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ABSTRACT

Given a finite group G, there exist Klein surfaces, bordered
X and unbordered non-orientable S, such that G acts as an
automorphism group of X and of S. The minimum alge-
braic genus p(G) of the surfaces X is called the real genus of
G, and the minimal topological genus &(G) of the surfaces
S is the symmetric crosscap number of G. In this work we
study the relation between the real genus and the symmetric
crosscap number of a group G and how both parameters can
be compared. For instance, we see that there exist groups G
such that the difference 6(G) — p(G) = t for all even negative
numbers t. In order to get it, we correct some inaccuracies in
previous works, on these parameters for the groups C., X D,
and D, X D,. On the other hand, for some important fam-
ilies of groups, we prove that 6(G) = p(G) + 1. We use it to
eliminate possible gaps in the symmetric crosscap spectrum,

enforcing the conjecture that 3 is in fact the unique gap.
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RESUMEN

Dado un grupo finito G, existen superficies de Klein, con
borde X y sin borde no-orientables S, tales que G actua
como un grupo de automorfismos de X y de S. El género al-
gebraico minimo p(G) de las superficies X se llama el género
real de G, y el género topologico minimo 6(G) de las su-
perficies S es el “symmetric crosscap number” de G, que lla-
maremos género imaginario aunque no es una denominacién
estandar. En este trabajo, estudiamos la relaciéon entre el
género real y el imaginario de un grupo G y como se pueden
comparar ambos parametros. Por ejemplo, vemos que exis-
ten grupos G tales que la diferencia 6(G) — p(G) = t para
todos los niimeros negativos pares t. Para ello, corregimos al-
gunas inexactitudes en trabajos previos sobre estos paramet-
ros para los grupos Cy, X Dy y Dy, X D,,. Por otra parte,
para algunas familias importantes de grupos, demostramos
que 6(G) = p(G) + 1. Esto lo utilizamos para eliminar posi-
bles huecos en el espectro simétrico imaginario, dando evi-
dencia adicional a la conjetura de que 3 es, de hecho, el tinico

hueco posible.
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1 Introduction and preliminaries

A Klein surface X is a compact surface endowed with a dianalytic structure. Klein surfaces may
be seen as a generalization of Riemann surfaces, including bordered and non-orientable surfaces.

An orientable unbordered Klein surface is a Riemann surface.

In the study of Klein surfaces and their automorphism groups, the non-Euclidean crystallographic
groups (NEC groups, in short) play an essential role. An NEC group T is a discrete subgroup of
the group of isometries of the hyperbolic plane H with compact quotient H/T.

For the convenience of the reader we give a minimum of preliminaries about NEC groups and Klein

surfaces (for details see [4]).

An NEC group I' is a discrete subgroup of isometries of the hyperbolic plane H, including orien-
tation reversing elements, with compact quotient X = H/I". Every NEC group I' has associated

the following symbol called signature:

U(F) = (gaiv [mlv- .. 7m7’]a {(ni,h ce. 7”1’,3,‘,)7 1=1,.. -ak})7 (11)

where the numbers g, r, k and s; are non-negative integers, m;, n; ; are integers such that m;,n; ; >

2. The number g is the topological genus of X, and the sign determines the orientability of X.

The numbers m; are the proper periods corresponding to cone points in X. The
brackets (1,1, ..., M, s, ) are the period-cycles. The number & of period-cycles is equal to the number
of boundary components of X. Numbers n; ; are the periods of the period-cycle (n; 1, ...,n;s,) also
called link-periods, corresponding to corner points in the boundary of X. The number p = ag+k—1,

where a = 2 or 1 according to the sign be “+” or “—”, respectively, is called the algebraic genus of
X.

