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ABSTRACT

In this work, we study the Nehari manifold and its application
to the following sub-elliptic system involving strongly coupled

critical terms and concave nonlinearities:

—Acu = T2 [uf* 1ol u + B2 |l o)y
+ A g(2) Ju|? %y, z €9,
~Agy =TI ey P2y 4 B ey a2,
+ wh(z) |v]* %, z€Q,
u=v=0, z € 092,

where (2 is an open bounded subset of G with smooth bound-
ary, —Ag is the sub-Laplacian on a Carnot group G; 711,72,
A, i, are positive, a1 + 1 = 2, aa + B2 = 2", 1 < g < 2,
= Qz—% is the critical Sobolev exponent, and @ is the homo-
geneous dimension of G. By exploiting the Nehari manifold
and variational methods, we prove that the system has at

least two positive solutions.
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RESUMEN

En este trabajo, estudiamos la variedad de Nehari y su apli-
cacion al siguiente sistema sub-eliptico que involucra términos

criticos fuertemente acoplados y nolinealidades concavas:

—Agu = T ul ol B ful 2l
+Ag(2) ", z€Q,
—Agv = 7];?1 || *t \v|51_2v e 77;,*52 |u|a2|v|’82_2v
+ wh(z) |v]* %, z€Q,
u=v=0, z € 09,

donde 2 es un conjunto abierto acotado de G con frontera
suave, —Ag es el sub-Laplaciano en un grupo de Carnot G;
N1,7M2, A, [, son positivas, a1 + 1 = 2%, az + 2 = 2", 1 <
q<2 2= QQ—?Q es el exponente critico de Sobolev, y Q es
la dimensién homogénea de G. Usando la variedad de Nehari
y métodos variacionales, demostramos que el sistema tiene al

menos dos soluciones positivas.

Keywords and Phrases: Sub-Laplacian, concave-convex nonlinearities, strongly coupled critical terms, Nehari

manifold.

2020 AMS Mathematics Subject Classification: 35J60, 47J30.
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1 Introduction

In this paper, we are concerned with the sub-Laplacian system involving strongly coupled critical

terms and concave nonlinearities on the Carnot group G given below

g = o2y B2 e 2oy 4 Ag()ul P, 2 € 0,

7A(G, 771ﬁ1|

% o] 12 +n2ﬁ2\ |22 [v]%2 720 + ph(2) 0] 20, 2 €9, (1.1)

u=uv=0, z € 092,

where 2 is an open bounded subset of G with smooth boundary, —Ag is the sub-Laplacian on

a Carnot group G. A, pu, are positive, 2* = QQ—% is the critical Sobolev exponent, and @ is the

homogeneous dimension of G. We consider the following conditions:
(A Q>4,1<q<2,0<m <o0, a;,B; >1and o + 8; = 2* (i = 1,2),
and we give the following assumptions on the weight functions g and h:

(A1) g,h e L%(Q), g%t = max{+g,0} # 0 in Q and h* = max{+h,0} # 0 in .

(Az2) There exist ag,ro > 0 such that B4(0,ro) C Q and g(z), h(z) > ag for all z € B4(0,ro).

Here By(z,r) denotes the quasi-ball with center at z and radius r with respect to the gauge d.

@i=2y|y|% and |u|®|v|#~2v, i = 1,2 are called strongly coupled terms. We now recall some

|u

known results concerning the elliptic system involving the strongly coupled critical terms. When G
is the ordinary Euclidean space (RN, —I—), m=n=1lLa=am=a f=pFp=Fandg=h=1,

problem (1.1) becomes the following Laplacian elliptic system:

~Au= 22l + Nult%u,  in O
“Av = m|u|a\v\572v + v %0,  in Q, (1.2)
u=v=0, on 0.

The authors in [10] proved that the system (1.2) admits at least two positive solutions. Later,
Hsu [9] obtained the same results for the p-Laplacian elliptic system. There are other multiplicity
results or critical elliptic equations involving concave—convex nonlinearities, see for example [1,
2]. Contrary to the nonlinear elliptic problem with the Laplacian or p-Laplacian in Euclidean
space that have been widely investigated, the situation seems to be in a developing state for
the sub-Laplacian problem on Carnot groups. Recently, great attention has been devoted to
nonlinear elliptic problems involving critical nonlinearities, in the context of Carnot group, see

for example [11,13,20] and references therein. To the best of our knowledge, there is no result
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so far concerning sub-elliptic system involving strongly coupled critical terms nonlinearities with

sign-changing weight functions on Carnot group.

We look for weak solutions of (1.1) in the product space H := S} () x S3(Q), endowed with the

norm
1

2
)l = (g o + 013yey) s ¥lwv) € H,
where the Folland-Stein space Sj(€2) = {u € L*(Q) : [, |Vgu|*dz < oo}, is defined as the comple-

tion of C§°(Q2) with respect to the norm

(llsyo) = ([ WeuPaz) ", vue i)

By using the Nehari manifold and fibering map analysis, we establish the existence of at least two
positive solutions for a sub-elliptic system (1.1) when (A, ) belongs to certain subset of Ri. Since
the embedding S () < L?" () is not compact, then the corresponding energy functional does not
satisfy the Palais-Smale condition in general. Therefore, it is difficult to obtain the critical points
of energy functional by simple arguments, which are based on the compactness of the Sobolev
embedding. To overcome this difficulty, we extract a Palais-Smale sequence in the Nehari manifold
and show that the weak limit of this sequence is the required solution of problem (1.1). The best
constant of the Sobolev inequality was studied on graded groups in [15]. But in that paper, the

best constant was expressed in variational form.

