq = 0, φ(u) = 0

has uncountably many solutions.

Our goal in this subsection is to describe some of the zeros of u3 + 3qu when q is nilpotent.

Definition 3.7. Let q =
∑

I qIζI ∈ CZ. The index support of q is defined to be

[q] =
⋃

{I:qI ̸=0}

I. (3.2)
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The index support of a nilpotent q is used to obtain a null monomial that “annihilates” q; i.e.,

qζ[q] = 0. For this reason, ζ[q] will be referred to as an annihilator of q ∈ CZ◦. More generally,

qζ[q] = (Cq)ζ[q] for arbitrary q ∈ CZ, so that ζ[q] is an annihilator of Dq.

Example 3.8. Let q = 3 + 4ζ{2} − 5ζ{1,3,4}. Then [q] = {1, 2, 3, 4} and

qζ[q] = (3 + 4ζ{2} − 5ζ{1,3,4})ζ{1,2,3,4} = 3ζ{1,2,3,4}.

While it is clear that when q is nilpotent, qζI = 0 for all I ⊇ [q], a nilpotent q may also be

annihilated by a basis blade ζI for one or more I ⊊ [q]. Letting Nq = {I ⊆ [q] : qζI = 0}, it follows

that w

q
∑
I∈Nq

aIζI = 0

for any linear combination of basis blades indexed by Nq. The resulting subspace of CZ is denoted

by AnnZ(q).

It is clear that AnnZ(u) ∩ AnnZ(v) ⊆ AnnZ(u + v) because z ∈ AnnZ(u) ∩ AnnZ(v) implies

z(u + v) = zu + zv = 0. However, the reverse inclusion need not hold, as illustrated in Example

3.9.

Example 3.9. Let u = ζ{1} + ζ{2}, v = −ζ{2} ∈ CZ◦. Letting z = ζ{1}, we see that

z(u+ v) = ζ{1}(ζ{1} + ζ{2} − ζ{2}) = ζ{1}
2 = 0,

so that z ∈ AnnZ(u+ v) even though z /∈ AnnZ(u) and z /∈ AnnZ(v).

With the concept of zeon annihilators in hand, we are ready to present our result on zeros of

φ(u) = u3 + 3qu when q is nilpotent.

Theorem 3.10 (Zeros of φ(u) = u3 + 3qu when Cq = 0). Let φ(u) = u3 + 3qu ∈ CZ[u], where

q ̸= 0 and Cq = 0. Then,

(1) φ(z) = 0 for any z ∈ AnnZ(q) satisfying κ(z) ≤ 3; and

(2) if q has square roots, then φ(z) = 0 for any z ∈ {±
√
−3q}.

In particular, φ(aζ[q]) = 0 for a ∈ C.

Proof. First, for any z ∈ AnnZ(q) satisfying κ(z) ≤ 3,

φ(z) = z3 + 3qz = 0 + 0 = 0.
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Second, let (−3q)1/2 = {z ∈ CZ : z2 = −3q} and recall that this set has infinite cardinality when

it is nonempty. It follows that for each z ∈ (−3q)1/2,

φ(z) = z(z2 + 3q) = z(−3q + 3q) = 0.

Finally, ζ[q] ∈ AnnZ(q) satisfies κ(ζ[q]) = 2, so φ(aζ[q]) = 0 for all a ∈ C.

Theorem 3.10 does not characterize all zeros of the cubic φ(u) = u3+3qu, as illustrated by Example

3.11.

Example 3.11. Consider the cubic φ(u) = u3 + 3qu, where

q =
1

3
ζ{1,2,3} −

2

3
ζ{1,2} −

2

3
ζ{1,3} −

2

3
ζ{2,3}.

Letting z = ζ{1} + ζ{2} + ζ{3}, one finds that z2 = 2(ζ{1,2} + ζ{1,3} + ζ{2,3}), z2 +3q = ζ{1,2,3}, and

z3 = 6ζ{1,2,3}, so that κ(z) > 3 and z /∈ (−3q)1/2. Further, z /∈ AnnZ(q) because

qz =
1

3
(ζ{1,2,3} − 2ζ{1,2} − 2ζ{1,3} − 2ζ{2,3})(ζ{1} + ζ{2} + ζ{3}) = −2ζ{1,2,3}.

