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ABSTRACT

This paper investigates the existence and stability of so-
lutions for a class of totally nonlinear neutral Caputo q-
fractional difference equations of order 0 < α < 1. By trans-
forming the equation into an equivalent integral equation and
leveraging the Krasnoselskii-Burton fixed point theorem, we
establish sufficient conditions for the existence of solutions.
The methodology involves decomposing the integral operator
into a sum of a compact operator and a large contraction.
Furthermore, suitable conditions for the stability of these
solutions are derived. Our theoretical results extend and
generalize previous findings in the literature. An illustrative
example is provided to demonstrate the applicability of the
main theorems.

RESUMEN

Este artículo investiga la existencia y estabilidad de solu-
ciones para una clase de ecuaciones en diferencias Caputo
q-fraccionarias neutrales totalmente no lineales de orden
0 < α < 1. Transformando la ecuación en una ecuación
integral equivalente y aprovechando el teorema de punto
fijo de Krasnoselskii-Burton, establecemos condiciones su-
ficientes para la existencia de soluciones. La metodología
involucra descomponer el operador integral en una suma
de operadores compactos y una contracción grande. Más
aún, derivamos condiciones apropiadas para la estabilidad
de estas soluciones. Nuestros resultados teóricos extienden
y generalizan hallazgos previos en la literatura. Se entrega
un ejemplo ilustrativo para demostrar la aplicabilidad de los
teoremas principales.
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1 Introduction

The realm of q-calculus, also known as quantum calculus, offers a fascinating extension of classical

calculus, operating without the conventional concept of limits. Its genesis can be traced back

to the early twentieth century with the pioneering work of F. H. Jackson [21]. This framework

provides a robust mathematical toolkit for analyzing functions that may exhibit non-smooth behav-

ior. Subsequent developments by numerous researchers have significantly enriched the theoretical

underpinnings of q-calculus and broadened its applicability [5, 17–20].

In recent decades, the intersection of q-calculus with fractional calculus has given rise to the vi-

brant field of q-fractional calculus, leading to the study of q-fractional difference equations. These

equations have garnered considerable attention due to their capacity to model complex systems

with memory and hereditary properties [2,8–10,17,22–24,30]. Fixed point theorems have emerged

as indispensable tools in the analysis of q-fractional difference equations, instrumental not only in

establishing the existence and uniqueness of solutions but also in examining crucial stability prop-

erties [6, 12–16,25–28]. The work of Mesmouli, Ardjouni, and collaborators [25–28] is particularly

relevant, addressing various forms of nonlinear neutral Caputo q-fractional difference equations.

The Caputo q-fractional derivative, introduced by Abdeljawad and Baleanu [3], alongside support-

ing theoretical work [1, 7], provides essential tools for such investigations.

For 0 < q < 1, define the time scale Tq = {qn, n ∈ Z} ∪ {0}, where Z is the set of integers. For

a = qn0 and n0 ∈ Z, denote Ta = [a,∞)q = {qia, i = 0, 1, 2, . . . }. Let Rm be the m-dimensional

Euclidean space and define Iτ = {τa, q−1τa, q−2τa, . . . , a} and Tτa = [τa,∞)q = {q−iτa, i =

0, 1, 2, . . . }, where τ = qd ∈ Tq, d ∈ N0 = {0, 1, 2, . . . } and Iτ = {a} with d = 0, is the non-delay

case.

Recently, Abdeljawad, Alzabut and Zhou in [2] studied the existence of solutions for the q-fractional

difference equation qC
α
a x(t) = f(t, x(t), x(τt)), t ∈ Ta,

x(t) = ϕ(t), t ∈ Iτ ,
(1.1)

where f : Ta ×R×R → R and qC
α
a represents Caputo’s q-fractional difference of order α ∈ (0, 1).

By employing the Krasnoselskii fixed point theorem, the authors obtained existence results.

Moreover, Mesmouli and Ardjouni in [25] studied the existence, uniqueness and stability of solutions

for nonlinear neutral q-fractional difference equationqC
α
a (x(t)− g(t, x(τt)) = f(t, x(t), x(τt)), t ∈ Ta,

x(t) = ψ(t), t ∈ Iτ ,
(1.2)

where f : Ta×R×R → R and g : Ta×R → R, ψ : Iτ → R and qC
α
a represents Caputo’s q-fractional
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difference of order α ∈ (0, 1). To establish the results, the authors applied Krasnoselskii’s and

Banach’s fixed point theorems, as well as Arzela–Ascoli’s theorem.

