C b CUBO, A Mathematical Journal
u 0 Vol. 27, no. 3, pp. 635-651, December 2025
A Mathematical Journal DOL: 10.56754/0719-0646.2703.635

Existence and stability of solutions of totally
nonlinear neutral Caputo g-fractional difference
equations
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This paper investigates the existence and stability of so-
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AGNES ADOM-KONADU lutions for a class of totally nonlinear neutral Caputo g-

fractional difference equations of order 0 < a < 1. By trans-
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opokuafful2@gmail.com establish sufficient conditions for the existence of solutions.
ernest.yanksonQucc. edu. gh™ The methodology involves decomposing the integral operator
agnes.donkor@ucc. edu. gh into a sum of a compact operator and a large contraction.

Furthermore, suitable conditions for the stability of these
solutions are derived. Our theoretical results extend and
generalize previous findings in the literature. An illustrative
example is provided to demonstrate the applicability of the

main theorems.
RESUMEN

Este articulo investiga la existencia y estabilidad de solu-
ciones para una clase de ecuaciones en diferencias Caputo
g-fraccionarias neutrales totalmente no lineales de orden
0 < a < 1. Transformando la ecuacién en una ecuacién
integral equivalente y aprovechando el teorema de punto
fijo de Krasnoselskii-Burton, establecemos condiciones su-
ficientes para la existencia de soluciones. La metodologia
involucra descomponer el operador integral en una suma
de operadores compactos y una contracciéon grande. Mas
aun, derivamos condiciones apropiadas para la estabilidad
de estas soluciones. Nuestros resultados tedricos extienden
y generalizan hallazgos previos en la literatura. Se entrega
un ejemplo ilustrativo para demostrar la aplicabilidad de los

teoremas principales.
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1 Introduction

The realm of g-calculus, also known as quantum calculus, offers a fascinating extension of classical
calculus, operating without the conventional concept of limits. Its genesis can be traced back
to the early twentieth century with the pioneering work of F. H. Jackson [21]. This framework
provides a robust mathematical toolkit for analyzing functions that may exhibit non-smooth behav-
ior. Subsequent developments by numerous researchers have significantly enriched the theoretical

underpinnings of g-calculus and broadened its applicability [5,17-20].

In recent decades, the intersection of g-calculus with fractional calculus has given rise to the vi-
brant field of g-fractional calculus, leading to the study of g-fractional difference equations. These
equations have garnered considerable attention due to their capacity to model complex systems
with memory and hereditary properties [2,8-10,17,22-24,30|. Fixed point theorems have emerged
as indispensable tools in the analysis of g-fractional difference equations, instrumental not only in
establishing the existence and uniqueness of solutions but also in examining crucial stability prop-
erties [6,12-16,25-28]. The work of Mesmouli, Ardjouni, and collaborators [25-28] is particularly
relevant, addressing various forms of nonlinear neutral Caputo g-fractional difference equations.
The Caputo g-fractional derivative, introduced by Abdeljawad and Baleanu [3], alongside support-

ing theoretical work [1,7], provides essential tools for such investigations.

For 0 < ¢ < 1, define the time scale T, = {¢",n € Z} U {0}, where Z is the set of integers. For
a = ¢"™ and ng € Z, denote T, = [a,0), = {¢’a,i = 0,1,2,...}. Let R™ be the m-dimensional
Euclidean space and define I, = {ra,q 'ra,q %7a,...,a} and T,, = [ra,00)q = {q¢ 7a,i =
0,1,2,...}, where 7 = ¢¢ € T,, d € Ng = {0,1,2,...} and I, = {a} with d = 0, is the non-delay

case.

Recently, Abdeljawad, Alzabut and Zhou in [2] studied the existence of solutions for the g-fractional

difference equation
chéx(t) = f(t,l’(t),ﬂ?(’?’t)), tETa,
2(t) = 6(t), tel,

(1.1)

where f: T, x RxR — R and ,C¢ represents Caputo’s g-fractional difference of order o € (0,1).

By employing the Krasnoselskii fixed point theorem, the authors obtained existence results.