Clearly, z fails to satisfy the sufficient conditions described in Theorem 3.10. However, z ∈ φ−1(0)

since

φ(z) = z3 + 3qz = 6ζ{1,2,3} − 6ζ{1,2,3} = 0.

Corollary 3.12. Let φ(u) = u3 − aζIu ∈ CZ[u], where a ̸= 0 and |I| ≥ 2. Then φ(u) = 0 has{|I|
2

}
flat form solutions of the form

uπ =

√
a

2

∑
J∈π

ζJ ,

where π ranges over the 2-block partitions of the multi index I.

Proof. Note that u3 − aζIu = u(u2 − aζI) = 0. Let π be a 2-block partition of I. Let K be one

block of the partition. It follows that

uπ =

√
a

2
(ζK + ζI\K),

so that

φ(uπ) = uπ(uπ
2 − aζI) = uπ

((√
a

2
(ζK + ζI\K)

)2

− aζI

)
= uπ

a

2
(2aζI − aζI) = uπ(aζI − aζI) = 0.
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The number of two block partitions π of I is
{|I|

2

}
, so the result follows from Lemma 1.13.

3.2 Special case: q = 0

Lemma 3.13 (Depressed cubics: q = 0). Let φ(u) = u3 − 2r ∈ CZ[u]. Then the following are

true.

(1) If r = 0, then φ−1(0) = {η ∈ CZ◦ : κ(η) ≤ 3}.

(2) If Cr ̸= 0, then φ has three spectrally simple zeros: φ−1(0) = (2r)1/3.

(3) If r ̸= 0 and Cr = 0, then φ has either no zeros or uncountably many zeros; in particular,

φ−1(0) = {ω : ω3 = 2r}.

Proof. Consider the zeon cubic φ(u) = u3 − 2r.

(1) Clearly φ(η) = η3 = 0 if and only if η is nilpotent of index 3 or less.

(2) If r is invertible, then u3 − 2r = 0 if and only if u is a cube root of 2r. There are three such

zeros, one for each complex cube root of C2r.

(3) When r is nonzero and nilpotent, the zeros of φ(u) are precisely the nilpotent cube roots of

2r. As seen in Section 1.4.1, 2r has either no cube roots or uncountably many of them.

Corollary 3.14. Let φ(u) = u3 − aζI ∈ CZ[u], where a ̸= 0 and |I| ≥ 3. It follows that φ(u) = 0

has
{|I|

3

}
flat form solutions of the form

uπ = 3

√
a

6

∑
J∈π

ζJ ,

where π ranges over the 3-block partitions of the multi index I.

Proof. Proceeding as in the proof of Corollary 3.12, let π be a 3-block partition of I. Let J,K,L

be the blocks of partition π. It follows that

uπ = 3

√
a

6
(ζJ + ζK + ζL),

so that

φ(uπ) =

(
3

√
a

6
(ζJ + ζK + ζL)

)3

− aζI =
a

6
6ζJζKζL − aζI = aζI − aζI = 0.

The number of three block partitions π of I is
{|I|

3

}
, so the result follows from Lemma 1.13.
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Example 3.15. Consider the cubic polynomial

φ(u) = u3 + u2
(
3− ζ{1}

)
+ u

(
−ζ{1,2} − 2ζ{1} + 3

)
+ 1− ζ{1} − ζ{1,2}.

Writing φ(u) = u3 + αu2 + βu + γ, let q =
(

β
3 −

α2

9

)
and let r = 1

6 (βα − 3γ) − 1
27α

3, so that

φ(u) = u3 + 3qu − 2r. It follows that ζ[q] = ζ{1,2} and that q has spike form fundamental square

roots ζ{1} − 3
2ζ{2} and ζ{2} − 3

2ζ{1}, the (uncountably many) zeros of φ(u) include the following:

u1 = −1 + 1

3
ζ{1} + ζ{1,2},

u2 = −1 + 4

3
ζ{1} −

3

2
ζ{2},

u3 = −1− 7

6
ζ{1} + ζ{2}.