An NEC group with the above signature is generated by z;, (i =1,...,7); e;, (i =1,...,k); ¢ j,
(i=1,...,k;j=0,...,8);and a;, b; (i=1,...,9) if 0 has sign “+” or d; (i =1,...,¢) if o has

sign “—”, and relations
=1, 1=1,...,7;
2 _ 2 _ nij — 1. L .= :
i1 =cij=(cij-1cij)" =1 t=1,...k j=1,...,8;
-1 A =1: =1 k-
€; Ci0€iCis; = 13 1=1,..., R

T, i T, e 112, (aibia7 tb7 ) = 1;  (if o has sign “+7);

Il = Hle e [19_,d? = 1; (if o has sign “ —"7).

The isometries x; are elliptic, e;, a;, b; are hyperbolic, ¢; are reflections and d; are glide reflections.

They are called canonical generators.
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Every NEC group I" with signature (1.1) has associated a fundamental region whose area pu(I),

called the area of the group, is

T ks
1 1 - 1
=2 -2 1-—— = 1-—
u(l) =2m [ ag +k +§ ( mi)+2§ E ( ng) :
i=1 i=1 j=1 >
with o = 2 or 1 according to the sign being “+4” or “—”. The group given by the presentation above

can be represented as an NEC group with signature (1.1) if and only if its area is greater than 0.

We denote by |T'| the expression p(I")/27 and call it the reduced area of T.

If T is a subgroup of an NEC group I" of finite index N, then I is also an NEC group and the

following Riemann-Hurwitz formula holds:
u(T) = Nu(T").

If the group has neither proper periods nor link-periods, it is called a surface group and has the

following signature

U(F) - (ga +, [7}7 {(7)7 kﬂ (7)}%

For a Klein surface X with p > 2, there exists a NEC surface group T' such that X = H/T. A
finite group G of order N is an automorphism group of X = H/T" if and only if there exists an
NEC group A such that I" is a normal subgroup of A with index N and G = A/T". Since I is a
surface group, it does not contain elements of finite order other than reflections. Therefore, there
must be an epimorphism 6 : A — G with kernel T", such that the relations defining A are preserved
by 6.

Given a finite group G there exist bordered Klein surfaces X such that G acts as an automorphism
group of X, and also unbordered non-orientable surfaces S, such that G acts on S. The minimum
algebraic genus of the surfaces X is called the real genus of G, p(G), and the minimal topological
genus of the surfaces S is the symmetric crosscap number of G, 5(G). In order to obtain these

parameters we need to study NEC groups A with minimal area such that G = A/T.

An extensive study has been made on both parameters p(G) and 6(G). The numbers which are
p(G) for some G form the real genus spectrum, whilst those which are 6(G) form the symmetric
crosscap spectrum. None of these spectra is still completely known, and the relationship between
both parameters is a tool for that study. When an integer does not belong to either spectrum, it

is called a gap of that spectrum.

Regarding the real genus, there is no group with real genus 2, 12 or 24 [14]. No other gap was
currently known to exist, but in the very recent paper [6], it is proved that 72 is also a gap.

Therefore, the first number for which it is not known whether it belongs to the spectrum is 84.



Real genus and symmetric crosscap number of a group 663

For the symmetric crosscap spectrum, the present knowledge is based on [1]. May proved that
there does not exist any group G such that 6(G) = 3. For N > 3, if N is a gap of the symmetric
crosscap spectrum then N lies in four congruence classes mod 120, namely 3, 51, 75 and 99, and
it satisfies additional conditions. The present result will be given below in Theorem 3.4. However,
many numbers satisfying those necessary conditions actually belong to the spectrum. In fact, no

gap apart from 3 is currently known.

2 Results on real genus and symmetric crosscap number

The goal of the present work is to compare both parameters p(G) and ¢(G). It is worth noting
that very often
o(GQ) = p(G) + 1. (2.1)

This property holds for important classes of groups, but it is not true in general. When it holds

for a group G, we say that G satisfies Property (2.1).

2.1 Groups of odd order

First, the authors proved in [1] that the Property (2.1) holds for all groups of odd order.

Theorem 2.1 ([1, Corollary 1]). If G has odd order, then 6(G) = p(G) + 1.

