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ABSTRACT

In this work, we study the Nehari manifold and its application
to the following sub-elliptic system involving strongly coupled
critical terms and concave nonlinearities:

−∆Gu =
η1α1

2∗
|u|α1−2|v|β1u+

η2α2

2∗
|u|α2−2|v|β2u

+ λ g(z) |u|q−2u, z ∈ Ω,

−∆Gv =
η1β1

2∗
|u|α1 |v|β1−2v +

η2β2

2∗
|u|α2 |v|β2−2v

+ µh(z) |v|q−2v, z ∈ Ω,

u = v = 0, z ∈ ∂Ω,

where Ω is an open bounded subset of G with smooth bound-
ary, −∆G is the sub-Laplacian on a Carnot group G; η1, η2,

λ, µ, are positive, α1 + β1 = 2∗, α2 + β2 = 2∗, 1 < q < 2,
2∗ = 2Q

Q−2
is the critical Sobolev exponent, and Q is the homo-

geneous dimension of G. By exploiting the Nehari manifold
and variational methods, we prove that the system has at
least two positive solutions.
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RESUMEN

En este trabajo, estudiamos la variedad de Nehari y su apli-
cación al siguiente sistema sub-elíptico que involucra términos
críticos fuertemente acoplados y nolinealidades cóncavas:

−∆Gu =
η1α1

2∗
|u|α1−2|v|β1u+

η2α2

2∗
|u|α2−2|v|β2u

+ λ g(z) |u|q−2u, z ∈ Ω,

−∆Gv =
η1β1

2∗
|u|α1 |v|β1−2v +

η2β2

2∗
|u|α2 |v|β2−2v

+ µh(z) |v|q−2v, z ∈ Ω,

u = v = 0, z ∈ ∂Ω,

donde Ω es un conjunto abierto acotado de G con frontera
suave, −∆G es el sub-Laplaciano en un grupo de Carnot G;
η1, η2, λ, µ, son positivas, α1 + β1 = 2∗, α2 + β2 = 2∗, 1 <

q < 2, 2∗ = 2Q
Q−2

es el exponente crítico de Sobolev, y Q es
la dimensión homogénea de G. Usando la variedad de Nehari
y métodos variacionales, demostramos que el sistema tiene al
menos dos soluciones positivas.

Keywords and Phrases: Sub-Laplacian, concave-convex nonlinearities, strongly coupled critical terms, Nehari

manifold.

2020 AMS Mathematics Subject Classification: 35J60, 47J30.
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1 Introduction

In this paper, we are concerned with the sub-Laplacian system involving strongly coupled critical

terms and concave nonlinearities on the Carnot group G given below
−∆Gu =

η1α1

2∗
|u|α1−2|v|β1u+

η2α2

2∗
|u|α2−2|v|β2u+ λg(z)|u|q−2u, z ∈ Ω,

−∆Gv =
η1β1
2∗

|u|α1 |v|β1−2v +
η2β2
2∗

|u|α2 |v|β2−2v + µh(z)|v|q−2v, z ∈ Ω,

u = v = 0, z ∈ ∂Ω,

(1.1)

where Ω is an open bounded subset of G with smooth boundary, −∆G is the sub-Laplacian on

a Carnot group G. λ, µ, are positive, 2∗ = 2Q
Q−2 is the critical Sobolev exponent, and Q is the

homogeneous dimension of G. We consider the following conditions:

(A0) Q ≥ 4, 1 < q < 2, 0 < ηi <∞, αi, βi > 1 and αi + βi = 2∗ (i = 1, 2),

and we give the following assumptions on the weight functions g and h:

(A1) g, h ∈ L
2∗

2∗−q (Ω), g± = max{±g, 0} ≠ 0 in Ω̄ and h± = max{±h, 0} ≠ 0 in Ω̄.

(A2) There exist a0, r0 > 0 such that Bd(0, r0) ⊂ Ω and g(z), h(z) ≥ a0 for all z ∈ Bd(0, r0).

Here Bd(z, r) denotes the quasi-ball with center at z and radius r with respect to the gauge d.

|u|αi−2u|v|βi and |u|αi |v|βi−2v, i = 1, 2 are called strongly coupled terms. We now recall some

known results concerning the elliptic system involving the strongly coupled critical terms. When G

is the ordinary Euclidean space
(
RN ,+

)
, η1 = η2 = 1, α1 = α2 = α, β1 = β2 = β and g = h ≡ 1,

problem (1.1) becomes the following Laplacian elliptic system:
−∆u = 2α

α+β |u|
α−2|v|βu+ λ|u|q−2u, in Ω,

−∆v = β
α+β |u|

α|v|β−2v + µ|v|q−2v, in Ω,

u = v = 0, on ∂Ω.

(1.2)

The authors in [10] proved that the system (1.2) admits at least two positive solutions. Later,

Hsu [9] obtained the same results for the p-Laplacian elliptic system. There are other multiplicity

results or critical elliptic equations involving concave–convex nonlinearities, see for example [1,

2]. Contrary to the nonlinear elliptic problem with the Laplacian or p-Laplacian in Euclidean

space that have been widely investigated, the situation seems to be in a developing state for

the sub-Laplacian problem on Carnot groups. Recently, great attention has been devoted to

nonlinear elliptic problems involving critical nonlinearities, in the context of Carnot group, see

for example [11, 13, 20] and references therein. To the best of our knowledge, there is no result
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so far concerning sub-elliptic system involving strongly coupled critical terms nonlinearities with

sign-changing weight functions on Carnot group.

We look for weak solutions of (1.1) in the product space H := S1
0(Ω) × S1

0(Ω), endowed with the

norm

∥(u, v)∥H =
(
∥u∥2S1

0(Ω) + ∥v∥2S1
0(Ω)

) 1
2

, ∀(u, v) ∈ H,

where the Folland-Stein space S1
0(Ω) = {u ∈ L2(Ω) :

∫
Ω
|∇Gu|2dz <∞}, is defined as the comple-

tion of C∞
0 (Ω) with respect to the norm

(
∥u∥S1

0(Ω)

)
=

(∫
Ω

|∇Gu|2dz
) 1

2

, ∀u ∈ S1
0(Ω).

By using the Nehari manifold and fibering map analysis, we establish the existence of at least two

positive solutions for a sub-elliptic system (1.1) when (λ, µ) belongs to certain subset of R2
+. Since

the embedding S1
0(Ω) ↪→ L2∗(Ω) is not compact, then the corresponding energy functional does not

satisfy the Palais-Smale condition in general. Therefore, it is difficult to obtain the critical points

of energy functional by simple arguments, which are based on the compactness of the Sobolev

embedding. To overcome this difficulty, we extract a Palais-Smale sequence in the Nehari manifold

and show that the weak limit of this sequence is the required solution of problem (1.1). The best

constant of the Sobolev inequality was studied on graded groups in [15]. But in that paper, the

best constant was expressed in variational form.