These zeros are easily confirmed by evaluating the polynomial.

3.3 A general cubic formula

For convenience in symbolic computation, a general cubic formula is now obtained as a corollary

of Theorem 3.2.

Theorem 3.16 (General Zeon Cubic Formula). Let φ(u) = u3 + αu2 + βu + γ ∈ CZ[u], let

q = 1
3β −

1
9α

2 and let r = 1
6 (βα − 3γ) − 1

27α
3. Suppose Cq ̸= 0 and set ∆φ = q3 + r2. Suppose

∆φ has a square root δ. Letting s1 ∈ (r + δ)1/3 and s2 ∈ (r − δ)1/3, it follows that φ(u) has zeros

given by

u1 = (s1 + s2)−
α

3
,

u2 = −1

2
(s1 + s2)−

α

3
+
i
√
3

2
(s1 − s2),

u3 = −1

2
(s1 + s2)−

α

3
− i
√
3

2
(s1 − s2).

Proof. First, the general cubic equation φ(u) = u3 + αu2 + βu + γ = 0 is depressed by the

substitution u 7→ z − α/3 as follows

φ(z − α/3) = (z − α/3)3 + α(z − α/3)2 + β(z − α/3) + γ

= z3 +

(
β − α2

3

)
z +

2α3

27
− αβ

3
+ γ

= z3 +

(
β − α2

3

)
z − 2

(
αβ

6
− α3

27
− γ

2

)
.
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Since Cq ̸= 0, the zeros of φ(z−α/3) are given by the depressed cubic formula of Theorem 3.2. In

particular, the zeros are given by

z = A1/3 −
(
β

3
− α2

9

)
A−1/3,

corresponding to the cube roots of

A =

(
αβ

6
− γ

2
− α3

27

)
±

√(
β

3
− α2

9

)3

+

(
αβ

6
− α3

27
− γ

2

)2

.

Letting q = β/3− α2/9 and r = (αβ − 3γ)/6− α3/27, we have z = A1/3 − qA−1/3, where

A = r ±
√
q3 + r2.

Letting δ be a square root of ∆φ = q3+ r2, we have A = r± δ. Next, observe that (r+ δ)(r− δ) =
r2 − δ2 = −q3, so that

(r + δ)−1 = −(r − δ)q−3.

It follows that qA−1/3 = −(r − δ)1/3. Hence, the first zero of the depressed cubic is z1 = s1 + s2,

where s1 = (r + δ)1/3 and s2 = (r − δ)1/3. Letting x0 be a fixed cube root of A, it follows that

ei2π/3x0 and ei4π/3x0 are the remaining cube roots, where ei4π/3 = (ei2π/3)−1. Thus, the remaining

zeros of the depressed cubic are

z2 = ei2π/3s1 + ei4π/3s2 =

(
−1

2
+ i

√
3

2

)
s1 +

(
−1

2
− i
√
3

2

)
s2 = −1

2
(s1 + s2) + i

√
3

2
(s1 − s2)

and

z3 = ei4π/3s1 + ei2π/3s2 =

(
−1

2
− i
√
3

2

)
s1 +

(
−1

2
+ i

√
3

2

)
s2 = −1

2
(s1 + s2)− i

√
3

2
(s1 − s2).

Translating by α/3 gives the zeros uj = zj − α/3 of the general cubic for j = 1, 2, 3.

4 Classification

As we have seen since beginning with Example 3.1, there can be multiple possible approaches to

finding solutions of zeon cubic equations. It would be helpful to have a method for determining

which methods are appropriate for a given zeon cubic. For that, we turn to a zeon extension of

the cubic discriminant.
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We recall that given a monic cubic polynomial (with real coefficients) f(x) = x3+ax2+bx+c ∈ R[x],

the cubic discriminant of f(x) is defined to be

∆f = 18abc− 4a3b+ a2b2 − 4b3 − 27c2. (4.1)

Letting q = b
3 −

a2

9 and r = 1
6 (ab− 3c)− a3

27 , the discriminant is given by

∆f = −4(3q)3 − 27(2r)2 = −108(q3 + r2).