2.2 Abelian groups

Property (2.1) is also true for Abelian groups. In [18] J. Rodriguez mentions in Remark 6.2 that
“the crosscap number of an Abelian group relates with its real genus straightforwardly: 6(G) =
p(G) + 17. However, as far as we know this result has not appeared anywhere, and we are now
providing its proof, taking into account that both parameters are already known in the case of

Abelian groups, obtained by McCullough and Gromadzki in [16] and [11] respectively.

First, we quote the result on real genus.

Theorem 2.2 ([16]). Let G be a non-cyclic Abelian group of order N, G # Cy x Cy x Cs,
CQ X Cgk- (k’ > 1) Write

G=0C¢ x---xC

€m

X Cgy, X -+-x Cq, x Cg,
e; multiple of 4, d; odd, eiy1les, dilem, dj+1|d;. Then p(G) is

A) 1—|—N(n—|—2£1 (1—6%)4-2221 (1—dij>—1>,n<m.
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B) 1+N(m+t+(1—ﬁ)+2§:t+l (1—%)—2), fm<n<m+2l-1,n—m=2t—1.
C) 1+N(m+t+Z;:t+1 (1—%)—1), fm<n<m+2,n—m=2t

D) 14 MEmEEN=3) iy > om 420+ 1.

On the other hand, for the symmetric crosscap number the result is the following

Theorem 2.3 ([11]). Let G be a non-cyclic Abelian group of order N, G # Cy x Cy x Cs,
Cy x Cop, (k> 1). If G has non-cyclic 2-Sylow subgroup, write G = Cp,, X -+ X Cp,, X C5, where

my,...,my are odd, myyy ..., mg are even, m;|m;y1, and s is as large as possible. Then ¢(Q) is

i) 2+N(k—1—2§;f%>, ifs—(k—1) <0.

i) 2+ N(k—1), if s — (k—1) = 2l.

i) 24 N (k— 14 =EH) if s — (k—1) > 2.

iv) 2+N(k7172§§“5>/2 7%) fO<s—(k—1)<2l,s— (k—1) even.
V) 2+N(k717m fzgiﬁl*“”/?m%), fO<s—(k—1)<2l,s—(k—1) odd.

And if N is odd, or G has cyclic 2-Sylow subgroup write G = Cyp, X -+ X Cp,, my|lmig1 and then
(G) is

a2 (e (10 ),

Since in both Theorems the group G has been described in a different way, it is not too easy to

compare p(G) and 6(G). We shall do it now, by proving

Theorem 2.4. Let G be a non-cyclic Abelian group G # Cy x Cy x Co, Cy x Coy, (k > 1). Then
a(G) = p(G) + 1.

Proof. We start with each of the four possibilities for p(G), namely A, B, C and D.

The translation of the parameters between both Theorems is as follows. In [16], m is the number
of factors that are multiples of 4, [ is the number of odd factors and n is the number of factors 2.
Instead, in [11], & — [ is the number of factors multiple of 4, [ is the number of odd factors and s

is the number of factors 2.

We start with case A. Then n < m in [16] is equivalent to s < k—1, what implies that s—(k—1) < 0,

and we are in case ¢) in [11]. Hence
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translates to

l m+1
1 1
p(G)=1+N|s+i+(k—1—3s)— Zdi Z -
=1 j=l+s+1
l 1 m—+1 1 k—sl
=1+N|k—-1-) —— — = —1=) —|=0dG)-1L
+N (k-1 ,Zdi .Z - 1+N<k 1 Zm> 5(G)—1
=1 Jj=l+s+1 i=1