We consider the following scalar critical equation:

−∆Gu = |u|2
∗−2u in G. (1.3)

For equation (1.3), it is well known (see e.g. [3, 11]) that positive solutions have the following

decay:

U(z) ∼ C

d(z)Q−2
as d(z) → ∞, (1.4)

where d is the gauge norm on G. This result applies, in particular, to the extremals of the Sobolev

inequality on Carnot groups (whose existence was proved in [8, 17], i.e., to the functions U that

achieve the best constant for the embedding S1
0(G) ↪→ L2∗(G), that is,

SG := inf
u∈S1

0(G)\{0}

∫
G |∇Gu|2dz(∫
G |u|2∗dz

) 2
2∗

=

∫
G |∇GU |2dz(∫
G |U |2∗dz

) 2
2∗
.

We underline that the knowledge of the exact asymptotic behavior of Sobolev minimizers turns out

to be a crucial ingredient in order to obtain existence results for Brézis-Nirenberg type problems,

whenever the explicit form of Sobolev minimizers is not known, as in the present Carnot case. The

knowledge of the behavior of Sobolev minimizers turns out to be crucial also for the system, due
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to the relation between the extremals for the best constant Sη,α,β associated to the system and

the Sobolev constant SG (see Theorem 2.1 below).

The energy functional Iη,α,β : H −→ R associated to (1.1) is given by

Iη,α,β(u, v) =
1

2
∥(u, v)∥2H − 1

2∗
Kη(u, v)−

1

q
Ψλ,µ(u, v), ∀(u, v) ∈ H,

where

Kη(u, v) =

∫
Ω

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dz, Ψλ,µ(u, v) =

∫
Ω

(λg(z)|u|q + µh(z)|v|q) dz.

It is easy to check that Iη,α,β ∈ C1(H,R) and the critical point of Iη,α,β is the weak solution of

(1.1). We call a solution (u, v) positive if both u and v are positive, (u, v) is nontrivial if u ̸≡ 0 or

v ̸≡ 0.

Definition 1.1. A pair of functions (u, v) ∈ H is said to be a weak solution of problem (1.1) if∫
Ω

(∇u∇ϕ+∇v∇ψ) dx =

∫
Ω

(η1α1

2∗
|u|α1−2|v|β1uϕ+

η2α2

2∗
|u|α2−2|v|β2uϕ

)
dx

+

∫
Ω

(
η1β1
2∗

|u|α1 |v|β1−2vψ +
η2β2
2∗

|u|α2 |v|β2−2vψ

)
dx (1.5)

+

∫
Ω

(
λg(x)|u|q−2uϕ+ µh(x)|v|q−2vψ

)
dx for all (ϕ, ψ) ∈ H.

Define the set

Dσ :=
{
(λ, µ) ∈ R+ × R+\{(0, 0)} : 0 < µ∥g∥

L
2∗

2∗−q
+ µ∥h∥

L
2∗

2∗−q
< σ

}
, and

Λ :=
2∗ − 2

2∗ − q

(
2− q

(η1 + η2) (2∗ − q)

) 2−q
2∗−2

S
2∗−q
2∗−2

G .

(1.6)

So, the main result of this paper can be included in the following theorem.

Theorem 1.2. Let G be a Carnot group. Assume that (A0), (A1) and (A2) hold. Then, we have

the following results:

(i) If (λ, µ) ∈ DΛ, then (1.1) has at least one positive solution in H.

(ii) There exists a constant Λ∗ > 0 such that system (1.1) has at least two distinct positive

solutions in H for all (λ, µ) ∈ DΛ∗ .

The paper is organized into three sections. In Section 2, we recall some basic definitions of Sobolev

space on Carnot groups and we give some useful auxiliary lemmas. In Section 3, we investigate

the Palais-Smale condition for the energy functional Iη,α,β . Finally, the proof of Theorem 1.2 is

given in Sections 4 and 5.
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2 Preliminaries

In this section we recall some basic facts on the Carnot groups. For a complete treatment, we refer

to the classical papers [6, 7]. We also quote for an overview on general homogeneous Lie group.

Let G =
(
RN , ◦

)
be a homogeneous group, i.e., a Lie group equipped with a family {δγ}γ>0 of

dilations, acting on z ∈ RN as follows

δγ

(
z(1), . . . , z(r)

)
=
(
γ1z(1), γ2z(2), . . . , γrz(r)

)
,

where z(k) ∈ RNk for every k ∈ {1, . . . , r} and N =
∑r

k=1Nk. Then, the structure G :=(
RN , ◦, {δγ}γ>0

)
is called a homogeneous group with homogeneous dimension

Q :=

r∑
k=1

k ·Nk.

Note that the number Q is naturally associated to the family {δγ}γ>0 since, for every γ > 0, the

Jacobian of the map z 7→ δγ(z) equals γQ. From now on, we shall assume throughout that Q ≥ 3.

We remark that, if Q ≤ 3, then G is necessarily the ordinary Euclidean space G =
(
RQ,+

)
.

Let g be the Lie algebra of left invariant vector fields on G and assume that g is stratified, i.e.,

g =
⊕r

k=1 Vk with [V1, Vk] = Vk+1, for 1 ≤ k ≤ r− 1 and [V1, Vr] = {0}. Under these assumptions,

we call G a Carnot group. Here the integer r is called the step of G, dim (Vk) = Nk and the

symbol [V1, Vk] denotes the subspace of g generated by the commutators [X,Y ], where X ∈ V1 and

Y ∈ Vk. Let X = {X1, X2, . . . , Xm} be a basis of V1 with m = dim (V1). From Proposition 1.2.29

of [14], the left invariant vector field Xi (k = 1, . . . ,m) has an explicit form as follows:

Xi =
∂

∂x
(1)
i

+

k∑
l=2

dim(Vl)∑
r=1

a
(l)
i,r

(
x(1), . . . , x(l−1)

) ∂

∂x
(l)
r

,

where a(l)i,r is a homogeneous (with respect to δγ) polynomial function of degree l − 1. Then, once

a basis X1, X2, . . . , Xm of the horizontal layer is fixed, we define, for any function u : G → R

for which the partial derivatives Xju exist, the horizontal gradient of u, denoted by ∇Gu, as the

horizontal section

∇Gu := (X1u,X2u, . . . ,Xmu) .