We consider the following scalar critical equation:
—Agu=|u> "2u  inG. (1.3)

For equation (1.3), it is well known (see e.g. [3,11]) that positive solutions have the following
decay:
¢ 4
U(z) ~ a)a? as d(z) — oo, (1.4)
where d is the gauge norm on G. This result applies, in particular, to the extremals of the Sobolev
inequality on Carnot groups (whose existence was proved in [8,17], i.e., to the functions U that
achieve the best constant for the embedding S}(G) <+ L?" (G), that is,

S e inf Jo |Veul?dz _ Jo IVeUPdz

HESHONOD (fg ul2de) ™ (fg U7 d2) ™

We underline that the knowledge of the exact asymptotic behavior of Sobolev minimizers turns out
to be a crucial ingredient in order to obtain existence results for Brézis-Nirenberg type problems,
whenever the explicit form of Sobolev minimizers is not known, as in the present Carnot case. The

knowledge of the behavior of Sobolev minimizers turns out to be crucial also for the system, due
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to the relation between the extremals for the best constant S, . g associated to the system and

the Sobolev constant Sg (see Theorem 2.1 below).

The energy functional I, o g : H — R associated to (1.1) is given by

1 1
— K, (u,v) — 6\I’>\,#(U,U), V(u,v) € H,

1
Iy,3(,0) = 5 (0, 0) B, = -

where
Kn(uyv)Z/ (el ol + m2lul* [v]2) dz, ‘I’m(u’v)Z/ (Ag(2)[u|? + ph(z)[v|?) d=.
Q Q

It is easy to check that I, o3 € C*(H,R) and the critical point of I, o 5 is the weak solution of

(1.1). We call a solution (u,v) positive if both u and v are positive, (u, v) is nontrivial if u # 0 or
v # 0.

Definition 1.1. A pair of functions (u,v) € H is said to be a weak solution of problem (1.1) if

+

/Q(vuvgb+vvvw) dx:A(n1a1| |a1 2|U|Blud)+ 772 2| |a2 2|,U|ﬂ2u¢) dm
S (el w+”252| ol 200 do (1.5

2

+/ (Ag(x)|u|q*2u¢ + uh(:c)|v|q*2m/)) dx  for all (p,00) € H

2

Define the set

Dyt

{Ovw) eRT XRA(0,0}:0 < pllgl e +pllbl] 2 <o}, and
(1.6)

P 2 27 2t
A== ( 1 ) ST
2% —q \(m +m2) (2* — q)

So, the main result of this paper can be included in the following theorem.

Theorem 1.2. Let G be a Carnot group. Assume that (Ap), (A1) and (Az) hold. Then, we have

the following results:

(i) If (\, ) € Dy, then (1.1) has at least one positive solution in H.

(ii) There exists a constant A, > 0 such that system (1.1) has at least two distinct positive

solutions in H for all (A, p) € Da, .

The paper is organized into three sections. In Section 2, we recall some basic definitions of Sobolev
space on Carnot groups and we give some useful auxiliary lemmas. In Section 3, we investigate
the Palais-Smale condition for the energy functional I, , g. Finally, the proof of Theorem 1.2 is

given in Sections 4 and 5.
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2 Preliminaries

In this section we recall some basic facts on the Carnot groups. For a complete treatment, we refer

to the classical papers [6,7]. We also quote for an overview on general homogeneous Lie group.

Let G = (RN,O) be a homogeneous group, i.e., a Lie group equipped with a family {57}v>0 of

dilations, acting on z € RN as follows

0y (2(1), R Z(T)) = ('ylz(l),nyz(2), e ,'yrz(r)> ,

where z(*) ¢ RNx for every k € {1,...,7} and N = > i—1 Ni. Then, the structure G :=

(RN ,0, {57}7>0) is called a homogeneous group with homogeneous dimension

Q=) k- Ny
k=1

Note that the number @ is naturally associated to the family {5’v}~,>o since, for every v > 0, the
Jacobian of the map z — 0,(z) equals +®@. From now on, we shall assume throughout that @ > 3.

We remark that, if @ < 3, then G is necessarily the ordinary Euclidean space G = (RQ, +).

Let g be the Lie algebra of left invariant vector fields on G and assume that g is stratified, i.e.,
9=@,_, Vi with [V;,Vj] = Vi, for 1 <k <r—1and [V4,V,] = {0}. Under these assumptions,
we call G a Carnot group. Here the integer r is called the step of G, dim (V;) = Nj and the
symbol [V1, V%] denotes the subspace of g generated by the commutators [X, Y], where X € V; and
Y eV Let X ={X;,Xs,...,X,,} be a basis of V; with m = dim (V;). From Proposition 1.2.29

of [14], the left invariant vector field X; (kK =1,...,m) has an explicit form as follows:
ko dim(Vi)
9 (ONONG! -1 9
X; = + aw(a:()7...,x( ))—,
T 5 7

where al(-? is a homogeneous (with respect to ¢.,) polynomial function of degree I — 1. Then, once
a basis X3, Xo,...,X,, of the horizontal layer is fixed, we define, for any function v : G — R
for which the partial derivatives X;u exist, the horizontal gradient of u, denoted by Vgu, as the
horizontal section

Veu = (Xju, Xou, ..., Xpu).