Motivated by [2] and [25], we study the existence and stability of solutions for the totally nonlinear

neutral q-fractional difference equationqC
α
a (h(x(t))− g(t, x(τt))) = f(t, x(t), x(τt)), t ∈ Ta,

x(t) = ψ(t), t ∈ Iτ ,
(1.3)

where h : R → R, f : Ta × R × R → R and g : Ta × R → R, ψ : Iτ → R and qC
α
a represents

Caputo’s q-fractional difference of order α ∈ (0, 1). To prove our main results, we employ the

Krasnoselskii-Burton fixed point theorem.

The paper is structured as follows: Section 2 provides essential preliminaries, including definitions

and lemmas from q-calculus and fractional difference calculus, the inversion of Equation (1.3) to

its integral form, and the statement of the Krasnoselskii-Burton fixed point theorem. Section 3

is dedicated to proving the existence of solutions for Equation (1.3) under derived conditions.

Section 4 presents results on the stability of these solutions. Section 5 offers an illustrative example.

Finally, Section 6 presents concluding remarks.

2 Preliminaries

In this section, we give some basic notations, definitions, and properties of q-calculus and fractional

difference calculus, which are used throughout this paper; see [2] and [25].

Definition 2.1 ([3]). For a function f : Tq → R, its nabla q-derivative of f is defined as

q∇f(t) =
f(t)− f(qt)

(1− q)t
, t ∈ Tq − {0}. (2.1)

Definition 2.2 ([3]). For a function f : Tq → R, the nabla q-integral of f is defined as

∫ t

0

f(s)∇qs = (1− q)t

∞∑
i=0

qif
(
qit

)
. (2.2)

For a ∈ Tq, (2.2) becomes

∫ t

a

f(s)∇qs =

∫ t

0

f(s)∇qs−
∫ a

0

f(s)∇qs. (2.3)
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Definition 2.3 ([1, 3]). The q-factorial function for n ∈ N is given by

(t− s)nq =

n−1∏
i=0

(
t− qis

)
. (2.4)

In case α is a non-positive integer, the q-factorial function is given by

(t− s)αq = tα
∞∏
i=0

(
1− s

t q
i
)(

1− s
t q

i+α
) . (2.5)

In the following Lemma, we present some properties of q-factorial functions.

Lemma 2.4 ([9]). For α, β, a ∈ R, we have

(i) (t− s)α+β
q = (t− s)αq (t− qαs)βq .

(ii) (at− as)αq = aα(t− s)αq .

(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t− s)αq =
1− qα

1− q
(t− s)α−1

q . (2.6)

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t− s)αq =
1− qα

1− q
(t− qs)α−1

q . (2.7)

Definition 2.5 ([3, 7]). For a function f : Tq → R, the left q-fractional integral q∇−α
a of order

α ̸= 0,−1,−2, . . . and starting at a = qn0 ∈ Tq, n0 ∈ Z, is defined by

q∇−α
a f(t) =

1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s)∇qs =

1− q

Γq(α)

n0−1∑
i=n

qi
(
qn − qi+1

)α−1

q
f
(
qi
)
, (2.8)

where

Γq(α+ 1) =
1− qα

1− q
Γq(α), Γq(1) = 1, α > 1. (2.9)

Remark 2.6. The left q-fractional integral q∇−α
a maps functions defined on Tq to functions defined

on Tq.

Definition 2.7 ([3]). Let 0 < α /∈ N. Then

(i) the left Caputo q-fractional derivative of order α of a function f defined on Tq is defined by

qC
α
a f(t) = ∇−(n−α)

a ∇n
q f(t) =

1

Γq(n− α)

∫ t

a

(t− qs)n−α−1
q ∇n

q f(s)∇qs (2.10)
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where n = [α] + 1. In case α ∈ N, then qC
α
a f(t) = ∇n

q f(t).