Moreover, if ϕ = (ϕ1, ϕ2, . . . , ϕm) is an horizontal section such that Xjϕj ∈ L1
loc(G) for j =

1, . . . ,m, we define divG ϕ as the real-valued function

divG(ϕ) := −
m∑
j=1

X∗
j ϕj =

m∑
j=1

Xjϕj .
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From the above results, the second-order differential operator

∆G :=

m∑
j=1

X2
j .

is called the (canonical) sub-Laplacian on G. The sub-Laplacian ∆G is a left invariant homogeneous

hypoelliptic differential operator, thanks to Hörmander’s theorem, and ∆Gu = divG (∇Gu). In

addition, we can check that ∇G and ∆G are left-translation invariant with respect to the group

action τz and δγ-homogeneous, respectively, of degree one and two, that is, ∇G (u ◦ τz) = ∇Gu ◦
τz,∇G (u ◦ δγ) = γ∇Gu ◦ δγ , and ∆G (u ◦ τz) = ∆Gu ◦ τz, ∆G (u ◦ δγ) = γ2∆Gu ◦ δγ , where the left

translation τz : G → G is defined as

x 7→ τzx := z ◦ x, ∀x, z ∈ G.

Moreover, there exists a homogeneous norm d on G such that

Γ(z) =
C

d(z)Q−2
, ∀z ∈ G,

is a fundamental solution of −∆G with pole at 0, for a suitable constant C > 0. By definition,

the homogeneous norm d on G is a continuous smooth function, away from the origin, such that

d (δγ(z)) = γd(z) for every γ > 0 and z ∈ G, d
(
z−1

)
= d(z) and d(z) = 0 iff z = 0.

We will give some results which will be used to prove the existence in multiple critical cases. Let

U be a fixed positive minimizer for the best constant SG and define the family

Uε(z) = ε
2−Q

2 U
(
δ 1
ε
(z)
)
, ∀ε > 0. (2.1)

The functions Uε are also minimizers for SG and, up to a normalization, they satisfy∫
G
|∇GUε|2dz =

∫
G
|Uε(z)|2

∗
dz = S

Q
2

G , ∀ε > 0.

For any 0 < ηi <∞ (i = 1, 2), αi, βi > 1 with αi + βi = 2∗, by the Young inequality, the following

best Sobolev-type constants are well defined and crucial for the study of (1.1):

Sη,α,β : = inf
(u,v)∈H\{(0,0)}

∫
G
(
|∇Gu|2 + |∇Gv|2

)
dz(∫

G (η1|u|α1 |v|β1 + η2|u|α2 |v|β2) dx
)2/2∗

= inf
(u,v)∈H\{(0,0)}

∥(u, v)∥2
(∫

G

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dx

)−2/2∗

.

(2.2)
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For any t ≥ 0, we define the function

h(t) :=
1 + t2

(η1tβ1 + η2tβ2)
2
2∗
. (2.3)

Since h is continuous on (0,∞) such that lim
t→0+

h(t) = lim
t→+∞

h(t) = +∞, then there exists t0 > 0 a

minimal point of function h, that is,

h (t0) = min
t≥0

h(t) > 0. (2.4)

Summarizing, we have the following relationship between SG and Sη,α,β .

Theorem 2.1. Assume that (A0) hold, then

(i) Sη,α,β = h(t0)SG.

(ii) Sη,α,β has the minimizers
(
Uε(z), t0Uε(z)

)
, for ε > 0, where Uε(z) are defined as in (2.1).

Proof. Suppose κ ∈ S1
0(G). Choosing (u, v) = (κ, t0κ) in (2.2) we have

1 + t20(
η1t

β1

0 + η2t
β2

0

) 2
2∗

∫
G
|∇Gκ|2dz(∫

G
|κ|2

∗
dz

)2/2∗
≥ Sη,α,β . (2.5)

Taking the infimum as κ ∈ S1
0(G) in (2.5), we have

h(t0)SG ≥ Sη,α,β . (2.6)

Let {(un, vn)} ⊂ H be a minimizing sequence of Sη,α,β and define wn = snvn, where

sn :=

((∫
G
|vn|2

∗
dz

)−1 ∫
G
|un|2

∗
dz

) 1
2∗

.

Then ∫
G
|wn|2

∗
dz =

∫
G
|un|2

∗
dz. (2.7)

From the Young inequality and (2.6) it follows that∫
G
|un|αi |wn|βi dz ≤

αi

2∗

∫
G
|un|2

∗
dz +

βi
2∗

∫
G
|wn|2

∗
dz

=

∫
G
|un|2

∗
dz =

∫
G
|wn|2

∗
dz, i = 1, 2.

(2.8)
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Consequently,

∥(un, vn)∥2(∫
G

(
η1|un|α1 |vn|β1 + η2|un|α2 |vn|β2

)
dx

)2/2∗s
≥

∫
G
|∇Gun|2dz((

η1s
−β1
n + η2s

−β2
n

) ∫
G |un|2∗

) 2
2∗

+

s−2
n

∫
G
|∇Gwn|2dz((

η1s
−β1
n + η2s

−β2
n

) ∫
G |wn|2∗ dz

) 2
2∗

≥ h(s−1
n )SG ≥ h(t0)SG.

As n→ ∞ we have

Sη,α,β ≥ h(t0)SG,

which together with (2.6) implies that

Sη,α,β = h(t0)SG.

By (2.2) and (2.1), Sη,α,β has the minimizers (Uε(x), t0Uε(x)).

Let R > 0 be such that Bd(0, R) ⊂ Ω (we can suppose 0 ∈ Ω, due to the group translation

invariance) and let a cut-off function φ ∈ C∞
0 (Bd(0, R)), 0 ≤ φ ≤ 1, φ = 1 in Bd

(
0, R2

)
and φ = 0

in G\Bd(0, R). Set

uε(z) = φ(z)Uε(z).

Then, from [11, Lemma 3.3], we obtain the required results.

Lemma 2.2. The functions uε satisfy the following estimates, as ε→ 0:∫
Ω

|∇Guε|2dz = S
Q
2

G +O
(
εQ−2

)
,

∫
Ω

|uε|2
∗
dz = S

Q
2

G +O
(
εQ
)
,

and ∫
Ω

|uε|2dz =

Cε
2 +O

(
εQ−2

)
, if Q > 4,

Cε2| ln ε|+O
(
ε2
)
, if Q = 4.

Moreover, similarly as the proof of [12, Lemma 6.1], we get the following results.

Lemma 2.3. The following estimates hold as ε→ 0:

∫
Ω

|uε|qdz ≥


O
(
εQ+

(2−Q)q
2

)
, if Q

Q−2 < q < 2,

O
(
εQ+

(2−Q)q
2 | ln(ε)|

)
, if q = Q

Q−2 ,

O
(
ε

(Q−2)
2

)
, if 1 ≤ q < Q

Q−2 .



604 R. Echarghaoui, A. Hatimi & M. Hatimi CUBO
27, 3 (2025)

3 The Palais-Smale condition

In this section, we use the second concentration-compactness principle and concentration-compactness

principle at infinity to prove that the (PS)c condition holds.

Definition 3.1. Let c ∈ R and Iη,α,β ∈ C1(H,R).