Moreover, if ¢ = (¢1,¢2,...,¢m) is an horizontal section such that X;¢; € L} (G) for j =

1,...,m, we define divg ¢ as the real-valued function

dive(¢) := =Y X5o; = X;¢;.
j=1 j=1
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From the above results, the second-order differential operator

Ag = in
j=1

is called the (canonical) sub-Laplacian on G. The sub-Laplacian Ag is a left invariant homogeneous
hypoelliptic differential operator, thanks to Hérmander’s theorem, and Agu = divg (Vgu). In
addition, we can check that Vg and Ag are left-translation invariant with respect to the group
action 7, and d,-homogeneous, respectively, of degree one and two, that is, Vg (uo7,) = Vguo
7, Vg (uod,) =yVguod,, and Ag (uoT,) = AguoT,, Ag (uod,) =~v?Aguod,, where the left

translation 7, : G — G is defined as

r—T,x:=zo0x, Vr,z€G.

Moreover, there exists a homogeneous norm d on G such that

C

['(z) = Wﬂ

Vz € G,
is a fundamental solution of —Ag with pole at 0, for a suitable constant C' > 0. By definition,
the homogeneous norm d on G is a continuous smooth function, away from the origin, such that

d(6,(z)) = vd(z) for every v > 0 and z € G,d (27!) = d(z) and d(z) = 0 iff z = 0.

We will give some results which will be used to prove the existence in multiple critical cases. Let

U be a fixed positive minimizer for the best constant Sg and define the family

Uc(z) = 72U (6;(z)) , Ye>0. (2.1)

€

The functions U, are also minimizers for Sg and, up to a normalization, they satisfy
Q

VeU.|?dz = U.(z 2 dz =52, Ve>0.
G
G G

For any 0 < 7; < o0 (i =1,2), oy, B; > 1 with «o; + 8; = 2*, by the Young inequality, the following
best Sobolev-type constants are well defined and crucial for the study of (1.1):

V 2 v 2 d
Spa,pt= inf fG (| cul® + |V ) 2
() SO0} ([ (mfulor[v]Pr + nalul@2|v]f2) dx)

—2/2*
[ (u,v)||? (/@, (m[u|® [] Pt + naul @2 |v]#2) d:z:) .

2/2*
(2.2)

= inf
(u,0)€H\{(0,0)}
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For any ¢ > 0, we define the function

1+
h(t) == - (2.3)
(mtPr + natP2) 2"
Since b is continuous on (0, co) such that lim+ h(t) = . ligrn h(t) = 400, then there exists tp > 0 a
t—0 — oo
minimal point of function b, that is,
b (to) = minh(¢) > 0. (2.4)

t>0
Summarizing, we have the following relationship between Sg and Sy o 3.

Theorem 2.1. Assume that (Ag) hold, then

(i) Sp.a.8 = b(to) Sc-

(i) Sy,a,s has the minimizers (U.(z), toUe(2)), for € > 0, where U:(2) are defined as in (2.1).

Proof. Suppose x € S}(G). Choosing (u,v) = (k,tgk) in (2.2) we have

\Ver|*dz
1+t5 /@ S

ST 7 2 Snas 29
(nlto1 + 772t02) (/ |/{|2*dz)
G
Taking the infimum as k € S§(G) in (2.5), we have
b(tO)SG > Sn,a,ﬁ~ (26)

Let {(un,vn)} C H be a minimizing sequence of S, o g and define w,, = s,v,, where

-1 7
Sy 1= (/ v, dz) /|un|2 dz .
G G

/|wn|2* dz:/ Jun|? dz. (2.7)
G G

From the Young inequality and (2.6) it follows that

[
G

Then

(623

Wn

Bi dzg%/|un|2* dz_i_&/ |wn|2* dz
2* Jg 2* Jg

z/ |un|? dz:/ jwn | dz, i=1,2.
G G
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Consequently,

IR

2/2r =
(/ (71| on] P+ 12| *2 0] *2) dx)
G

/ Veun|2dz 57 / Vew, *dz
G G

((77185’81 +7728562) I |un|2*> ((m&?ﬂl +nzs77ﬁ2) Jg lwn

+ = 2 h(s;, )56 = h(to) Se.

2" dz) :

2
o

As n — oo we have

S’r],a,,@ > h(tO)SG7
which together with (2.6) implies that
Sn,a,ﬁ = h(t())SG~
By (2.2) and (2.1), Sy,a,3 has the minimizers (Uc(x), toUe(z)). O

Let R > 0 be such that Bg(0,R) C Q (we can suppose 0 € Q, due to the group translation
invariance) and let a cut-off function ¢ € C§° (B4(0,R)), 0< ¢ <1, ¢ =1in By (0, %) and ¢ =0
in G\B4(0, R). Set

Then, from [11, Lemma 3.3], we obtain the required results.