Traditionally, the cubic discriminant is used to characterize the zeros of f(x). In particular, the

following properties are well known.

• When ∆f = 0, the cubic has a repeated root.

• When ∆f < 0, the cubic has three distinct real roots.

• When ∆f > 0, the cubic has one real root and a conjugate pair of complex roots.

We extend the cubic discriminant to zeon cubic polynomials by defining ∆φ = q3 + r2. In view of

Theorems 3.2, and 3.5, the following classification is sensible for cubic polynomials over CZ.

Theorem 4.1 (Classification). Let φ(u) = u3 + αu2 + βu+ γ ∈ CZ[u]. Let ∆φ = q3 + r2, where

q =
1

3
β − 1

9
α2, r =

1

6
(βα− 3γ)− 1

27
α3.

Then the following hold.

(1) If C∆φ ̸= 0, then φ has three spectrally simple zeros. When Cq ̸= 0, the zeros are given by

the cubic formula of Theorem 3.16. When Cq = 0, the zeros are obtained from Algorithm 1

using the scalar zeros of fφ.

(2) If C∆φ = 0, then φ either has no zeros or has uncountably many zeros.

Proof. Observing that ∆fφ = −108C∆φ, we see that the scalar polynomial fφ has three distinct

complex zeros when the discriminant is nonzero. Hence, φ has three spectrally simple zeon zeros

when C∆φ ̸= 0.

It is clear that C∆φ = 0 implies Cq ̸= 0⇔ Cr ̸= 0. It follows that the induced complex polynomial

fφ(z − Cα/3) = z3 + 3Cqz − 2Cr has a repeated root, λ0. Thus, φ has no zeros or uncountably

many zeros. If the repeated root λ0 has multiplicity 2, there exists a spectrally simple zero µ of

φ(u) and uncountably many other zeros having common scalar part λ0 − Cα/3. If λ0 is a zero of

multiplicity three and φ has zeros, then all zeros of φ(u) have common scalar part λ0 − Cα/3.
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Example 4.2. Consider the zeon cubic polynomial φ(u) = u3 + ζ{1,2}u − (1 + 3ζ{2}). The zeon

cubic discriminant of φ is ∆φ = 1
4 +ζ{2,3}, which is invertible. Hence, φ has three spectrally simple

zeros. However, since q = 1
3ζ{1,2} is nilpotent, the cubic formula of Theorem 3.2 fails.

The scalar zeros of fφ(z) = z3−1 are

{
1,−1

2
+

√
3

2
i,−1

2
−
√
3

2
i

}
. Applying Algorithm 1, rational

approximations of the spectrally simple zeros are as follows:

λ1 = 1− 1

3
ζ{1,2} +

2

3
ζ{2,3},

λ2 =

(
−1

2
+

181i

209

)
+

(
1

6
+

125i

433

)
ζ{1,2} −

(
1

3
− 153i

265

)
ζ{2,3},

λ3 =

(
−1

2
− 181i

209

)
+

(
1

6
− 153i

530

)
ζ{1,2} −

(
1

3
+

153i

265

)
ζ{2,3}.

4.1 Cubic polynomials over CZ2

In this section, the special case of cubic polynomials over CZ2 are considered. When φ is a cubic

polynomial in CZ2[u], there are no indeterminate cases.

Proposition 4.3. Let φ(u) = u3 + 3qu− 2r ∈ CZ2[u]. Let ∆φ = q3 + r2, where

q =
1

3
β − 1

9
α2, r =

1

6
(βα− 3γ)− 1

27
α3.

(1) If ∆φ is invertible, then φ(u) has three spectrally simple zeon zeros. The zeros are given by

the cubic formula of Theorem 3.2 if Cq ̸= 0. Otherwise, the zeros are obtained from Algorithm

1 using the scalar zeros of fφ.

(2) If ∆φ is a nonzero null monomial of grade 2, then

(a) φ(u) has one spectrally simple zero and a set of spectrally non-simple zeros if q is

invertible;

(b) φ(u) has no zeros if q is a nonzero nilpotent in CZ2.

(3) If ∆φ is a nonzero nilpotent of minimal grade 1, then φ(u) has no zeros.