Now, we consider the case B. Then m < n < m+2l —1, n —m = 2t — 1 odd. This implies
kE—l<s<k—-Il+21—-1=k+1-1,s—(k—1)odd,and so 0 < s — (k—1) < 20— 1 with s — (k—1)
odd. We are in case v) in [11]. Then

p(G)_1+N<m+t+(121dt)+_zl: (1;)2)

translates to

1
s—k+1+1 ( 1 ) ( 1)
G)=1+N|k—1+2=PT T2 (o 2 )4 1- - ) -2
p(G) ( 2 2d(s—kt141)/2 ) Z d;

i=(s—k+1+3)/2

l
:1+N k_l+m_~_1+l_w+l_2_;_ Z i
2 2 2d(s—+1+1)/2 i=(s—k+1+3)/2 di
1 (I—s+k—1)/2 1
=1+N|k-|l—————— — | =6(G)—1.
2M(1—sk+1)/2 ; mq ©)

We move to case D, where n > m+2[+1. This implies s > (k—1)+2l+1, and so s—(k—1) > 2{+1.

Hence s — (k — 1) > 2I, and this corresponds to the case 7). In this case

1+ N@Bm+2l+n-3)
4

p(G) =

corresponds to

— 2 _ _ _
p(G):l—l—NSk 3l—|—4l+5 3:1+N3k li—s 3

:1+N<k—1+s_k4_l+1>=&(6‘)—1.

Finally, we must deal with the case C, where m < n < m + 2I, n — m = 2t is even. This means

that k — 1 < s < k+1, with s — (k — I) = 2t. This possibility splits into three subcases.

If s — (k—1) =0, we are in case 7), and

p(G)=1+N(m+t+ El: (1-5))

i=t+1
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means that

1 k—s
p(G)zl-i—N(k—l—i—l— > ;—1>:1+N<k—1—zm

i=t4+1 " i=1

Now, if s—(k—1) = 2I, we are in case i) and s—(k—[) = 2l implies t = (n—m)/2 = (s—(k=1))/2 =,

and so

l
p(G):1+N<m+t+ 3 (1—3)) =1+ N(k—1+1-1)=1+N(k-1)=5(G) - 1.

i=t+1

For the remaining values of s — (k —[) we go to case iv). Then

p(G):1+N<m+t— zl: (1_;)_1)

i=t+1
Lo
—1+N<m+t+(l—t)—1—z>
i=t+1
L
+N<m+l 1 'Z dz-)
1=t+1
Sincel —t=1—(s—(k—1))/2=(k—s+1)/2, we have
(k=s+D)/2
=14+N|k—-1- — | =0 -1 O
p(G) =1+ Zj | =@

Remark 2.5. Theorem 2.4 enables a comparison of the results from both papers [2] and [15]. Call
8¢, the set of numbers in the symmetric crosscap spectrum which are 6(A) for some Abelian group
A, and S, the set of numbers in the real genus spectrum which are p(A) for some Abelian group A.
The set S5, was studied in [2], and the set ST, in [15]. Since we have proved that 5(A) = p(A)+1
for each Abelian group A, the results in both papers imply each other. For instance, if n is even,
then n € 8, if and only if n =2 (mod 4) (Theorem 2 of [2]), and if n is odd, then n € SI, if and
only if n =1 (mod 4) (Theorem 1 in [15]). In the same way, all partial results on the structure of
each of both sets obtained in those two papers can be translated in terms of the other, by using the

fundamental equality 6(A) = p(A) + 1.

2.3 Groups C, x DC3 and C,, x Ay

Theorems 2.1 and 2.4 suggest that Property (2.1) holds often. Also other families of groups satisfy
it. Consider the groups of order 12n, C,, x DC5 and C), x A4. The real genus and symmetric crosscap

number of these groups were obtained in [5] and [9], respectively, and they are presented below
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Table 1

n p(Cn, x DC3)  &(C,, x DC3)
2 13 14

3 16 17

6 43 44

odd, (n,6) =1 8n — 2 8n —1
odd, 3|n, 9tn 8n — 8 8n — 7
odd, 9| n 8n — 2 8n—1
even, 41 n 9n — 11 9n — 10
even, 4 | n 8n+1 8n + 2

Hence, for all n, 5(C,, x DC3) = p(C,, x DC3) + 1.