Lemma 2.2. The functions u. satisfy the following estimates, as e — 0:
2 ¢ Q-2 2* 2 Q
|Vgue?dz = S¢ + 0 (e977), ue|® dz =S¢ + 0 (e9),
Q Q

and
) Ce? +0 (e972), if Q > 4,
lue|“dz =
Q Ce?|lne[+ O (%), ifQ=4.
Moreover, similarly as the proof of [12, Lemma 6.1], we get the following results.

Lemma 2.3. The following estimates hold as ¢ — 0:
o) (SQ+—(2‘§”) , if o2 <q<2,

(2=Q) .
/Qluslqdzz 0(5Q+ 2 q\ln(5)|), if 4= 5%,

O(s(Q_Q)), ifl1<q< 2

Q-2"
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3 The Palais-Smale condition

In this section, we use the second concentration-compactness principle and concentration-compactness

principle at infinity to prove that the (PS). condition holds.

Definition 3.1. Let c € R and I, o 5 € C'(H,R).

(i) A sequence {(Un,vn)}nen C H is called a Palais-Smale sequence at the level ¢ (PS),-

sequence, in short, for the functional I o if Inapg(tun,vn) = ¢ and I} | 5(tup,vn) — 0

n,a,B
as n — 00.

(i) We say that I, o p satisfies the (PS). condition if any (PS).-sequence {(tn,vn)}nen C H

for I, o.g has a convergent subsequence in F.

Since g, h € L%(Q)7 we obtain from the Holder and Sobolev inequalities that, for all u € S§(£2),

[ stetuea < [ 1ac2 d) T ([wEe) St e s e, G

Similarly, one can get
W
2

/h(z)|v|qdz§ (/ Ih(2) dz) (/ |U|z*dz) <Ihl o Sl (32)
Q Q Q LZ=a

Hence, in view of (3.1) and (3.2), we can obtain

Oa(w,0) < (Mgl e ) Sa )14 (33)

Moreover, the Young inequality and (3.1), (3.2) imply that

2%q

Uy u(u,v) < %

NVl

+ﬂs (;_g)[(A sz*q)ﬁ’+(u||hmfn)224]. (3.4)

Lemma 3.2. Let {(un,vn)},eny C H be a (PS)c-sequence of Iy o g with (un,v,) — (u,v) weakly
inH. Then I , 5(u,v) =0 and

q

(2" —q)(2—q) 5% (2" —q\* ¢ = 725
st 2 - E B 5 (20 (g )P )
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Proof. Since {(tn,vn)},c

it is easy to check that I} , s(u,v) =0, and then <I7/7,a,[3

ny C H is a (PS).-sequence of I, o g with (up,v,) = (u,v) weakly in H,
(u,v), (u,v)> =0, that is,

H(u’ U)HH = Kﬁ(uvv) + \IIA,M(ua v).

Then from (3.4), we have

1 2% —
Iy () = Gl 0) e = =5 F 0w 0)
(2 - q)(2—q) 5% (27— q\T" 5 =
S LA U (» =) (el e )7
2q2* G 2% _ 9 ||g||L23—‘1 + /’LH ||L2*2—‘1
This ends the proof of lemma. O

Lemma 3.3. Assume that {(un,vn)},cn C H is a (PS)c-sequence of I o5 and the condition

(A1) holds. Then {(un,vn)},cn @5 bounded in H.

ne

Proof. Assume by contradiction that ||(un, vs)|l;; — +0o. Set

(ﬂn;ﬁn) = ( o ) on > .
[ (s v )3 (s vn) [l
Then, ||(ﬂna7~1n)”7-¢ =1, and

(@ weakly in H,
(@ strongly in (L"(Q))*,Vr € [1,2%), (3.5)

(U (2),0n(2)) = (u(2),v(2)) a.e. in Q.

ns On) = (u,0)
n7’6n )

(
) = (u,v

Set 4, := U, — u, U, := 0y — v, there exists a positive constant C' > 0 such that

/ | dz < C, / (.2 dz < C, (3.6)
Q Q

and by (3.5), one has that for any e > 0, there exists o > 0 such that

/ |2 dz < e, / 152" dz < e, (3.7)
Bd(O,’r‘Q) Bd(O,To)

for n large enough, where By (0,7r9) = {z € G : d(0,2) < ro} is a ball with center at 0 and radius

ro with respect to the gauge d. Moreover, since g, h € L7 (Q), for the above constant ry, we

/ 9(2)| 7w dz < e, / Ih(z)
Q\Bd(o,’l‘o) Q\Bd(o,’l"g)

have

*

Tadz < e. (3.8)
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Then, by (3.6), (3.7), (3.8) and Holder inequality, we get

U (i, i) = / (G| n|? + uh(2)[5a]) dz + / (Ag(@)|n|? + h(2)[Balg?) d
Q\Ba(0,70) Bq(0,r0)