(i) A sequence {(un, vn)}n∈N ⊂ H is called a Palais–Smale sequence at the level c (PS)c-

sequence, in short, for the functional Iη,α,β if Iη,α,β(un, vn) → c and I ′η,α,β(un, vn) → 0

as n→ ∞.

(ii) We say that Iη,α,β satisfies the (PS)c condition if any (PS)c-sequence {(un, vn)}n∈N ⊂ H
for Iη,α,β has a convergent subsequence in E.

Since g, h ∈ L
2∗

2∗−q (Ω), we obtain from the Hölder and Sobolev inequalities that, for all u ∈ S1
0(Ω),

∫
Ω

g(z)|u|qdz ≤
(∫

Ω

|g(z)|
2∗

2∗−q dz

) 2∗−q
2∗
(∫

Ω

|u|2
∗
dz

) q
2

≤ ∥g∥
L

2∗
2∗−q

S
− q

2

G ∥u∥q
S1
0(Ω)

. (3.1)

Similarly, one can get

∫
Ω

h(z)|v|qdz ≤
(∫

Ω

|h(z)|
2∗

2∗−q dz

) 2∗−q
2∗
(∫

Ω

|v|2
∗
dz

)ψ
2

≤ ∥h∥
L

2∗
2∗−q

S
− q

2

G ∥v∥q
S1
0(Ω)

. (3.2)

Hence, in view of (3.1) and (3.2), we can obtain

Ψλ,µ(u, v) ≤
(
λ∥g∥

L
2∗

2∗−q
+ µ∥h∥

L
2∗

2∗−q

)
S
− q

2

G ∥(u, v)∥qH. (3.3)

Moreover, the Young inequality and (3.1), (3.2) imply that

Ψλ,µ(u, v) ≤
1

Q

2∗q

2∗ − q
∥(u, v)∥H

+
2− q

2
S
− q

2−q
G

(
2∗ − q

2∗ − 2

) q
2−q
[(
λ∥g∥

L
2∗

2∗−q

) 2
2−q

+
(
µ∥h∥

L
2∗

2∗−q

) 2
2−q
]
. (3.4)

Lemma 3.2. Let {(un, vn)}n∈N ⊂ H be a (PS)c-sequence of Iη,α,β with (un, vn) ⇀ (u, v) weakly

in H. Then I ′η,α,β(u, v) = 0 and

Iη,α,β(u, v) ≥ − (2∗ − q) (2− q)

2q2∗
S
− q

2−q
G

(
2∗ − q

2∗ − 2

) q
2−q
[(
λ∥g∥

L
2∗

2∗−q

) 2
2−q

+
(
µ∥h∥

L
2∗

2∗−q

) 2
2−q
]
.
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Proof. Since {(un, vn)}n∈N ⊂ H is a (PS)c-sequence of Iη,α,β with (un, vn) ⇀ (u, v) weakly in H,

it is easy to check that I ′η,α,β(u, v) = 0, and then
〈
I ′η,α,β(u, v), (u, v)

〉
= 0, that is,

∥(u, v)∥H = Kη(u, v) + Ψλ,µ(u, v).

Then from (3.4), we have

Iη,α,β(u, v) =
1

Q
∥(u, v)∥H − 2∗ − q

2∗q
Ψλ,µ(u, v)

≥ − (2∗ − q) (2− q)

2q2∗
S
− q

2−q
G

(
2∗ − q

2∗ − 2

) q
2−q
[(
λ∥g∥

L
2∗

2∗−q

) 2
2−q

+
(
µ∥h∥

L
2∗

2∗−q

) 2
2−q
]
.

This ends the proof of lemma.

Lemma 3.3. Assume that {(un, vn)}n∈N ⊂ H is a (PS)c-sequence of Iη,α,β and the condition

(A1) holds. Then {(un, vn)}n∈N is bounded in H.

Proof. Assume by contradiction that ∥(un, vn)∥H → +∞. Set

(ũn, ṽn) =

(
un

∥(un, vn)∥H
,

vn
∥(un, vn)∥H

)
.

Then, ∥(ũn, ṽn)∥H = 1, and


(ũn, ṽn)⇀ (u, v) weakly in H,
(ũn, ṽn) → (u, v) strongly in (Lr(Ω))

2
,∀r ∈ [1, 2∗) ,

(ũn(z), ṽn(z)) → (u(z), v(z)) a.e. in Ω.

(3.5)

Set ūn := ũn − u, v̄n := ṽn − v, there exists a positive constant C > 0 such that∫
Ω

|ūn|2
∗
dz < C,

∫
Ω

|v̄n|2
∗
dz < C, (3.6)

and by (3.5), one has that for any ε > 0, there exists r0 > 0 such that∫
Bd(0,r0)

|ūn|2
∗
dz < ε,

∫
Bd(0,r0)

|v̄n|2
∗
dz < ε, (3.7)

for n large enough, where Bd (0, r0) = {z ∈ G : d(0, z) ≤ r0} is a ball with center at 0 and radius

r0 with respect to the gauge d. Moreover, since g, h ∈ L
2∗

2∗−q (Ω), for the above constant r0, we

have ∫
Ω\Bd(0,r0)

|g(z)|
2∗

2∗−q dz < ε,

∫
Ω\Bd(0,r0)

|h(z)|
2∗

2∗−q dz < ε. (3.8)
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Then, by (3.6), (3.7), (3.8) and Hölder inequality, we get

Ψλ,µ (ūn, ūn) =

∫
Ω\Bd(0,r0)

(λg(z)|ūn|q + µh(z)|v̄n|q) dz +
∫
Bd(0,r0)

(λg(z)|ūn|q + µh(z)|v̄n|qq) dz

≤ λ

(∫
Ω\Bd(0,r0)

|g|
2∗

2∗−q dz

) 2∗−q
2∗
(∫

Ω\Bd(0,r0)
|ūn|2

∗
dz

) q
2∗

+ µ

(∫
Ω\Bd(0,r0)

|h|
2∗

2∗−q dz

) 2∗−q
2∗
(∫

Ω\Bd(0,u0)

|v̄n|2
∗
dz

) q
2∗

+ λ

(∫
Bd(0,r0)

|g|
2∗

2∗−q dz

) 2∗−q
2∗
(∫

Bd(0,r0)

|ūn|2
∗
dz

) q
2∗

+ µ

(∫
Bd(0,r0)

|h|
2∗

2∗−q dz

) 2∗−q
2∗
(∫

Bd(0,u0)

|v̄n|2
∗
dz

) q
2∗

≤ C1ε
2∗−q
2∗ + C22ε

q
2∗ ,

which yields that Ψλ,µ (ūn, v̄n) → 0 as n→ ∞. Consequently,

lim
n→∞

Ψλ,µ (ũn, ṽn) = lim
n→∞

Ψλ,µ (ūn, v̄n) + Ψλ,µ(u, v) = Ψλ,µ(u, v). (3.9)