(ii) The left Riemann q-fractional derivative is defined by (q∇α
af) (t) =

(
∇q∇−(n−α)

a f
)
(t).

(iii) In virtue of [3], the Riemann and Caputo q-fractional derivatives are related by

(qC
α
a f) (t) = (q∇α

af) (t)−
(t− a)−α

q

Γq(1− α)
f(a). (2.11)

Lemma 2.8 ([3]). Let α > 0 and f be defined in a suitable domain. Then

q∇−α
a (qC

α
a f) (t) = f(t)−

n−1∑
k=0

(t− a)kq
Γq(k + 1)

∇k
qf(a), (2.12)

and if 0 < α ≤ 1 we have

q∇−α
a (qC

α
a f) (t) = f(t)− f(a). (2.13)

The following identity is crucial in solving the linear q-fractional equations

q∇−α
a (x− a)µq =

Γq(µ+ 1)

Γ(α+ µ+ 1)
(x− a)µ+α

q , (0 < a < x < b), (2.14)

where α ∈ R+ and µ ∈ (−1,∞).

We give the equivalence of Equation (1.3). So, the solvability of this equivalent equation implies

the existence and stability of solutions to Equation (1.3).

Lemma 2.9. x(t) is a solution of (1.3) if and only if it admits the following representation

x(t) = ψ(a)−H(ψ(a))− g(a, ψ(τa)) +H(x(t)) + g(t, x(τt))

+
1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s, x(s), x(τs))∇qs, t ∈ Ta (2.15)

where

H(x(t)) = x(t)− h(x(t)). (2.16)

Proof. Let

z(t) = h(x(t))− g(t, x(τt)).

Then, we can write (3) as

qC
α
a z(t) = f(t, x(t), x(τt)).

By the same way used in [2] and [25], we obtain for t ∈ Taτ , the initial value problem for Equa-
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tion (1.3) is equivalent to the following equation

z(t) = z(a) +
1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s, x(s), x(τs))∇qs. (2.17)

So

x(t) = ψ(a)−H(ψ(a))− g(a, ψ(τa)) +H(x(t)) + g(t, x(τt))

+
1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s, x(s), x(τs))∇qs.

The proof is complete.

The space l∞ denotes the set of real bounded sequences with respect to the usual supremum norm.

We recall that l∞ is a Banach space.

Definition 2.10. A set M of sequences in l∞ is uniformly Cauchy if for every ϵ > 0, there exists

an integer N∗ such that |x(t)− x(s)| < ϵ whenever t, s > N∗ for any x = {x(n)} in M.

The following discrete version of Arzela–Ascoli’s theorem has a crucial role in the proof of our

main theorem.

Definition 2.11 ([29, Arzela-Ascoli]). A bounded, uniformly Cauchy subset M of l∞(Ta) (all

bounded real-valued sequences with domain Ta) is relatively compact.

Definition 2.12 ([11, Large contraction]). Let (M, d) be a metric space and B : M → M. B is

said to be a large contraction if for each pair x, y ∈ M with x ̸= y then d(Bx,By) < d(x, y) and if

for each ε > 0 there exists δ < 1 such that

[x, y ∈ M, d(x, y) ≥ ε] ⇒ d(Bx,By) < δd(x, y).

Theorem 2.13 ([11, Krasnoselskii-Burton]). Let M be a closed convex non-empty subset of a

Banach space (S, ∥ · ∥). Suppose that A and B map M into M such that

(i) for all x, y ∈ M, implies Ax+By ∈ M,

(ii) A is continuous and AM is contained in a compact subset of M,

(iii) B is a large contraction.

Then there is a z ∈ M with z = Az +Bz.

We will use the next theorem to show the existence of solutions for Equation (1.3).
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Theorem 2.14 ([4]). Let ∥ · ∥ be the supremum norm, M = {x ∈ C(T,R) : ∥x∥ ≤ R}, where R is

a positive constant. Suppose that h is satisfying the following conditions

(H1) h is continuous on UR = [−R,R].

(H2) h is strictly increasing on UR.

(H3) sups∈UR∩Ta qC
α
a h(s) ≤ 1.