2*—¢q

<A / 9|75 dz / 1| dz
Q\Bd(o,’l‘o) SZ\Bd(O,To)

o i - *
+p / |h|Z"=adz / |vn]? dz
Q\B4(0,70) Q\B4(0,u0)
2;
_2* _2*
+ A / lg|7=adz / || dz
B4(0,r0) Ba(0,r0)
2% _g a
+ / |h
Bq(0,r0)

e = o S
¥ —adz |Un]® dz
Ba(0,u0)
< 018% + Cy2e27

a_
which yields that Wy ,, (4n,0,) — 0 as n — oo. Consequently,

‘»n

£

|

lim Wy, (G, 0p) = lim Wy, (tUn, Un) + Ui u(u,v) = ¥y ,(uw,v). (3.9)

n—oo n—roo

On the other hand, since {(tn, vn)}, cn C His a (PS)c-sequence of I, o g and uy, = ||(tn, vn)| 5 Un,

Vp, = ||(tn, V)4 - Un, we deduce that
1 ” Pt 2% ~ ~
5 ||(unaU7L)HH H(unvvn)HH = 27* H(U’TL?U")”’H KVI (u,HUn)
1 (3.10)
+ 6 ||(U", UH)H;I{ \I//\,u (ﬂ’na f}n) + 0n(1)7
and
s o) s 5 = s 05 o (s )
b " . (3.11)

+ (s v) 13 ©a,pe (T Bn) + 05 (1).
From (3.9), (3.10), (3.11), 1 < ¢ < 2 and |[(un,vn)|;; = 400, one has

lim (@, 5 = 22 =9 iy Yo (nsn)
oo I IIH T (9% Z9) nShoo H(unvvn)”i_q

)

which contradicts ||(tn, )|, = 1. Therefore, {(un,vn)}, oy is bounded in H. O
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Lemma 3.4. T, o s satisfies the (PS). condition in H, with ¢ satisfying

_2

1 Q 2—q 2%‘I
= =57 — * 2% .
0<c<cow:=557,5— Co [(x\||g||L23q) + (,uHhHLz*iq) } (3.12)

q

* -1 * g
where Cy = Cy(q, Q) := mS’G 2ma (2 7‘1) ™" is a positive constant depending only on g,

2¢2* 272
Q and Sg.

Proof. Let {(un,vn)}

Lemma 3.3 that {(un,vn)},cy is bounded in H. Then, there exists a subsequence still denoted by

nen C H be a (PS).-sequence for I o 5 with ¢ € (0,c). It follows from

{(un,vn)}, ey and (u,v) € H such that (u,,v,) = (u,v) weakly in H, and

Up — u, v, — v weakly in L? (Q),
Up —> U, U, — v strongly in L"(Q), V1 <r < 2% (3.13)

un(2) = u(z), wvp(z) = v(z) a.e. in Q.
Hence, from (3.13), it is easy to verify that I} , 5(u,v) =0 and

lim Wy, (tn,vn) = ¥ u(u,v). (3.14)

n— o0
Set U, = up — u, Uy, = v, — v. By Brézis-Lieb lemma [18], we get

[ (s vn)llgg = 1w 0) 1o + 1@, 0015, + 0n (1), (3.15)

/|un|2*dz:/ |u\2*dz+/ |tin|? dz + 0, (1), (3.16)
Q Q Q

/|vn|2*dz:/ |v|2*dz+/ 152" dz + on (1), (3.17)
Q Q Q

/\un\ai|vn|’37‘dz:/ \u|o"'|v|ﬁidz+/ i |5 Pz + 0n (1), (3.18)
Q Q Q

So, (3.16), (3.17) and (3.18) yield

and

Ky (un, vpn) = Ky (u,v) + Ky (i, On) + 0n(1). (3.19)

Then, using (3.14), (3.15) and (3.19), we have

1., 1 o
c=3 | (s On)|lqy — 2—*1(}7 (Un, On) + Ina,p(u,v) + 0, (1), (3.20)

S

and

0n(1) = || (tn, On) |3y — Ky (Un, 0pn) - (3.21)



608 R. Echarghaoui, A. Hatimi & M. Hatimi

We may assume that

|(tn, On)llyy =1, Ky (G, Op) = 1>0  asn — oo.

If | = 0, the proof is completed. Assume that [ > 0, then from (3.21), we have
2

2 . N . S
Sn.a.pl? =8y a.3 (nhﬁnolo K, (un,vn)) < nl;rrgo | (T, )|l = 1,

Q
which implies that [ > 5,° ;. Hence, from (3.20) and Lemma 3.2, we have

1 1
c=1Ip0,8Un,vn) +0,(1) = <2 - 2*> U+ 1 0.8(u,v) +0,(1)

1 e =7 E=r]
> 5500~ Co | (Ml Lz, ) 7+ (ullel ez )7

which contradicts ¢ < co,. The proof is completed.

4  Nehari manifold

(3.22)

Now we focus our attention on Problem (1.1) by using the Nehari manifold approach. For this

reason, we introduce the Nehari manifold

Niap = {w € H\{0} : (I} , s(w),w) =0} .

where w = (u,v) and |lw|y = ||(u,v)||%. Note that N, o g contains all nonzero solution of (1.1),

and w € N, o 3 if and only if
[wll3 = Ky(w) + Wy, (w).

Lemma 4.1. I, , 3 is coercive and bounded below on N, o 5.

Proof. Let w € N, o 5 by (3.3) and (4.1). We find

2% —2 2% —2
Ty p00) = S =l = == )
2" — 2 2 — ¢ P
> Sl = = (Ml o+ wlbl e ) S5 ol

(4.1)

(4.2)

Since 1 < ¢ < 2, we see that I, o g is coercive and bounded below on N, o 3. This achieves the

proof of the lemma.