On the other hand, since {(un, vn)}n∈N ⊂ H is a (PS)c-sequence of Iη,α,β and un = ∥(un, vn)∥H·ũn,

vn = ∥(un, vn)∥H · ṽn, we deduce that

1

2
∥(un, vn)∥H ∥(ũn, ṽn)∥H =

1

2∗
∥(un, vn)∥2

∗

H Kη (ũn, ṽn)

+
1

q
∥(un, vn)∥qH Ψλ,µ (ũn, ṽn) + on(1),

(3.10)

and
∥(un, vn)∥H ∥(ũn, ṽn)∥H = ∥(un, vn)∥2

∗

H Kη (ũn, ṽn)

+ ∥(un, vn)∥qH Ψλ,µ (ũn, ṽn) + on(1).
(3.11)

From (3.9), (3.10), (3.11), 1 < q < 2 and ∥(un, vn)∥H → +∞, one has

lim
n→∞

∥(ũn, ṽn)∥H =
2 (2∗ − q)

q (2∗ − 2)
lim
n→∞

Ψλ,µ (ūn, v̄n)

∥(un, vn)∥2−q
H

= 0,

which contradicts ∥(ũn, ṽn)∥H = 1. Therefore, {(un, vn)}n∈N is bounded in H.
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Lemma 3.4. Iλ,α,β satisfies the (PS)c condition in H, with c satisfying

0 < c < c∞ :=
1

Q
S
Q
2

η,α,β − C0

[(
λ∥g∥

L
2∗

2∗−q

) 2
2−q

+
(
µ∥h∥

L
2∗

2∗−q

) 2
2−q
]

(3.12)

where C0 = C0(q,Q) := (2∗−q)(2−q)
2q2∗ S

− q
2−q

G

(
2∗−q
2∗−2

) q
2−q

is a positive constant depending only on q,

Q and SG.

Proof. Let {(un, vn)}n∈N ⊂ H be a (PS)c-sequence for Iη,α,β with c ∈ (0, c∞). It follows from

Lemma 3.3 that {(un, vn)}n∈N is bounded in H. Then, there exists a subsequence still denoted by

{(un, vn)}n∈N and (u, v) ∈ H such that (un, vn)⇀ (u, v) weakly in H, and


un ⇀ u, vn ⇀ v weakly in L2∗(Ω),

un → u, vn → v strongly in Lr(Ω), ∀ 1 ≤ r < 2∗,

un(z) → u(z), vn(z) → v(z) a.e. in Ω.

(3.13)

Hence, from (3.13), it is easy to verify that I ′η,α,β(u, v) = 0 and

lim
n→∞

Ψλ,µ (un, vn) = Ψλ,µ(u, v). (3.14)

Set ũn = un − u, ṽn = vn − v. By Brézis-Lieb lemma [18], we get

∥(un, vn)∥H = ∥(u, v)∥H + ∥(ũn, ṽn)∥H + on(1), (3.15)∫
Ω

|un|2
∗
dz =

∫
Ω

|u|2
∗
dz +

∫
Ω

|ũn|2
∗
dz + on(1), (3.16)∫

Ω

|vn|2
∗
dz =

∫
Ω

|v|2
∗
dz +

∫
Ω

|ṽn|2
∗
dz + on(1), (3.17)

and ∫
Ω

|un|αi |vn|βidz =
∫
Ω

|u|αi |v|βidz +
∫
Ω

|ũn|αi |ṽn|βidz + on(1). (3.18)

So, (3.16), (3.17) and (3.18) yield

Kη (un, vn) = Kη(u, v) +Kη (ũn, ṽn) + on(1). (3.19)

Then, using (3.14), (3.15) and (3.19), we have

c =
1

2
∥(ũn, ṽn)∥H − 1

2∗s
Kη (ũn, ṽn) + Iη,α,β(u, v) + on(1), (3.20)

and

on(1) = ∥(ūn, v̄n)∥H −Kη (ūn, v̄n) . (3.21)
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We may assume that

∥(ũn, ṽn)∥H → l, Kη (ũn, ṽn) → l ≥ 0 as n→ ∞.

If l = 0, the proof is completed. Assume that l > 0, then from (3.21), we have

Sη,α,βl
2
2∗ = Sη,α,β

(
lim
n→∞

Kη (ũn, ṽn)
) 2

2∗ ≤ lim
n→∞

∥(ũn, ṽn)∥H = l,

which implies that l ≥ S
Q
2

η,α,β . Hence, from (3.20) and Lemma 3.2, we have

c = Iη,α,β(un, vn) + on(1) =

(
1

2
− 1

2∗

)
l + Iη,α,β(u, v) + on(1)

≥ 1

Q
S
Q
2

η,α,β − C0

[(
λ∥g∥

L
2∗

2∗−q

) 2
2−q

+
(
µ∥h∥

L
2∗

2∗−q

) 2
2−q
]
,

(3.22)

which contradicts c < c∞. The proof is completed.

4 Nehari manifold

Now we focus our attention on Problem (1.1) by using the Nehari manifold approach. For this

reason, we introduce the Nehari manifold

Nη,α,β =
{
w ∈ H\{0} :

〈
I ′η,α,β(w), w

〉
= 0
}
.

where w = (u, v) and ∥w∥H = ∥(u, v)∥H. Note that Nη,α,β contains all nonzero solution of (1.1),

and w ∈ Nη,α,β if and only if

∥w∥H = Kη(w) + Ψλ,µ(w). (4.1)

Lemma 4.1. Iη,α,β is coercive and bounded below on Nη,α,β.

Proof. Let w ∈ Nη,α,β by (3.3) and (4.1). We find

Iη,α,β(w) =
2∗ − 2

22∗
∥w∥H − 2∗ − 2

q2∗
Ψλ,µ(w)

≥ 2∗ − 2

22∗
∥w∥H − 2∗ − q

q2∗

(
λ∥g∥

L
2∗

2∗−q
+ µ∥h∥

L
2∗−q
2∗

)
S
− q

2

G ∥w∥qH.
(4.2)

Since 1 < q < 2, we see that Iη,α,β is coercive and bounded below on Nη,α,β . This achieves the

proof of the lemma.
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Define Φ(w) :=
〈
I ′η,α,β(w), w

〉
, then for all w = (u, v) ∈ Nη,α,β , we have

⟨Φ′(w), w⟩ = 2∥w∥H − 2∗Kη(w)− qΨλ,µ(w)

= (2− q)∥w∥H − (2∗ − q)Kη(w)

= (2− 2∗) ∥w∥H + (2∗ − q)Ψλ,µ(w).