Moreover, Mesmouli and Ardjouni in [25] studied the existence, uniqueness and stability of solutions

for nonlinear neutral g-fractional difference equation

qcctzx(x(t) - g(t,l’(’]’t)) = f(t,:L‘(t),l‘(Tt)), t €T,
z(t) =), tel,

(1.2)

where f: Ty xRxR =+ Rand g: T, xR = R, 9 : I, = Rand ;CZ represents Caputo’s g-fractional
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difference of order a € (0,1). To establish the results, the authors applied Krasnoselskii’s and

Banach’s fixed point theorems, as well as Arzela—Ascoli’s theorem.

Motivated by [2] and [25], we study the existence and stability of solutions for the totally nonlinear

neutral g-fractional difference equation

Ca (M(z(t)) — g(t, (1)) = f(t, x(t), x(7t)), t €T,
z(t) =9(t), tel,

(1.3)

where h : R = R, f: Tu xRxR =+ Rand g: Ty xR = R, ¢ : 1, = R and ;C represents
Caputo’s g-fractional difference of order @ € (0,1). To prove our main results, we employ the

Krasnoselskii-Burton fixed point theorem.

The paper is structured as follows: Section 2 provides essential preliminaries, including definitions
and lemmas from g-calculus and fractional difference calculus, the inversion of Equation (1.3) to
its integral form, and the statement of the Krasnoselskii-Burton fixed point theorem. Section 3
is dedicated to proving the existence of solutions for Equation (1.3) under derived conditions.
Section 4 presents results on the stability of these solutions. Section 5 offers an illustrative example.

Finally, Section 6 presents concluding remarks.

2 Preliminaries

In this section, we give some basic notations, definitions, and properties of g-calculus and fractional

difference calculus, which are used throughout this paper; see [2] and [25].

Definition 2.1 ([3]). For a function f: T, — R, its nabla g-derivative of f is defined as
Vi) =TT e gy, (2.1)

Definition 2.2 ([3]). For a function f: T, — R, the nabla g-integral of f is defined as

/0 F(5)Vs = (1=t Y d'f (¢'t) (2.2)

=0

Fora €Ty, (2.2) becomes

/a )V /O ) Vs - /0 ")V (2.3)
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Definition 2.3 ([1,3]). The g-factorial function for n € N is given by
n—1 )
(t—s)y = H (t—q's). (2.4)

i=0

In case « is a mon-positive integer, the g-factorial function is given by

_Sa_aoo (l—fqi)
(t—s)2 =t 1}) et (2.5)

In the following Lemma, we present some properties of g-factorial functions.

Lemma 2.4 ([9]). For «,8,a € R, we have

(i) (E— 53 = (¢ — )2(¢t — gs)5.
(i) (at —as)g = a®(t — s)g.

(iii) The nabla g-derivative of the g-factorial function with respect to t is

Vo(t— )2 = 11__‘1; (t—s)2L. (2.6)

(iv) The nabla g-derivative of the g-factorial function with respect to s is

e

1—gq
1—g¢

Vy(t —s)g =

q

(t—qs)> L. (2.7

q

Definition 2.5 ([3,7]). For a function f : T, — R, the left g-fractional integral NV, of order
a#0,-1,-2,... and starting at a = ¢"° € Tq,ng € Z, is defined by

V0= g [ @ = i S @ ) @) @)

where
_1-qa

Iy(a+1) -

I,(a), T,1)=1 a>1. (2.9)

Remark 2.6. The left g-fractional integral (V7 maps functions defined on Ty to functions defined

on Ty.

Definition 2.7 ([3]). Let 0 < a ¢ N. Then

(i) the left Caputo q-fractional derivative of order a of a function f defined on T, is defined by

t
JCEf(t) = Vi v f(t) = F(nl_a) / (t— qs)! VT £ (5)V s (2.10)
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where n = [a] + 1. In case a € N, then ,Cg f(t) = Vi f(t).
(it) The left Riemann g-fractional derivative is defined by (Vo f) (t) = (V v, e f) (t).

(#1) In virtue of [3], the Riemann and Caputo g-fractional derivatives are related by

Lo (1) = (V1) (1)~ Mf(a)- 2.11)

Lemma 2.8 ([3]). Let a > 0 and f be defined in a suitable domain. Then

Vo (O ( Z ,H‘;vk() (2.12)

and if 0 < a <1 we have

aVa " ((Caf) () = f(t) = f(a). (2.13)
The following identity is crucial in solving the linear g-fractional equations

qv;a(x _ a)u — Fq(lu‘ + 1)

A\ T (= g
p F(a—s—u—i—l)(m a)hT (0<a<z<b), (2.14)

q

where o € R* and p € (-1, 00).