O
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pw), w>, then for all w = (u,v) € NV, 4.3, we have

(@' (w), w) = 2||wlly — 2" Ky(w) — q¥y ,(w)
= (2= q)llwllx — (2% = q) Ky(w) (4.3)
= (2-2") lwlly + (2" — q) ¥ p(w).

Now, similar to the method used in [16], we split N, o 3 into three disjoint parts:

ana’ﬁ ={w € Ny ap: (®(w),w) >0},
Ny s ={wENyap: (®(w),w) =0}, (4.4)
Nopas = 1w € N g1 (' (w),w) <0}

Note that NV, 3 contains every nonzero solution of problem (1.1). In order to study the properties

of Nehari manifolds. We now present some properties of N

o N o and N o to state our

main results.

Lemma 4.2. Assume that wo = (ug, vo) is a local minimizer for I, o g on the set Ny o p \Ngﬂ)ﬁ

Then I;,,Q”B (wo) = 0 in H~L, where H~' denotes the dual space of the space H.

Proof. The proof is similar as that of [21, Lemma 3.4] and the details are omitted. O

Lemma 4.3. N}, 5 =0 for all (\,n) € R* x R with

0 <Allgll, jo= +pllll | e <A

where A is given in (1.6).

Proof. We argue by contradiction. Assume that there exist A, € (0, +00) with

0 <Allgll, joey + il 2= <A

o

such that N0 , 5 # 0. Then, for w € N}, 5, by (4.3), we have

2% —¢q
ol = 2 =2, ) (45)
and
2% —¢q
= —U . 4.
el = 52 (w) (16)

From the Young inequality, we have that

Ky(w) < (m +m2) Sg

X
T2
H

[[w
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and (4.5) yields

2—q 2*> 73
> S . 4.7
b > (Gt o

On the other hand, from (3.3) and (4.6), it follows that

1

2% q %q 2—q
ol < (52 (Ml oo, + il e, )57 ) (4.9

9k 3 T+

Therefore, in view of (4.7) and (4.8), we obtain

2" — 2 2—g =2 2oy
Mol 2o 4+ pllh] o > ( ) ST = A,
loll zoes + 00l e 2 5 o =) S8

which is a contradiction. This completes the proof of Lemma. O

By Lemmas 4.2 and 4.3 , for (A, 1) € Da, we can write N, o 5 = N.© UN, 5 and define

0,8
. + . — .
Cnap= inf I, qp(w); c = inf I,,s(w); ¢ = inf I, qp(w).
e weNyas B weN " e R weN,", 4 e

Lemma 4.4. Assume that (Ap), hold. Then, we have the following results:

(i) cnap < c;a’ﬁ < 0 for all (A, p) € Dy.

(ii) There exists a constant Cy = Co(A,¢,Q,Sg,A) > 0 such that ¢

B 2 Co > 0, for all
(Aau) EQ%A'

Proof. (i) For w e N7, 5 C Nyas, by (4.3), we have

*

qKW(w)a

wl|y >
fulle > 5

and so

() = (5= ) b= (5 = ) #6w)

-2 2f—q 2- 2—q)(2* -2
< (122,22 -a2-q lelyz—( Q)(* )
2q 2*q 2* —q 22*q

[[w]l3 < 0.

+

Thus, from the definition of ¢ 4,5 and ¢, 5,

+
we can deduce that ¢, a5 < ¢, , 5 <0.

(ii) For w € N, 5, similar to (4.7), we have

2—gq 2% 3
> S.2 . 4.9
ol ((771 +m2) (2t —q) C ) (4.9)
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In view of (4.2) and (4.9), we get

2% —¢q 2% —q

~£=9q *(2—g
> Jullg, | 522 2o0 )T gint
220 () (2F —q) G
2* —q _g
L (Ml 4l ) 55F).

22 L, . 2y _g
Ty(w) 2 ol (220l = 222 (Ml 4l e, ) 557

So, if namely,

2—gq

q2" -2 2—q g |
0< Ml o, +alil e, < £33 (4 ) sEE =t

= = 022 —q \(m+m2) (2 — g 2
we get
2oq  a\TE(ro2)  2-g \E% _ze
s 2 (G (=5 ) < = (araeg)
f*q;*q (Mgl e+ sllpll =) S5 ) = Co (A 4,Q. S5, A) >0,
and this completes the proof. O

For each w € H\{0}, we have K, (w) > 0 and let

(2= gluwlx \T
e (e im) >0

So, we get the following result.

Lemma 4.5. Let (A, ) € Da. For every w € H with K,(w) > 0, the following results hold:
(i) If Wxu(w) <0, then there is a unique t~ > tmax such that (t”w) € N, 5 and

Ly p(t”w) =sup I o p(tw).
>0

(ii) If Wy ,(w) > 0, then there exist unique t+ and t= with 0 < 7 < typax < t~ such that
(ttw) € ./\f;ra 5 and (t"w) € N, 5. Moreover,

Iap(ttw) = _iof Inap(tw), Ipast w)=suplyas(tw).

Proof. The proof is similar to [5, Lemma 2.6], and is omitted here. O
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5 Proof of the main results

In this section, we provide the proofs of the main results of this work. Before giving the proof of

Theorem 1.2, we need the following lemma.