(4.3)

Now, similar to the method used in [16], we split Nη,α,β into three disjoint parts:

N+
η,α,β := {w ∈ Nη,α,β : ⟨Φ′(w), w⟩ > 0} ,

N 0
η,α,β := {w ∈ Nη,α,β : ⟨Φ′(w), w⟩ = 0} ,

N−
η,α,β := {w ∈ Nη,α,β : ⟨Φ′(w), w⟩ < 0} .

(4.4)

Note that Nη,α,β contains every nonzero solution of problem (1.1). In order to study the properties

of Nehari manifolds. We now present some properties of N+
η,α,β ,N 0

η,α,β and N−
η,α,β to state our

main results.

Lemma 4.2. Assume that w0 = (u0, v0) is a local minimizer for Iη,α,β on the set Nη,α,β \N 0
η,α,β.

Then I ′η,α,β (w0) = 0 in H−1, where H−1 denotes the dual space of the space H.

Proof. The proof is similar as that of [21, Lemma 3.4] and the details are omitted.

Lemma 4.3. N 0
η,α,β = ∅ for all (λ, µ) ∈ R+ × R+with

0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ

where Λ is given in (1.6).

Proof. We argue by contradiction. Assume that there exist λ, µ ∈ (0,+∞) with

0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ

such that N 0
η,α,β ̸= ∅. Then, for w ∈ N 0

η,α,β , by (4.3), we have

∥w∥H =
2∗ − q

2− q
Kη(w) (4.5)

and

∥w∥H =
2∗ − q

2∗ − 2
Ψλ,µ(w). (4.6)

From the Young inequality, we have that

Kη(w) ≤ (η1 + η2)S
− 2∗

2

G ∥w∥2
∗

H ,
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and (4.5) yields

∥w∥H ≥
(

2− q

(η1 + η2) (2∗ − q)
S

2∗
2

G

) 1
2∗−2

. (4.7)

On the other hand, from (3.3) and (4.6), it follows that

∥w∥H ≤
(
2∗ − q

2∗ − 2

(
λ∥g∥

L
2∗

2∗−q
+ µ∥h∥

L
2∗

2∗−q

)
S

−q
2

G

) 1
2−q

. (4.8)

Therefore, in view of (4.7) and (4.8), we obtain

λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

≥ 2∗ − 2

2∗ − q

(
2− q

(η1 + η2) (2∗ − q)

) 2−q
2∗−2

S
2∗−q
2∗−2

G := Λ,

which is a contradiction. This completes the proof of Lemma.

By Lemmas 4.2 and 4.3 , for (λ, µ) ∈ DΛ, we can write Nη,α,β = N+
η,α,β ∪N−

η,α,β and define

cη,α,β = inf
w∈Nη,α,β

Iη,α,β(w); c+η,α,β = inf
w∈N+

η,α,β

Iη,α,β(w); c−η,α,β = inf
w∈N−

η,α,β

Iη,α,β(w).

Lemma 4.4. Assume that (A0), hold. Then, we have the following results:

(i) cη,α,β ≤ c+η,α,β < 0 for all (λ, µ) ∈ DΛ.

(ii) There exists a constant C0 = C0(λ, q,Q, SG,Λ) > 0 such that c−η,α,β ≥ C0 > 0, for all

(λ, µ) ∈ D q
2Λ

.

Proof. (i) For w ∈ N+
η,α,β ⊂ Nη,α,β , by (4.3), we have

∥w∥H >
2∗ − q

2− q
Kη(w),

and so

Iη,α,β(w) =

(
1

2
− 1

q

)
∥w∥H −

(
1

2∗
− 1

q

)
Kη(w)

≤
(
q − 2

2q
+

2∗ − q

2∗q

2− q

2∗ − q

)
∥w∥H = − (2− q) (2∗ − 2)

22∗q
∥w∥H < 0.

Thus, from the definition of cη,α,β and c+η,α,β , we can deduce that cη,α,β ≤ c+η,α,β < 0.

(ii) For w ∈ N−
η,α,β , similar to (4.7), we have

∥w∥H >

(
2− q

(η1 + η2) (2∗ − q)
S

2∗
2

G

) 1
2∗−2

. (4.9)
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In view of (4.2) and (4.9), we get

Iη,α,β(w) ≥ ∥w∥qH
(
2∗ − 2

22∗
∥w∥2−q

H − 2∗ − q

q2∗

(
λ∥g∥

L
2

2∗−q
+ µ∥h∥

L
2∗

2∗−q

)
S
− q

2

G

)
≥ ∥w∥qH

(
2∗ − 2

22∗

(
2− q

(η1 + η2) (2∗ − q)

) 2−q
2∗−2

S
2∗(2−q)
2(2∗−2)

G

−2∗ − q

q2∗

(
λ∥g∥

L
2

2∗−q
+ µ∥h∥

L
2∗

2∗−q

)
S
− q

2

G

)
.

So, if namely,

0 < λ∥g∥
L

2
2∗−q

+ µ∥h∥
L

2∗
2∗−q

<
q

2

2∗ − 2

2∗ − q

(
2− q

(η1 + η2) (2∗ − q)

) 2−q
2∗−2

S
2∗−q
2∗−2

G =
q

2
Λ,

we get

Iη,α,β(w) ≥
(

2− q

(η1 + η2) (2∗ − q)
S

2∗
2

G

) q
2∗−2

(
2∗ − 2

22∗

(
2− q

(η1 + η2) (2∗ − q)

) 2−q
2∗−2

S
2∗(2−q)
2(2∗−2)

G

−2∗ − q

q2∗

(
λ∥g∥

L
2∗

2∗−q
+ µ∥h∥

L
2∗

2∗−4

)
S
− q

2

G

)
:= C0 (λ, q,Q, SG,Λ) > 0,

and this completes the proof.

For each w ∈ H\{0}, we have Kη(w) > 0 and let

tmax =

(
(2− q)∥w∥H

(2∗ − q)Kη(w)

) 1
2∗−2

> 0.

So, we get the following result.

Lemma 4.5. Let (λ, µ) ∈ DΛ. For every w ∈ H with Kη(w) > 0, the following results hold:

(i) If Ψλ,µ(w) ≤ 0, then there is a unique t− > tmax such that (t−w) ∈ N−
η,α,β and

Iη,α,β(t
−w) = sup

t≥0
Iη,α,β(tw).

(ii) If Ψλ,µ(w) > 0, then there exist unique t+ and t− with 0 < t+ < tmax < t− such that

(t+w) ∈ N+
η,α,β and (t−w) ∈ N−

η,α,β. Moreover,

Iη,α,β(t
+w) = inf

0≤t≤tmax

Iη,α,β(tw), Iη,α,β(t
−w) = sup

t≥0
Iη,α,β(tw).

Proof. The proof is similar to [5, Lemma 2.6], and is omitted here.
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5 Proof of the main results

In this section, we provide the proofs of the main results of this work. Before giving the proof of

Theorem 1.2, we need the following lemma.