(H4) (s−r)
{
supi∈UR∩Ta qC

α
a h(i)

}
≥ h(s)−h(r) ≥ (s−r)

{
infi∈UR∩Ta qC

α
a h(i)

}
≥ 0 for s, r ∈ UR

with s ≥ r.

Then, the mapping H defined by Equation (2.16) is a large contraction on M.

Let T = [τa, T1]q = {q−iτa, i = 0, 1, . . . , n1 + d} where T1 = q−n1−dτa with n1 ∈ [d + 3,∞) ∩ Z,

and C(T,R) be the set of all real bounded sequences. C(T,R) is a Banach space endowed with the

norm

∥x∥ = sup
t∈T

|x(t)|.

Define the set

M = {x ∈ C(T,R) : x(t) = ψ(t) for t ∈ Iτ and ∥x∥ ≤ R}, (2.18)

a non-empty bounded closed and convex subset of C(T,R).

3 Existence of solutions

We prove our main results under the following assumptions:

• There exists a constant Lf > 0 such that for all t ∈ Ta, and for all x, y, z, w ∈ R,

|f(t, x, z)− f(t, y, w)| ≤ Lf (∥x− y∥+ ∥z − w∥). (3.1)

• There exists a constant Lg > 0 such that for all t ∈ Ta, and for all x, y ∈ R,

|g(t, x)− g(t, y)| ≤ Lg∥x− y∥. (3.2)

• There exists a constant R > 0, satisfying the inequality,

J

[
|ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+RLg + σg +

(2RLf + σf )C(α)

Γq(α)

]
≤ R, (3.3)

where C(α) =
(1−q)(T1−a)αq

(1−qα) is a positive constant depending on α and T1, with σf =

supt∈Ta
|f(t, 0, 0)|, σg = supt∈Ta

|g(t, 0)| and J ≥ 3 is a constant.
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Define a mapping S : M → C by

(Sx)(t) = ψ(a)−H(ψ(a))− g(a, ψ(τa)) +H(x(t)) + g(t, x(τt))

+
1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s, x(s), x(τs))∇qs. (3.4)

We express (3.4) as

(Sx)(t) = (Ax)(t) + (Bx)(t),

where the operators A,B : M → C are defined by

(Ax)(t) = ψ(a)−H(ψ(a))− g(a, ψ(τa)) + g(t, x(τt))

+
1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s, x(s), x(τs))∇qs, (3.5)

and

(Bx)(t) = H(x(t)). (3.6)

Lemma 3.1. Assume that conditions (3.1), (3.2) and (3.3) hold. Then, the operator A : M → M

defined in Equation (3.5) is compact and continuous.

Proof. Let A be defined by Equation (3.5). In view of conditions (3.1) and (3.2), we arrive at

|f(t, x(t), x(τt))| = |f(t, x(t), x(τt))− f(t, 0, 0) + f(t, 0, 0)|

≤ |f(t, x(t), x(τt))− f(t, 0, 0)|+ |f(t, 0, 0)| ≤ 2Lf∥x∥+ σf .

and

|g(t, x(τt))| = |g(t, x(τt))− g(t, 0) + g(t, 0)| ≤ |g(t, x(τt))− g(t, 0)|+ |g(t, 0)| ≤ Lg∥x∥+ σg.

We have

|(Ax(t))| =
∣∣∣∣ψ(a)−H(ψ(a))− g(a, ψ(τa)) + g(t, x(τt)) +

1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s, x(s), x(τs))∇qs

∣∣∣∣
≤ |ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+ |g(t, x(τt))|+ 1

Γq(α)

∫ t

a

(t− qs)α−1
q |f(s, x(s), x(τs))| ∇qs

≤ |ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+ Lg∥x∥+ σg +
2Lf∥x∥+ σf

Γq(α)

∫ t

a

(t− qs)α−1
q ∇qs

≤ |ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+RLg + σg +
2RLf + σf

Γq(α)

∫ t

a

(t− qs)α−1
q ∇qs.
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By the relations (2.9), (2.14) and the fact that (t− a)0q = 1, we have

1

Γq(α)

∫ t

a

(t− qs)α−1
q (t− a)0q∇qs =q ∇α

a (t− a)0q =
Γq(1)(t− a)αq
Γq(α+ 1)

≤
(T1 − a)αq
Γq(α+ 1)

=
(1− q)(T1 − a)αq
(1− qα)Γq(α)

, t < T1.