Lemma 5.1. Assume that (Ag), hold. Then, we have the following results:

(i) If (\, 1) € Da, then there exists a (PS)., . ,-sequence {(un, vn)fnen C Nya,p for I a.s.

(i) If (A, 1) € Dan, then there exists a (PS) -sequence {(tn,vn)}tnen C N, 5 for Inap.

=
o,

Proof. The proof is almost the same as Proposition 9 in [19]. O

Now we establish the existence of a local minimizer of I, , g3 on ./\/;;|r af

Theorem 5.2. Assume that (Ag), hold. If (A\,p) € Dp, then I, o p has a minimizer (uy,v1) €

Nr;fa’ﬁsuch that (u1,v1) is a nonnegative solution of (1.1) and
In,a,ﬁ (ulavl) = Cp,a,p = C;a,ﬁ <0.

Proof. In view of the Lemma 5.1 (i), there exists a minimizing sequence {(un,vn)},cn C Nya,s
such that

lim Iy g (Un,0n) = Cpap and  lim I 5 (Up,v,) = 0. (5.1)

n—oo n— oo n

Since I)q,p is coercive on N, o3, we get that {(un,vn)},cy is bounded in H. Passing to a

subsequence, still denoted by {(uyn,v,)} we can assume that there exists (up,v1) € H such

neN?
that (wy,v,) — (u1,v1) weakly in H and

Uy — U1, U, — v; weakly in LQ*(Q)7
Up —> U1, vy — v strongly in L™(Q), Vr € [1,2%), (5.2)

un(z) = u1(2), wvn(z) = v1(2) a.e. in Q.

By the proof of Lemma 3.3 and (5.2), we get

lm Uy, (un,vn) = ¥, (ur,v1). (5.3)

n—oo

From (5.1), (5.2) and (5.3), it is easy to prove that (u1,v1) is a weak solution of (1.1). Moreover,
the fact that (un,v,) € Ny a,p implies that

q(2* -2

) q2*
2(2* — q) ”(Umvn)HH -

mITha,ﬂ (Un7’l}n) . (54)

\Ij)\,/t (Un7 Un) =
Let n — oo in (5.4), by (5.3) and ¢, < 0, we deduce that

U (w1, v1) > Tgn g Cmas >0,
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which implies that (u1,v1) € H is a nontrivial solution of (1.1).

Now, we prove that (uy,v,) — (u1,v1) strongly in H and that I, o 3 (u1,v1) = ¢p.,5. By applying

Fatou’s lemma and (uy,v1) € N, 3, one has

11 2* _g
o < Ty 100) = (5 = 52 ) N o)l = 2200 ()
. 1 1 2% —q
< - 2 49 < =
<tmint | (5= 50 ) o)l = 220000, 0) | € 10 Ty ) = 0

This yields I, o5 (t1,v1) = ¢y,a,p and limy, o0 ||(tn, vn)[l5, = [|(u1,v1)||;,- The standard argument
shows that (un,v,) — (u1,v1) strongly in H.

Next, we claim that (uy,v1) € N g In fact, if (u1,v1) € N, 5, by Lemma 4.5 (ii), there are
unique #and ¢; > 0 such that ( ul,tfvl) € N 03 (tTur, t7v1) € N ma,p and th <ty =1
Since %In a.B (tl U1, ] vl) =0 and <& el In,aﬁ (t1 uy,t] vl) > 0, there exists ] € (tf,tl )such that
Lyag (tTur, tf o) < Ipap (tiur, tjor). By Lemma 4.5, it follows that

Inas (tTur, t701) < Ipas (Gus, tior) < Inyap (8 w1, 67 01) = Iyap (u1,01),

which contradicts I, o, (u1,v1) = €ya,8. Moreover, since I, o g (u1,v1) = Iyap (Juil, |v1]) and
(Jusl, Jv1]) € J\/'77 > We may assume that (ui,v1) is a nonnegative nontrivial solution of system

(1.1). By means of Bony’s maximum principle [4], such solution turn out to be strictly positive. [

Now we establish the existence of a local minimizer of I,, , g3 on Nn_ B

Lemma 5.3. Assume that (Ag) hold. Then, there exist (ug,vo) € H\{(0,0)} and A5 > 0 such
that for all (A, 1) € Dp,, the following holds:

sup Iy o, (tuo, tvg) < Coo, (5.5)
>0

where ¢ s a constant given in (3.12). In particular, Cpap < Coo for all (A1) € Dy,

Proof. Without loss of generality, we assume that 0 € Q. Let R € (0,70) be such that the quasi-
ball B4(0,R) C Q, and let a cut-off function ¢ € C§° (B4(0, R)) satisfying 0 < ¢ < 1, ¢ = 1in
Bq (0,4) and ¢ = 0 in G\By(0, R). Here rg is given in (As). Now, let u.(z) = ¢(2)U.(2) and

consider the function

2 2"

t t
T(0) = 5 (1 8) [l 3y = 5o (n™ +mt™) [ fucl a (5.6)
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where ¢y be given in Theorem 2.1. By Lemma 2.2 and the definition of S, o g, we obtain that

o*

(Y (14 £3) ey o
sup J,, (t) < 5~ o . -
t>0 (nltﬁl + 772tﬁ2)2* (fQ ‘UE 2% dZ) 5%
Q
2 5 o 2
<1 b (to) M _ 1 b (to) S¢ ++0(e972) (5.7)
T Q 2+ 1.\ 3" Q o 2
U el d2) (sg +O(5Q))
1 g 1 <
- @ (h (to) SG) * cng_Q - @Sn%a,[i + C1EQ_2a

where ¢ is a positive constant and the following fact has been used:

Q

12 2" 1 A :
sup(—=A——B|)==|——1] , VA B>0.