Lemma 5.1. Assume that (A0), hold. Then, we have the following results:

(i) If (λ, µ) ∈ DΛ, then there exists a (PS)cη,α,β -sequence {(un, vn)}n∈N ⊂ Nη,α,β for Iη,α,β.

(ii) If (λ, µ) ∈ D q
2Λ

, then there exists a (PS)c−η,α,β
-sequence {(un, vn)}n∈N ⊂ N−

η,α,β for Iη,α,β.

Proof. The proof is almost the same as Proposition 9 in [19].

Now we establish the existence of a local minimizer of Iη,α,β on N+
η,α,β .

Theorem 5.2. Assume that (A0), hold. If (λ, µ) ∈ DΛ, then Iη,α,β has a minimizer (u1, v1) ∈
N+

η,α,βsuch that (u1, v1) is a nonnegative solution of (1.1) and

Iη,α,β (u1, v1) = cη,α,β = c+η,α,β < 0.

Proof. In view of the Lemma 5.1 (i), there exists a minimizing sequence {(un, vn)}n∈N ⊂ Nη,α,β

such that

lim
n→∞

Iη,α,β (un, vn) = cη,α,β and lim
n→∞

I ′η,α,β (un, vn) = 0. (5.1)

Since Iη,α,β is coercive on Nη,α,β , we get that {(un, vn)}n∈N is bounded in H. Passing to a

subsequence, still denoted by {(un, vn)}n∈N, we can assume that there exists (u1, v1) ∈ H such

that (un, vn)⇀ (u1, v1) weakly in H and


un ⇀ u1, vn ⇀ v1 weakly in L2∗(Ω),

un → u1, vn → v1 strongly in Lr(Ω), ∀r ∈ [1, 2∗) ,

un(z) → u1(z), vn(z) → v1(z) a.e. in Ω.

(5.2)

By the proof of Lemma 3.3 and (5.2), we get

lim
n→∞

Ψλ,µ (un, vn) = Ψλ,µ (u1, v1) . (5.3)

From (5.1), (5.2) and (5.3), it is easy to prove that (u1, v1) is a weak solution of (1.1). Moreover,

the fact that (un, vn) ∈ Nη,α,β implies that

Ψλ,µ (un, vn) =
q (2∗ − 2)

2 (2∗ − q)
∥(un, vn)∥H − q2∗

2∗ − q
Iη,α,β (un, vn) . (5.4)

Let n→ ∞ in (5.4), by (5.3) and cη,α,β < 0, we deduce that

Ψλ,µ (u1, v1) ≥ − q2∗

2∗ − q
cη,α,β > 0,



CUBO
27, 3 (2025)

A sub-elliptic system with strongly coupled critical terms... 613

which implies that (u1, v1) ∈ H is a nontrivial solution of (1.1).

Now, we prove that (un, vn) → (u1, v1) strongly in H and that Iη,α,β (u1, v1) = cη,α,β . By applying

Fatou’s lemma and (u1, v1) ∈ Nη,α,β , one has

cη,α,β ≤ Iη,α,β (u1, v1) =

(
1

2
− 1

2∗

)
∥(u1, v1)∥H − 2∗ − q

q2∗
Ψλ,µ (u1, v1)

≤ lim inf
n→∞

[(
1

2
− 1

2∗

)
∥(un, vn)∥H − 2∗ − q

q2∗
Ψλ,µ (un, vn)

]
≤ lim

n→∞
Iη,α,β (un, vn) = cη,α,β .

This yields Iη,α,β (u1, v1) = cη,α,β and limn→∞ ∥(un, vn)∥H = ∥(u1, v1)∥H. The standard argument

shows that (un, vn) → (u1, v1) strongly in H.

Next, we claim that (u1, v1) ∈ N+
η,α,β . In fact, if (u1, v1) ∈ N−

η,α,β , by Lemma 4.5 (ii), there are

unique t+1 and t−1 > 0 such that
(
t+1 u1, t

+
1 v1

)
∈ N+

η,α,β ,
(
t−1 u1, t

−
1 v1

)
∈ N−

η,α,β and t+1 < t−1 = 1.

Since d
dtIη,α,β

(
t+1 u1, t

+
1 v1

)
= 0 and d2

dt2 Iη,α,β
(
t+1 u1, t

+
1 v1

)
> 0, there exists t∗1 ∈

(
t+1 , t

−
1

)
such that

Iη,α,β
(
t+1 u1, t

+
1 v1

)
< Iη,α,β (t

∗
1u1, t

∗
1v1). By Lemma 4.5, it follows that

Iη,α,β
(
t+1 u1, t

+
1 v1

)
< Iη,α,β (t

∗
1u1, t

∗
1v1) ≤ Iη,α,β

(
t−1 u1, t

−
1 v1

)
= Iη,α,β (u1, v1) ,

which contradicts Iη,α,β (u1, v1) = cη,α,β . Moreover, since Iη,α,β (u1, v1) = Iη,α,β (|u1|, |v1|) and

(|u1|, |v1|) ∈ N+
η,α,β , we may assume that (u1, v1) is a nonnegative nontrivial solution of system

(1.1). By means of Bony’s maximum principle [4], such solution turn out to be strictly positive.

Now we establish the existence of a local minimizer of Iη,α,β on N−
η,α,β .

Lemma 5.3. Assume that (A0) hold. Then, there exist (u0, v0) ∈ H\{(0, 0)} and Λ5 > 0 such

that for all (λ, µ) ∈ DΛ5 , the following holds:

sup
t≥0

Iη,α,β (tu0, tv0) < c∞, (5.5)

where c∞ is a constant given in (3.12). In particular, c−η,α,β < c∞ for all (λ, µ) ∈ DΛ5
.

Proof. Without loss of generality, we assume that 0 ∈ Ω. Let R ∈ (0, r0) be such that the quasi-

ball Bd(0, R) ⊂ Ω, and let a cut-off function φ ∈ C∞
0 (Bd(0, R)) satisfying 0 ≤ φ ≤ 1, φ = 1 in

Bd

(
0, R2

)
and φ = 0 in G\Bd(0, R). Here r0 is given in (A2). Now, let uε(z) = φ(z)Uε(z) and

consider the function

Jη(t) =
t2

2

(
1 + t20

)
∥uε∥2S1

0(Ω) −
t2

∗

2∗
(
η1t

β1 + η2t
β2
) ∫

Ω

|uε|2
∗
dz, (5.6)
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where t0 be given in Theorem 2.1. By Lemma 2.2 and the definition of Sη,α,β , we obtain that

sup
t≥0

Jη(t) ≤
(
1

2
− 1

2∗

) (
1 + t20

)
∥uε∥2S1

0(Ω)

(η1tβ1 + η2tβ2)
2
2∗
(∫

Ω
|uε|2∗dz

) 2
2∗

 2∗
2∗−2

≤ 1

Q

h (t0)
∥uε∥2S1

0(Ω)(∫
Ω
|uε|2∗dz

) 2
2∗


ρ
2

=
1

Q

h (t0)
S
Q
2

G ++O(εQ−2)(
S
Q
2

G +O(εQ)

) 2
2∗


Q
2

=
1

Q
(h (t0)SG)

Q
2 + c1ε

Q−2 =
1

Q
S
Q
2

η,α,β + c1ε
Q−2,

(5.7)

where c1 is a positive constant and the following fact has been used:

sup
t≥0

(
t2

2
A− t2

∗

2∗
B

)
=

1

Q

(
A

BQ−2
Q

)Q
2

, ∀A,B > 0.