For the groups C,, x A4 with n divisible by 3 we have p(C,, x A4) = 8n—11 and 6(C,, x A4) = 8n—10.

So there exist families of non-Abelian groups of even order satisfying Property (2.1).

2.4 Groups C,, x D,

Now, we consider the groups C,, x D,,. Their real genus and symmetric crosscap number were
obtained respectively in [10] and [7]. However, it is necessary to correct a mistake in [7]. In
Proposition 2.3 of that paper, it was stated that 6(Cy, X D,,) = 2+n(m —2) if m is a multiple of 4
and n is odd. The proof included the claim that it is not possible to obtain a suitable epimorphism
0: A — Cp, x Dy, for a group A with signature (0, +, [—], {(«), (—)}) for an o > 2. As we will see
this is wrong, and the genus of a surface on which C,, x D,, acts can be lowered for those values

of m and n if 2n < m, as follows.

Proposition 2.6. Let m be a multiple of 4, n odd, and 2n < m. Then 6(Cy, x D) = 24+m(n—1).

Proof. Let X be a generator of C,,,, A and B generators of D,, of order 2, and A be an NEC group
with signature (0,4, [—],{(n), (—)}). We define a homomorphism 6 from A to C,, x D,, by

0(61) = XAB, 9(62) = X_IBA, 9(01,0) = A, 9(6171) = BAB, 9(0270) = Xm/2

Then, 0(c1.1¢1,0) = (BA)?, and so0 0((c1.1¢1,0)"1/2) = BA. Now, 0(ey(c1.1¢1,0)T/?) = X; and
S0, Q(CQ’O(el(Cl’101’0)(n+1)/2)m/201’0) = X™m/2X™m/2A = A. Finally, since BA and A are images of

orientation-preserving elements of A, so is B.

The reduced area of A is (1—1) = 221 ‘and so 6(C,, x D,,) < 2+ %12mn = 24+m(n—1). We are

n

going to see that this bound cannot be lowered. All possible signatures for the group A were already

studied in the proof of Proposition 2.3 of [7], excepting those of the form (0,4, [—], {(a), (=)}).
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We complete the work now, considering these signatures. Therefore, suppose that there exists
an epimorphism 6 from an NEC group A with signature (0, +, [—], {(«), (—)}) for an a > 2 onto
Cp X Dy, and call ¢ the composition of § with the projection of C,, x D,, onto D,,. Since c; g
has order 2 and n is odd, necessarily v (c1,0) = (AB)'A for a certain ¢. Then, ¢(e;) can have the
form (AB)" or (AB)"A. In any case those two images must generate D,,. If ¥(e;) = (AB)", then
Y(erc1o) = (AB)"T' A has order 2. So, in order to generate D,,, (AB)" must have order n. Besides,
P(e11) = (BA)"(AB)'A(AB)" = (AB)'™%" A, and so, ¥(c19c1,1) = (AB)'A(AB)'=2" A = (AB)*"
has also order n. Thus, & = n. On the other hand, if ¢(e1) = (AB)"A, then ¥(eic19) =
(AB)"~t, which must have order n. Since ¥(c11) = (AB)"A(AB)!A(AB)"A = (AB)?'" A, then
Y(erocr) = (AB)PA(AB)?"~tA = (AB)*2". Now, both t(e1) and 1(c1,0) have order 2, and so
P(ercr,o) = (AB)"~" must have order n. But then also ¢(c1 0c1,1) has order n, and again o = n.

We have finished, and the inequality 2 +m(n — 1) < 2+ n(m — 2) holds if and only if 2n < m. O

By results in [10] and [7], and Proposition 2.6, we have the following Theorem where for an abuse

of notation we write p and & for p(Cy, x D,,) and 6(C), x Dy,).