(54 55) = 5 ()

Choosing A1 > 0 such that 0 < A||g|| 2+ + p|lh]] 2= < Ay, by the definitions of I, , g, there
25 s e,
exists ¢, € (0,1) such that

t2
Ly, (tte, thoue) < o (14 83) luel§s o) < Coor VE < tm,

and one has

sup I o3 (tue, ttous) < Coo, (5.8)
0<t<tm

for all A\, 4 € (0, +00) with

0 < Algll, p2e, +ullPll 2 <Ar.

PR

Moreover, by the definitions of I, o and (ue,touc), using the condition (Az), Lemma 2.3 and
(5.7), we have

sup Ip o3 (tue, ttouc)

sup (0= 2 [ 0(z) + eyl lulva: )

>t t>tm
< ésﬁaﬁ b @2 - %ao (\ +,utg)/Q e |7d
= %577%@, + 1697 (5.9)
CQaQ’@, if g > &,
— %ao A+ ptd) { 5@ 1952 |Ing|, ifg= &,
045@, if ¢ < %,

where co, c3, ¢4 are positive constants.
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()If1<q<Q 5

enough, we can choose As > 0 such that

then by @ > 4 one can get that qQ— % < @ — 2. Thus, for ¢ > 0 small

td (Q=2)q

ts;a Iy a5 (tue, ttous) < QSnQa 5+ 16972 — an0045 2 < Coo,
for all A\, u € (0,400), == < As.
(ii) If 55 < ¢ <2, wehave Q >4 and ¢ > & > ﬁ, which implies that
4
(@ —2)q (Q-2q 4-(Q-2)q (Q—Q)(m—q)
— — —N=92— = = 0.

Then for £ small enough, by a similar argument in (i), we can choose Az > 0 such that

sup I a8 (tue, ttote) < Coo,

tZt”n
for all A, p € (0,+00) 2+ + MHhHL% < As.
Set A4 = min {As, A3}, from cases (i) and (ii), for all A, u € (0, +oc) with

0 < sup Ip o, (tue, ttoue) < Coo- (5.10)

t>tm

Thus, taking As = min {A;, A4}, (5.8) and (5.10) induce that sup,~ I,a,p (fue, ttoue) < coo holds
for all A, p € (0,+00)

2% < A5.
L2 —q

Finally, we prove that ¢, , 5 < ¢ for all A, u € (0, +00) with (A, 1) € Dp,. Recall that (ug, vo) =
(ue, toue). It is easy to see that K, (ue,tous) > 0. Then, combining (5.5) with Lemma 4.5, and
using the definition of c;a’ﬁ, we obtain that there exists t; > 0 such that (t;uo, t;vo) IS /\/’77 o8
and

Crop < Inas (t3 uo, t5 vg) < supIn a8 (tug, tvg) < €0,
for all A, 1 € (0, +00) with (A, ) € Da.. The proof is now complete. O
Theorem 5.4. Under the assumptions of Theorem 1.2. If (A, 1) € D, then the functional I, o g

has a minimizer (ug,vs) € J\f 0B and it satisfies I o p (u2,v2) = ¢

solution of (1.1), where A, = min {As, ZA}.

g and (uz,v2) is a positive

Proof. By Lemma 5.1 (i), there exists a minimizing sequence {(un,v,)} C N, ", 5 in H for I, o g,

for all (A, ) € RT x Rtsatisfying

q
N
=2
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In the light of Lemmas 5.3, 3.4 and 5.1 (ii), for 0 < )\||g||L 2+ u||hHL

2 < A, the func-
tional I, o g satisfies (PS)

g
CV—Wﬁ(:ondition for Crap > 0. Since Iy g is C;eréive on Ny g, we
can deduce that {(un,vn)},cy is bounded in Ny o 3 and H. So, there exists a subsequence still
denoted by {(un,vn)}, ey and (uz,v2) € N, 5 such that (un,v,) — (uz,v2) strongly in H, and
Iya,p (ug,v2) =, 5> 0,1} 5 (u,v2) =0 for all (A, u) € R x RY with

0<Algl z +plhll e <A

%
2% —q

Finally, arguing as in the proof of Theorem 5.2, we have that (us,v2) is a positive solution of the

system (1.1). O

Proof of Theorem 1.2. By Theorem 5.2, we obtain that for all (A, u) € D4, Problem (1.1) has a
positive solution (ui,v1) € /\f;ra - By Theorem 5.4, we obtain a second positive solution (ug,v2) €

/\/;;a’ﬁ for all (A, ) € Dy, C Dy Since /\/;;faﬁ ﬂ/\/;;aﬁ = (), this implies that (u1,v1) and (ug, v2)

are distinct.
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