(4) If ∆φ = 0, then

(a) φ(u) has a spectrally simple zeon zero and a set of spectrally non-simple zeon zeros if r

is invertible;

(b) φ(u) has a set of spectrally non-simple zeros if r = aζ[2] for a ∈ C;

(c) φ(u) has no zeros if r ̸= 0 is nilpotent and not a null monomial of grade 2.
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Proof. The results follow from Theorems 3.2 and 3.5 along with the following observations.

(1) Nilpotent cube roots do not exist in CZ2.

(2) In CZ2, nilpotent square roots only exist for null monomials aζ[2].

To prove 2(b), suppose ∆φ = aζ[2] for nonzero a ∈ C. If q is a nonzero nilpotent in CZ2, then

q3 = 0 so that ∆φ = r2. It follows that r = bζ{1}+ cζ{2} for nonzero b, c ∈ C. Any zeros of φ must

also be nilpotent. Hence, any zero z ∈ CZ2 must satisfy

φ(z) = z3 + 3qz − 2r = 3qz − 2(bζ{1} + cζ{2}) = 0,

where the minimal grade of qz is either 0 or 2. In either case, we have a contradiction.

Part 3 follows from the fact that a nilpotent of minimal grade 1 has no square roots.

Next, 4(b) is established as follows. If r = aζ[2] and ∆φ = 0, then Cq = 0 so that q3 = 0. If q = sζi

for any nonzero s, then

φ

(
2a

3s
ζ[2]\{i}

)
=

(
2a

3
ζ[2]\{i}

)3

+ 3sζ{i}

(
2a

3s
ζ[2]\{i}

)
− 2aζ[2] = 0 + 2aζ[2] − 2aζ[2] = 0.

Turning to 4(c), suppose r = aζ{1} + bζ{2} where a, b ∈ C are not both zero. If a and b are both

nonzero, then r2 = 2abζ[2]. Thus ∆φ = 0 requires q3 = −r2, which is impossible in CZ2. We

conclude that r = aζ{i} for nonzero a ∈ C and i ∈ {1, 2}; further, we see that q is nilpotent.

Hence, if z ∈ CZ2 is a zero of φ, it follows that

φ(z) = z3 + 3qz − 2r = 3qz − 2aζ{i} = 0,

where the minimal grade of qz is either 0 or 2. Again, we have a contradiction.

5 Conclusion & avenues for further research

Zeros of cubic polynomials over CZ have been classified up to two indeterminate cases. In those

indeterminate cases, sufficient conditions have been provided for existence of spectrally nonsimple

zeon zeros. In the special case of cubic polynomials over CZ2, the zeros have been completely

classified.

One obvious goal of future work is the consideration of zeros of quartic zeon polynomials over CZ,

particularly since the quartic is the highest order polynomial equation that can be solved by radicals

in the general case. Based on existing results, a quartic polynomial φ(u) = u4+αu3+βu2+γu+δ

having one spectrally simple zeon zero ω can be reduced by polynomial division to the product
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(u − ω)ψ(u), where ψ(u) is a monic cubic polynomial in CZ[u]. The classification of cubic zeros

established here can then be applied to ψ(u). If φ(u) has two simple zeros, the zeon quadratic

formula can be applied to the remaining factor. If φ(u) splits, all zeros can be found using

Algorithm 1. If all zeros of φ(u) are spectrally nonsimple, additional tools are needed: either an

effective algorithm for computing spectrally nonsimple zeros or a zeon extension of the quartic

formula.

More broadly, zeros of zeon polynomials are essential for considering spectral properties of zeon

matrices. Letting Ψ denote an m×m matrix with entries from CZ, eigenvalues of Ψ are spectrally

simple zeon zeros of the characteristic polynomial of Ψ. Here Ψ is appropriately regarded as a CZ-

linear operator on the module CZm. The zeon combinatorial Laplacian has recently been shown

to enumerate paths and cycles in finite graphs, so its spectral properties are of particular interest

[12]. With zeon eigenvalues in hand Putzer’s theorem can also be useful for computing zeon matrix

exponentials.
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