We give the equivalence of Equation (1.3). So, the solvability of this equivalent equation implies

the existence and stability of solutions to Equation (1.3).
Lemma 2.9. z(t) is a solution of (1.3) if and only if it admits the following representation
z(t) = ¥(a) — H((a)) — g(a,¢(ra)) + H(z(t)) + g(t, z(71))
1 t
+ Fq(a)/a (t— qs)g‘_lf(s,x(s), x(78))Vys, teT, (2.15)

where

H(x(t)) = x(t) — h(x(t)). (2.16)
Proof. Let
Then, we can write (3) as

qCaz(t) = f(t, (1), z(71)).

By the same way used in [2] and [25], we obtain for ¢t € T,,, the initial value problem for Equa-
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tion (1.3) is equivalent to the following equation

z(t) = z(a) +

Fq(a)/a(t—qs)?_ f(s,z(s),z(15))Vys. (2.17)

The proof is complete. O

The space [, denotes the set of real bounded sequences with respect to the usual supremum norm.

We recall that [, is a Banach space.

Definition 2.10. A set M of sequences in lo, is uniformly Cauchy if for every e > 0, there exists
an integer N* such that |z(t) — z(s)| < € whenever t,s > N* for any x = {x(n)} in M.

The following discrete version of Arzela—Ascoli’s theorem has a crucial role in the proof of our

main theorem.

Definition 2.11 ([29, Arzela-Ascoli]). A bounded, uniformly Cauchy subset M of 1o (T,y) (all

bounded real-valued sequences with domain T, ) is relatively compact.

Definition 2.12 (|11, Large contraction|). Let (M, d) be a metric space and B : M — M. B is
said to be a large contraction if for each pair x,y € M with x # y then d(Bx, By) < d(x,y) and if
for each € > 0 there exists 6 < 1 such that

[z,y € M,d(z,y) > €] = d(Bz, By) < dd(z,y).

Theorem 2.13 (|11, Krasnoselskii-Burton]). Let M be a closed conver non-empty subset of a

Banach space (S, || - ||). Suppose that A and B map M into M such that

(i) for all x,y € M, implies Ax + By € M,
(ii) A is continuous and AM is contained in a compact subset of M,

(iii) B is a large contraction.
Then there is a z € M with z = Az + Bz.

We will use the next theorem to show the existence of solutions for Equation (1.3).
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Theorem 2.14 ([4]). Let || - || be the supremum norm, M = {z € C(T,R) : ||z|| < R}, where R is

a positive constant. Suppose that h is satisfying the following conditions
(H1) h is continuous on Ur = [—R, R].

(H2) h is strictly increasing on Ug.

(H3) sup.ep,nr, «Cah(s) < 1.

(H4) (s =1){ sbcvrpr, «C2h(0) } = h(s)=h(r) = (s=1){ inficunnir, o CER(i)} = 0 for s,r € Up
with s > r.

Then, the mapping H defined by Equation (2.16) is a large contraction on M.

Let T = [ra,Th], = {¢"ra,i = 0,1,...,n1 + d} where Ty = ¢~™ ~%ra with ny € [d + 3,00) N Z,
and C(T,R) be the set of all real bounded sequences. C(T, R) is a Banach space endowed with the

norm

]| = sup |2(£)]-
teT

Define the set
M= {z € C(T,R) : 2(t) = ¢(¢t) for t € I and ||z|| < R}, (2.18)

a non-empty bounded closed and convex subset of C(T,R).

3 Existence of solutions

We prove our main results under the following assumptions:

o There exists a constant Ly > 0 such that for all ¢ € T,, and for all z,y, z,w € R,
|f(t, 2, 2) = f(ty,w)| < Le([le = yll + |z = wl). (3.1)
e There exists a constant L, > 0 such that for all ¢ € T,, and for all =,y € R,
l9(t,2) = g(t,y)| < Lylz =yl (3-2)

e There exists a constant R > 0, satisfying the inequality,

(QRLf + O'f)C(Oz)
Ly(a)

J| (@) + [H(¥(a)| + |g(a, P(ra))| + RLg + 0 + <R, (3-3)

(1—q)(Ti—a)®
(1—g%)
supser, |f(¢,0,0)[, oy = sup;er, [9(¢,0)| and J > 3 is a constant.