Theorem 2.7. The real genus and the symmetric crosscap number of the groups C,, x Dy, are the

following

m odd, n even, n < 2m p=1+m(n—2) dg=2+m(n—2)
m odd, n even, n > 2m p=14+n(m-1) cg=2+n(m-1)
m, n odd, m >n p=1+m(n—1) F=24+mn—m-—n
m, n odd, m <n p=1+n(m-—1) Fg=24+mn—m-—n
m=n odd p=1+m(m—2) dg=2+m(m—2)
m, n even p=1+mn oc=2+mn

m a multiple of 4, n odd, m < 2n p=14+n(m-2) d=2+n(m-—2)

m a multiple of 4, n odd, m > 2n p=1+m(n—-1) dg=2+m(n—1)

Corollary 2.8. Observe that 5(Cy, X Dy,) = p(Cp, X Dy) 4+ 1, except when m and n are different
odd numbers. In such a case, for m > n, 6(Cy, x Dy,) = p(Cp X D) +1 —n; and if n > m,
6(CrxDy) = p(Cp X Dy,)+1—m. Both results provide all even negative numbers for the difference
5(G) - p(@).

2.5 Groups D,, x D,

Now we shall consider the groups D,, X D,,. Their symmetric crosscap number was obtained in
[7], and the real genus in [5]. Observe that the real genus for m and n odd was calculated in
Proposition 2(a) of [5], and included with a misprint in Theorem 3 there. The result should be
read as follows: If m and n are odd, n < m, then p(D,, x D,) =1+ m(n —1).
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In turn, the mistake stated above on 6(C,, x D,,) produced a couple of wrong results on (D,, x D,,)
which we must correct here. For m odd and n even, Proposition 8 in [7] states that (D, x D,,) =
m(n — 2) 4+ 2. This is correct for n < 2m, but if 2m < n, then the symmetric crosscap number of

D,, x D, is in fact smaller, as given by the forthcoming two results.

Proposition 2.9. Let m be an odd number, n an even number with n/2 odd and 2m < n. Then,

6(Dy x D) =2+ (m — D)n.

Proof. Let A and B be generators of D,, of order 2, and C' and D generators of D,, of order 2.
Take A to be an NEC group with signature (0, +, [—],{(2m, 2,2,2)}), and define a homomorphism
0 from A to D,, x D, by

9(01,0) = A, 9(6171) = BD, 9(6172) = B(CD)H/Q, 9(01,3) = (CD)H/QC, 9(01)4) = A.

Then, 9(01,001,1) = ABZ)7 and SO0, (9((01,001,1)1%) = l)7 9((01,001,1)m+1) = AB. NOW, 9(617161,3) =
B(DC)™/?*1. Since (DC)™?*! has order n/2 which is odd, 6((c1,1¢1.3)"/?) = B. And so,

9((01,001,1)7”“(01,101,3)n/2) = A

Finally, 6(c1 2¢1,3) = BC, and so, 9((01’101’3)"/201’20173) = (C. So D,, x D, is generated by the

images of orientation-preserving elements of A.

The reduced area of A is + — 2=, and so 6(Dy, x Dy,) <2+ 4mn (3 — L) =2+ (m— 1)n.

T 4m
We now prove that this is in fact §(D,, x D,,) by comparing with 6(C,, x D,,) as obtained in [7].
By Proposition 2.2.i) of that paper, for m odd, n even, with 2m < n, 6(C,, x D,,) = 2+n(m —1).
Since 6 (D, x Dy,) > 6(Cy, X Dy,), we have finished. O

Proposition 2.10. Let m be an odd number, n a multiple of 4, and 2m < n. Then, (D X Dy,) =
2+ (m—1)n.

Proof. Let A and B generators of D,,,, and C and D generators of D,,, all of them of order 2. Take
A an NEC group of signature (0, 4+, [—], {(2m, 2,2,2)}), and define a homomorphism € from A to
D,, x D,, by

0(cio) = A, 6(ci1)=BD, 6(ci2)=(CD)? 0(ci3)=0C, 6(c14)=A.