Choosing Λ1 > 0 such that 0 < λ∥g∥
L

2∗−q
2∗

+ µ∥h∥
L

2∗
2∗−q

< Λ1, by the definitions of Iη,α,β , there

exists tm ∈ (0, 1) such that

Iη,α,β (tuε, tt0uε) ≤
t2

2

(
1 + t20

)
∥uε∥2S1

0(Ω) < c∞, ∀t < tm,

and one has

sup
0≤t<tm

Iη,α,β (tuε, tt0uε) < c∞, (5.8)

for all λ, µ ∈ (0,+∞) with

0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ1.

Moreover, by the definitions of Iη,α,β and (uε, t0uε), using the condition (A2), Lemma 2.3 and

(5.7), we have

sup
t≥tm

Iη,α,β (tuε, tt0uε) = sup
t≥tm

(
Jλ(t)−

tq

q

∫
Ω

(λg(z) + µh(z)tq0) |uε|qdz
)

≤ 1

Q
S
Q
2

η,α,β + c1ε
Q−2 − tqm

q
a0 (λ+ µtq0)

∫
Ω

|uε|qdz

≤ 1

Q
S
Q
2

η,α,β + c1ε
Q−2

− tqm
q
a0 (λ+ µtq0)


c2ε

Q− (Q−2)q
2 , if q > Q

Q−2 ,

c3ε
Q− (Q−2)q

2 | ln ε|, if q = Q
Q−2 ,

c4ε
(Q−2)q

2 , if q < Q
Q−2 ,

(5.9)

where c2, c3, c4 are positive constants.
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(i) If 1 < q < Q
Q−2 , then by Q ≥ 4 one can get that qQ−2

2 < Q
2 ≤ Q− 2. Thus, for ε > 0 small

enough, we can choose Λ2 > 0 such that

sup
t≥tm

Iη,α,β (tuε, tt0uε) ≤
1

Q
S
q
2

η,α,β + c1ε
Q−2 − tq0

q
a0c4ε

(Q−2)q
2 < c∞,

for all λ, µ ∈ (0,+∞), with 0 < λ∥g∥
L

2
2∗−q

+ µ∥h∥
L

2
2∗−q

< Λ2.

(ii) If Q
Q−2 ≤ q < 2, we have Q > 4 and q ≥ Q

Q−2 >
4

Q−2 , which implies that

Q− (Q− 2)q

2
− (Q− 2) = 2− (Q− 2)q

2
=

4− (Q− 2)q

2
=

(Q− 2)
(

4
Q−2 − q

)
2

< 0.

Then for ε small enough, by a similar argument in (i), we can choose Λ3 > 0 such that

sup
t≥tm

Iη,α,β (tuε, tt0uε) < c∞,

for all λ, µ ∈ (0,+∞) with 0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ3.

Set Λ4 = min {Λ2,Λ3}, from cases (i) and (ii), for all λ, µ ∈ (0,+∞) with

0 < sup
t≥tm

Iη,α,β (tuε, tt0uε) < c∞. (5.10)

Thus, taking Λ5 = min {Λ1,Λ4}, (5.8) and (5.10) induce that supt≥0 Iη,α,β (tuε, tt0uε) < c∞ holds

for all λ, µ ∈ (0,+∞) with 0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ5.

Finally, we prove that c−η,α,β < c∞ for all λ, µ ∈ (0,+∞) with (λ, µ) ∈ DΛ5 . Recall that (u0, v0) :=

(uε, t0uε). It is easy to see that Kη (uε, t0uε) > 0. Then, combining (5.5) with Lemma 4.5, and

using the definition of c−η,α,β , we obtain that there exists t−2 > 0 such that
(
t−2 u0, t

−
2 v0

)
∈ N−

η,α,β

and

c−η,α,β ≤ Iη,α,β
(
t−2 u0, t

−
2 v0

)
≤ sup

t≥0
Iη,α,β (tu0, tv0) < c∞,

for all λ, µ ∈ (0,+∞) with (λ, µ) ∈ DΛ5 . The proof is now complete.

Theorem 5.4. Under the assumptions of Theorem 1.2. If (λ, µ) ∈ DΛ∗ , then the functional Iη,α,β
has a minimizer (u2, v2) ∈ N−

η,α,β and it satisfies Iη,α,β (u2, v2) = c−η,α,β, and (u2, v2) is a positive

solution of (1.1), where Λ∗ = min
{
Λ5,

q
2Λ
}
.

Proof. By Lemma 5.1 (ii), there exists a minimizing sequence {(un, vn)} ⊂ N−
η,α,β in H for Iη,α,β ,

for all (λ, µ) ∈ R+ × R+satisfying

0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

<
q

2
Λ.
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In the light of Lemmas 5.3, 3.4 and 5.1 (ii), for 0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ∗, the func-

tional Iη,α,β satisfies (PS)c−η,α,β
condition for c−η,α,β > 0. Since Iη,α,β is coercive on Nη,α,β , we

can deduce that {(un, vn)}n∈N is bounded in Nη,α,β and H. So, there exists a subsequence still

denoted by {(un, vn)}n∈N and (u2, v2) ∈ N−
η,α,β such that (un, vn) → (u2, v2) strongly in H, and

Iη,α,β (u2, v2) = c−η,α,β > 0, I ′η,α,β (u2, v2) = 0 for all (λ, µ) ∈ R+ × R+ with

0 < λ∥g∥
L

2∗
2∗−q

+ µ∥h∥
L

2∗
2∗−q

< Λ∗.

Finally, arguing as in the proof of Theorem 5.2, we have that (u2, v2) is a positive solution of the

system (1.1).

Proof of Theorem 1.2. By Theorem 5.2, we obtain that for all (λ, µ) ∈ DΛ, Problem (1.1) has a

positive solution (u1, v1) ∈ N+
η,α,β . By Theorem 5.4, we obtain a second positive solution (u2, v2) ∈

N−
η,α,β for all (λ, µ) ∈ DΛ∗ ⊂ DΛ. Since N+

η,α,β ∩N−
η,α,β = ∅, this implies that (u1, v1) and (u2, v2)

are distinct.
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