where C(a) = is a positive constant depending on o and Tp, with oy =
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Define a mapping S : M — C by

(Sz)(t) = ¢(a) — H(¢(a)) — g(a,P(7a)) + H(z(t)) + g(t, x(7t))

+ / (t— qs)?*lf(s, x(s),x(7s))Vgs. (3.4)

[y(a)

We express (3.4) as
(Sz)(t) = (Az)(t) + (Bx)(t),

where the operators A, B : M — C are defined by

(Az)(t) = ¢(a) — H(y(a)) — g(a,¥(Ta)) + g(t, z(11))
‘o 991 (s 2(s). 2(rs\V 5. (3.
Ly(a) /a (t—q )q f(s,2(s),2(75))Vys, (3.5)

and

(Bz)(t) = H(x(t))- (3.6)

Lemma 3.1. Assume that conditions (3.1), (3.2) and (3.3) hold. Then, the operator A : M — M

defined in Equation (3.5) is compact and continuous.

Proof. Let A be defined by Equation (3.5). In view of conditions (3.1) and (3.2), we arrive at

[f(t,2(t), 2(rt)| = |f(t, 2(t), 2(7t)) — f(¢,0,0) + f(£,0,0)|
< |f(t2(t), 2(t)) = f(£,0,0)[ + [ f(2,0,0)] < 2Lgll2|[ + 0.

and
lg(t, x(r1))| = [g(t, z(7t)) — g(¢,0) + g(¢,0)| < [g(t, z(7t)) — g(t,0)[ + |g(¢,0)| < L[|z + 0.
We have

(Az(8))| = |¢(a) = H(¥(a)) — g(a, ¥ (7a)) + g(t, z(71)) +

Fq(a)/a(tqs)g f(s,z(s),2(75))Vys

< [¥(a)l + [H(P(a))] + lg(a, ¥ (Ta))| + [g(t, x(7)) + Dia)/ (t—as)g =" [f(s,2(s), 2(75))| Vgs

< 9(0)| + [H(@)] + la(a b(ra)| + Lylel + 0, + R [ 0= gijy1v,

2RLf +of

< [pla)| + [H(Y(a))] + |g(a, P(7a))| + RLg + 04 + ey / (t—qs)g ' Vys.
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By the relations (2.9), (2.14) and the fact that (t —a)) = 1, we have

1 ! a—1 _ « _ Fq(l)(t*a)?
rq(a)/ (1= a9y = )}V =, Vit -y =
(T —a)y (1—q)(T1 —a)y

< = L t<Ty.
Ta+1)  (1-¢*)0,(a) !

Then

(ZRLf + Uf)C(Oz)'

[(Az())] < |(a)| + [H(¢(a)| + |g(a, p(Ta))| + RLg + 04 + Ty ()

Thus
R
Azl < = < R.
lAa] < 7 <

Hence, A : M — M which implies A(M) is uniformly bounded.
To prove the continuity of A, we consider a sequence (z,) which converges to = such that
|(Azy)(t) — (Az) ()] < lg(t, n(7t)) — g(t, z(71))]
1 t
i [ (= 0957 16206, (r8) = £(5.2(9), )| Vs
Fq (Ol) a

Ly ! 1
< Lyllan —all + ==L~ [ (t—qs)27 |z — 2|V
< Lol =l + s [ 0= a0l - Vs

2L:C() 2L;C(a)
< Lyllwn — ol + L2 |2, — 2] < (Lg + 22 |z, — 2.

Ly(a) Iy(a)

From the above analysis, it implies that

I42,)(0) = (A0)O) < (Eo-+ 20T ) e ~ .

Hence whenever x,, — x, Ax, — Ax. This shows the continuity of A.