Then

|(Ax(t))| ≤ |ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+RLg + σg +
(2RLf + σf )C(α)

Γq(α)
.

Thus

∥Ax∥ ≤ R

J
≤ R.

Hence, A : M → M which implies A(M) is uniformly bounded.

To prove the continuity of A, we consider a sequence (xn) which converges to x such that

|(Axn)(t)− (Ax)(t)| ≤ |g(t, xn(τt))− g(t, x(τt))|

+
1

Γq(α)

∫ t

a

(t− qs)α−1
q

∣∣∣f(s, xn(s), xn(τs))− f(s, x(s), x(τs))
∣∣∣∇qs

≤ Lg∥xn − x∥+ Lf

Γq(α)

∫ t

a

(t− qs)α−1
q ∥xn − x∥∇qs

≤ Lg∥xn − x∥+ 2LfC(α)

Γq(α)
∥xn − x∥ ≤

(
Lg +

2LfC(α)

Γq(α)

)
∥xn − x∥.

From the above analysis, it implies that

∥(Axn)(t)− (Ax)(t)∥ ≤
(
Lg +

2LfC(α)

Γq(α)

)
∥xn − x∥.

Hence whenever xn → x, Axn → Ax. This shows the continuity of A.

To prove that A is compact. We will prove that A(M) is equicontinuous. Let x ∈ M, then for any

t1, t2 ∈ Ta with 0 ≤ t1 ≤ t2 ≤ T1, we have

|(Ax)(t2)− (Ax)(t1)| ≤ |g(t2, x(τt2))|+ |g(t1, x(τt1))|

+
1

Γq(α)

∣∣∣ ∫ t2

a

(t2 − qs)α−1
q f(s, x(s), x(τs))∇qs

−
∫ t1

a

(t1 − qs)α−1
q f(s, x(s), x(τs))∇qs

∣∣∣
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≤ |g(t2, x(τt2))|+ |g(t1, x(τt1))|

+
1

Γq(α)

∫ t1

a

∣∣∣(t2 − qs)α−1
q − (t1 − qs)α−1

q

∣∣∣|f(s, x(s), x(τs))|∇qs

+

∫ t2

t1

(t2 − qs)α−1
q |f(s, x(s), x(τs))|∇qs.

By the assumptions (3.1), (3.3), and Lemma 2.9, we obtain

|(Ax)(t2)− (Ax)(t1)| ≤ |g(t2, x(τt2))|+ |g(t1, x(τt1))|

+
(
2RLf + σf

)[ 1

Γq(α)

∫ t1

a

∣∣∣(t2 − qs)α−1
q − (t1 − qs)α−1

q

∣∣∣∇qs

+
1

Γq(α)

∫ t2

t1

(t2 − qs)α−1
q ∇qs

]
.

By using (2.8), we obtain

|(Ax)(t2)− (Ax)(t1)| ≤ |g(t2, x(τt2))|+ |g(t1, x(τt1))|

+ (2RLf + σf )
[
q∇−α

a

(
(t2 − a)0q − (t1 − a)0q

)
+q ∇−α

t1 (t2 − t1)
0
q

]
.

From (2.14), it follows that

|(Ax)(t2)− (Ax)(t1)| ≤ |g(t2, x(τt2))|+ |g(t1, x(τt1))|

+

(
2RLf + σf

)
Γq(α+ 1)

[
(t2 − a)αq − (t1 − a)αq + (t2 − t1)

α
q

]
.

Hence it follows that |(Ax)(t2)− (Ax)(t1)| → 0 as t1 → t2. Thus that A(M) is equicontinuous. So,

the compactness of A follows by the Ascoli-Arzela theorem.

The next Lemma, gives a relationship between the mappings H and B in the sense of large

contraction.

Lemma 3.2. Let B be defined by (3.6). Suppose that

max
(
|H(−R)|, |H(R)|

)
≤ (J − 1)

J
R, (3.7)

and all conditions of Theorem 2.14 hold. Then B : M → M is a large contraction.