To prove that A is compact. We will prove that A(M) is equicontinuous. Let z € M, then for any

ty,to € T, with 0 < t; <ty < Ty, we have

|(Az)(t2) — (Az)(t1)] < [g(tz, z(7t2))| + [g(t1, 2(T1))]

1 t2 o
+ m‘ /a (ta — qs)q lf(Sax(s)ax(TS))Vqs

- / (b — g5)2 " f (s, 2(s), 2(78)) Vs
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< lg(ta, x(Tta))| + lg(tr, 2(Tt1))]

1 h . .
+rqm>/a (tz — )3 " — (t1 — 48)5 |1/ (5. 2(5), 2(79)) Vs
+/t2(t2*qs)g‘*1|f(s,x(s),x(Ts))|Vqs,

By the assumptions (3.1), (3.3), and Lemma 2.9, we obtain

|(Az)(t2) — (Az)(t1)] < [g(tz, z(t2))] + [g(t1, 2(T1))]

1 t2 L
+rm)/tl(? 4)g Vas

+ (QRLf + O'f) (ta —qs)2t — (t1 — q5)2 71 Vys

q q

By using (2.8), we obtain

[(Az)(t2) — (Ax)(t1)| < lg(ta, x(Tt2))| + [g(tr, z(7t1))]|

+ (2RLys +05) [Vo® ((t2 — a)) — (t1 — a)y) +¢ Vi, (t2 — t1)y] -

From (2.14), it follows that

[(Az)(t2) — (Az)(t1)] < |g(t2, 2(Tt2))| + |g(t1, x(Tt1))]
(QRLf + Uf)

Ly(a+1) [(tQ —a)g — (b —a)g + (t2 — tl)?]]

Hence it follows that |(Az)(t2) — (Az)(¢1)| — 0 as t; — to. Thus that A(M) is equicontinuous. So,

the compactness of A follows by the Ascoli-Arzela theorem. O

The next Lemma, gives a relationship between the mappings H and B in the sense of large

contraction.

Lemma 3.2. Let B be defined by (3.6). Suppose that

(/-1

max (|H(~R)|, [H(R)|) <

R, (3.7)

and all conditions of Theorem 2.14 hold. Then B : M — M is a large contraction.

Proof. We will first show that B maps M into itself. Let € M, then by (3.7) we have

(Ba)()] = |(Ha)(0)] < max {|H(—R)||H(R) } < L=

R <R.
=7 <
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Thus

|Bz| < R.

That is Bx € M and consequently, we have B : Ml — M.

We next show that B is a large contraction. By Theorem 2.14, if H is a large contraction on M,

then for any z,y € M with x # y, we have |[Hz — Hy| < || — y||. This implies that

((Bz)(t) — (By)(t)| = |(Hz)(t) — (Hy)(1)] < [l = y]|

Thus
| Bz — Byl < [lz —yl|.

In a similar manner, one could also show that
1Bz — Byl < 6|z —yl|,
holds if we know the existence of a § € (0,1) and that for all € > 0,
[z,y € M, [z —y| > 0] = [Hz — Hy| < bz —y].

The proof is complete. O

Theorem 3.3. Suppose the hypotheses of Lemmas 3.1 and 3.2 hold. Let M defined by (2.18).
Then Equation (1.3) has a solution in M.

Proof. By Lemma 3.1, A : M — M is continuous and compact. Also, from Lemma 3.2, the mapping
B :M — M is a large contraction. Next, we prove that if z,y € M, we have ||Az + By|| < R. Let
x,y € M with ||z||, |ly| < R. By (3.3) and (3.7), we obtain

Az + Byl < ||Az|| + || Byl
(2RL; +0,)C(e)] | (J - DR

< |9(a)l + [H(¥(@)| + lg(a, ¥ (ra))| + RLy + 04 + Ty(a) J
- ? N ﬂ _R

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satisfied. Thus there exists a
fixed point z € M such that z = Az+ Bz. By Lemma 2.9, this fixed point is a solution of Equation
(1.3). Hence Equation (1.3) has a solution. This completes the proof. O
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4 Stability

Now, we show that the solutions of Equation (1.3) are stable by giving sufficient conditions.

Theorem 4.1. Assume that conditions (3.1) and (3.2) hold. Also, suppose that

N QLfC(OZ)
= <k+Lg + 71“,1(04) ) <1, (4.1)

and all conditions of Theorem 2.14 hold. Moreover, for € > 0, there exists

1—c¢
= — ¢
1+k+ L,

Then, the solutions of Equation (1.3) are stable.

Proof. Let x be a solution of Equation (1.3) and Z be a solution of Equation (1.3) satisfying the
initial function Z(t) = 77/[1\(75) on I.. For t € T,, applying conditions (3.1), (3.2), (4.1) and all
conditions of Theorem 2.14, yields
[2(t) = 3(0)| < [ila) = $l0)| + | HW (@) = HE(@)| + |H(w®) - HEE)
+|gta,w(ra)) - gla, Bra))| + |g(t a(rt)) - g(t,3(r1))
I FOSN
b [ (= a9 (500, a(7) - £, 5051, 5(75) | Vo
FQ(a) a
~ 2LC ~
<@kt e =3+ (k4 L+ 200 o - )

Ty(e)
< (U +k+ Ll — ] +cllz — 2.

Hence
~ 1+k+L
o 3 < HE Ly )
Then, for any € > 0, let § = me so for ||t — ¥|| < & there is ||z — Z|| < e. Therefore, the

solutions of Equation (1.3) are stable. The proof is complete. O
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5 Illustrative example

In this section we provide an example. Specifically, we apply Theorems 3.3 and 4.1 to the equation

2C4 (( sin(z(t)) + 5(t)) — 25 cos(t) arctan (:c(%))) = 1&s (sin(m(t)) + cos (:r(%)))e_t,
te [L9/4];, (5.1)

z(t) = 0.02cos(nt), te {2/3,1}.

It follows from the equation that ¢ = 2/3, « = 3/4, a =1, 7 = 2/3, h(z) = 5 sin(z) + %z, which
yields H(x) = & (z — sin(z)).

10

Also,
1 1

g(t,x) = = cos(t) arctan(z), f(t,x,2) = o0 ——(sin(z) + cos(2))e ",

and
¥(t) = 0.02 cos(rt).
We define the set M = {z € C: ||z|| < R} with R = 0.5.
Now on the domain Mg = [—0.5,0.5], h(x) is strictly increasing since
h'(z) = icos( )+ LS icos(05)—&—09 0.987 > 0.
10 10 = 10 ~

It can be verified that conditions (H3)-(H4) also hold, making H(x) a large contraction.

The Lipschitz constant for H(x) is

1
k= sup |H'(z)| = sup ‘— (1 —cos(x))| < —(l—cos(O 5)) = 0.001224.
z€UR x€URr 0
Also,
1
— < —|x — — < _ _
olt2) — g(t)| < e 3l 1F(t2.2) — F(ty.w)] < sl 3 + |2~ w)

Thus, L, = 0.02 and Ly =1/100 = 0.01.

It must also be noted that o4 = sup|g(t,0)| = 0 and oy = sup|f(£,0,0)| = t55e~' ~ 0.00368,
$(1) = —0.02 = H(¥(1)) ~ 0 and g(1,4(2/3)) ~ —0.000108.

To verify the main conditions, we must select an endpoint 77 for the time scale. Let us choose
Ty = 9/4. A rigorous numerical calculation using the definitions of the g-Gamma function and

g-power function yields the g-integral bound

(T — 12 (9/4=1)3),

Ka= Ty (a+1)  Tys(7/4)

~ 1.4331.
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It must also be noted that |H(0.5)| ~ 0.00206 and with J =5

J—1_ 4
“_"R=—(05)=0.4.
R =2(05)=0

Hence, showing that Lemma 3.2 holds. Moreover, to verify condition (3.3), we have

[(a)| + [H(¥(a))| + |g(a, ¢(7a))| + RLg + 04 + (2RLy + 07)Ka
= 0.02 4 0+ 0.000108 + (0.5)(0.02) + 0 + (2(0.5)(0.01) + 0.003679)(1.4331) = 0.0497
<0.1.

Thus, condition (3.3) hold. It therefore follows from Theorem 3.3 that Equation (5.1) has at least

one solution in M.

To verify the stability of solutions we verify condition (4.1). Thus,
k+ Ly + 2L K4 = 0.01224 + 0.02 + 2(0.01)(1.4331) = 0.03224 + 0.02866 < 1.

Thus, by Theorem 4.1 the solutions of Equation (5.1) are stable.

6 Conclusion

This paper has established sufficient conditions for the existence and stability of solutions to a class
of totally nonlinear neutral Caputo g-fractional difference equations. The Krasnoselskii-Burton
fixed point theorem was a key tool in proving existence, by decomposing the solution operator
into a compact part and a large contraction. The stability analysis provides criteria based on
the Lipschitz constants of the involved functions and the bound on the g-integral operator. The
presented theoretical framework generalizes existing results by considering a more comprehensive
nonlinear and neutral structure. The illustrative example demonstrates the method of verifying the
derived conditions. Future work could explore specific applications of these equations or investigate

uniqueness conditions and other qualitative properties.
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