Proof. We will first show that B maps M into itself. Let x ∈ M, then by (3.7) we have

|(Bx)(t)| = |(Hx)(t)| ≤ max
{
|H(−R)|, |H(R)|

}
≤ (J − 1)

J
R ≤ R.
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Thus

∥Bx∥ ≤ R.

That is Bx ∈ M and consequently, we have B : M → M.

We next show that B is a large contraction. By Theorem 2.14, if H is a large contraction on M,

then for any x, y ∈ M with x ̸= y, we have ∥Hx−Hy∥ ≤ ∥x− y∥. This implies that

|(Bx)(t)− (By)(t)| = |(Hx)(t)− (Hy)(t)| ≤ ∥x− y∥.

Thus

∥Bx−By∥ ≤ ∥x− y∥.

In a similar manner, one could also show that

∥Bx−By∥ ≤ δ∥x− y∥,

holds if we know the existence of a δ ∈ (0, 1) and that for all ϵ > 0,

[x, y ∈ M, ∥x− y∥ > 0] ⇒ ∥Hx−Hy∥ ≤ δ∥x− y∥.

The proof is complete.

Theorem 3.3. Suppose the hypotheses of Lemmas 3.1 and 3.2 hold. Let M defined by (2.18).

Then Equation (1.3) has a solution in M.

Proof. By Lemma 3.1, A : M → M is continuous and compact. Also, from Lemma 3.2, the mapping

B : M → M is a large contraction. Next, we prove that if x, y ∈ M, we have ∥Ax+By∥ ≤ R. Let

x, y ∈ M with ∥x∥, ∥y| ≤ R. By (3.3) and (3.7), we obtain

∥Ax+By∥ ≤ ∥Ax∥+ ∥By∥

≤
[
ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+RLg + σg +

(2RLf + σf )C(α)

Γq(α)

]
+

(J − 1)R

J

≤ R

J
+

(J − 1)R

J
= R.

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satisfied. Thus there exists a

fixed point z ∈ M such that z = Az+Bz. By Lemma 2.9, this fixed point is a solution of Equation

(1.3). Hence Equation (1.3) has a solution. This completes the proof.
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4 Stability

Now, we show that the solutions of Equation (1.3) are stable by giving sufficient conditions.

Theorem 4.1. Assume that conditions (3.1) and (3.2) hold. Also, suppose that

c =

(
k + Lg +

2LfC(α)

Γq(α)

)
< 1, (4.1)

and all conditions of Theorem 2.14 hold. Moreover, for ϵ > 0, there exists

δ =
1− c

1 + k + Lg
ϵ.

Then, the solutions of Equation (1.3) are stable.

Proof. Let x be a solution of Equation (1.3) and x̂ be a solution of Equation (1.3) satisfying the

initial function x̂(t) = ψ̂(t) on Iτ . For t ∈ Ta, applying conditions (3.1), (3.2), (4.1) and all

conditions of Theorem 2.14, yields

|x(t)− x̂(t)| ≤
∣∣∣ψ(a)− ψ̂(a)

∣∣∣+ ∣∣∣H(ψ(a))−H(ψ̂(a))
∣∣∣+ ∣∣∣H(x(t))−H(x̂(t))

∣∣∣
+
∣∣∣g(a, ψ(τa))− g(a, ψ̂(τa))

∣∣∣+ ∣∣∣g(t, x(τt))− g(t, x̂(τt))
∣∣∣

+
1

Γq(α)

∫ t

a

(t− qs)α−1
q

∣∣∣f(s, x(s), x(τs))− f(s, x̂(s), x̂(τs))
∣∣∣∇qs

≤ (1 + k + Lg)∥ψ − ψ̂∥+
(
k + Lg +

2LfC(α)

Γq(α)

)
∥x− x̂∥

≤ (1 + k + Lg)∥ψ − ψ̂∥+ c∥x− x̂∥.

Hence

∥x− x̂∥ ≤ 1 + k + Lg

1− c
∥ψ − ψ̂∥

Then, for any ϵ > 0, let δ = 1−c
1+k+Lg

ϵ, so for ∥ψ − ψ̂∥ < δ there is ∥x − x̂∥ < ϵ. Therefore, the

solutions of Equation (1.3) are stable. The proof is complete.
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5 Illustrative example

In this section we provide an example. Specifically, we apply Theorems 3.3 and 4.1 to the equation
2
3
C

3
4
1

((
1
10

sin(x(t)) + 9
10
x(t)

)
− 1

50
cos(t) arctan

(
x
(
2t
3

)))
= 1

100

(
sin(x(t)) + cos

(
x
(
2t
3

)))
e−t,

t ∈ [1, 9/4] 2
3
,

x(t) = 0.02 cos(πt), t ∈
{
2/3, 1

}
.

(5.1)

It follows from the equation that q = 2/3, α = 3/4, a = 1, τ = 2/3, h(x) = 1
10 sin(x) +

9
10x, which

yields H(x) = 1
10 (x− sin(x)).

Also,

g(t, x) =
1

50
cos(t) arctan(x), f(t, x, z) =

1

100
(sin(x) + cos(z))e−t,

and

ψ(t) = 0.02 cos(πt).

We define the set M = {x ∈ C : ∥x∥ ≤ R} with R = 0.5.

Now on the domain MR = [−0.5, 0.5], h(x) is strictly increasing since

h′(x) =
1

10
cos(x) +

9

10
≥ 1

10
cos(0.5) + 0.9 ≈ 0.987 > 0.

It can be verified that conditions (H3)-(H4) also hold, making H(x) a large contraction.

The Lipschitz constant for H(x) is

k = sup
x∈UR

|H ′(x)| = sup
x∈UR

∣∣ 1
10

(1− cos(x))
∣∣ ≤ 1

10
(1− cos(0.5)) ≈ 0.001224.

Also,

|g(t, x)− g(t, y)| ≤ 1

50
|x− y|, |f(t, x, z)− f(t, y, w)| ≤ 1

100
(|x− y|+ |z − w|)

Thus, Lg = 0.02 and Lf = 1/100 = 0.01.

It must also be noted that σg = sup |g(t, 0)| = 0 and σf = sup |f(t, 0, 0)| = 1
100e

−1 ≈ 0.00368,

ψ(1) = −0.02 =⇒ H(ψ(1)) ≈ 0 and g(1, ψ(2/3)) ≈ −0.000108.

To verify the main conditions, we must select an endpoint T1 for the time scale. Let us choose

T1 = 9/4. A rigorous numerical calculation using the definitions of the q-Gamma function and

q-power function yields the q-integral bound

KA =
(T1 − 1)αq
Γq(α+ 1)

=
(9/4− 1)

3/4
2/3

Γ2/3(7/4)
≈ 1.4331.
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It must also be noted that |H(0.5)| ≈ 0.00206 and with J = 5

J − 1

J
R =

4

5
(0.5) = 0.4.

Hence, showing that Lemma 3.2 holds. Moreover, to verify condition (3.3), we have

|ψ(a)|+ |H(ψ(a))|+ |g(a, ψ(τa))|+RLg + σg + (2RLf + σf )KA

= 0.02 + 0 + 0.000108 + (0.5)(0.02) + 0 + (2(0.5)(0.01) + 0.003679)(1.4331) = 0.0497

≤ 0.1.

Thus, condition (3.3) hold. It therefore follows from Theorem 3.3 that Equation (5.1) has at least

one solution in M.

To verify the stability of solutions we verify condition (4.1). Thus,

k + Lg + 2LfKA = 0.01224 + 0.02 + 2(0.01)(1.4331) = 0.03224 + 0.02866 ≤ 1.

Thus, by Theorem 4.1 the solutions of Equation (5.1) are stable.

6 Conclusion

This paper has established sufficient conditions for the existence and stability of solutions to a class

of totally nonlinear neutral Caputo q-fractional difference equations. The Krasnoselskii-Burton

fixed point theorem was a key tool in proving existence, by decomposing the solution operator

into a compact part and a large contraction. The stability analysis provides criteria based on

the Lipschitz constants of the involved functions and the bound on the q-integral operator. The

presented theoretical framework generalizes existing results by considering a more comprehensive

nonlinear and neutral structure. The illustrative example demonstrates the method of verifying the

derived conditions. Future work could explore specific applications of these equations or investigate

uniqueness conditions and other qualitative properties.
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