Then, (c1 0c11) = ABD. Since m is odd, 8((c10c11)™) = D, and ((c10c11)™ ") = AB. Now,
9(01’3(01’001,1)7”) = CD, and SO, 9((6173(01700171)7%)”/2) = (CD)n/Q. SO7

f(c1oc12(cia(cioc11)™™?) =A and 6(cizc12(cr13(cr0c11)™)™?) = C.
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Finally, 9(01700172(0113(cl_rocl_’l)m)”/Q(cLocLl)m“) = B. So, D,, x D,, is generated by the images

of orientation-preserving elements of A.

The reduced area of A is 3 — 7, and so 6(Dy, x D,,) < 24+4mn (3 — &) =2+ (m—1)n =

(Cy X Dy,). The proof is finished. O

Hence, from [10] and [8] along with Propositions 2.8 and 2.9, we have the following Theorem.

Theorem 2.11. The real genus and symmetric crosscap number of the groups D,, x D, are the

following
m odd, n even, n < 2m p=1+m(n—2) d=2+m(n—2)
m odd, n even, n > 2m p=14+n(m-1) c=24+n(m-1)
m, n odd, m >n p=1+m(n—1) g=1+(m—-1)(n—1)
m=mn odd p=1+m(m—2) g=2+m(m—2)
m, n even p=1+mn c=2+mn

Remark 2.12. Thus, the groups Dy, x D, satisfy Property (2.1), except when m and n are
different odd numbers. In that case, G(Dy, X Dy) — p(Dy X D) = 1 —n, and so this difference

provides again, as in Corollary 2.8, all even negative numbers.

3 Gaps in the symmetric crosscap spectrum

Our next results are inspired by [14, Theorem 6]. In that result, C. L. May studied the groups
Chn X Gpq.

Let p < ¢ be two odd primes such that p | ¢ — 1. Then there exists a non-Abelian group of order
pgq, denoted by G,,. This group admits a presentation given by generators S and 7', and relations
89 =TP =1, T1ST = 8", where 7P = 1(mod q), » # 1(mod ¢). Then ST has order p, and so
X =T,Y = ST, are two generators of G, of order p. It follows that p(Gpe) = q(p — 2) + 1,
[13, Theorem 4|, and, applying Theorem 2.1, we have:

Theorem 3.1. Let p < ¢ be two odd primes such that p | ¢ — 1. Then 6(Gpq) = q(p — 2) + 2.

Now consider the groups G = Cj, x Gpq. We are going to study the real genus and the symmetric
crosscap number of G. In the case when n is coprime with pgq, the real genus of G is given by the

following theorem of May:

Theorem 3.2 ([14], Theorem 6). Let p < g be two odd primes such that p | g—1, and n an integer
coprime with pq. Then p(Cp, X Gpq) =14 g(pn —n — 1).

Now we turn to the symmetric crosscap number of these groups.
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Theorem 3.3. Let p < q be two odd primes such that p | ¢ — 1, and n an integer coprime with
pq. Then 6(Cp X Gpg) =2+ g(pn —n —1).

Proof. If n is odd, then C,, x Gy has odd order, and we apply Theorem 2.1 and Theorem 3.2.

Now, we show that these groups satisfy Property (2.1) also in the case when n is even. Let us
take X and Y to be the generators of G4 of order p as above, and denote by A the generator of
C,,. Consider an NEC group I' with signature (0, +, [p, np], {(—)}), and define the epimorphism 6
from T onto C,, x Gy by 0(z1) = X, 0(x2) = AY, 0(e1) = (AXY)™L, 0(c10) = A™/2. Since n
and p are coprime, there exist integers «, 8, such that an + 8p = 1. Then, §(z§") = (AY)*" =
yen — y1=8p — v g(z5P) = (AY)PP = APP = Al=em — A, Besides, 0 (mgm/zclyo) =1, and so

the kernel contains an orientation reversing element. So, 6(C,, X Gpy) <24 g(pn —n —1).

Now we need to see that the area of I' is minimal. The only possibility to reduce the area is to

substitute n with one of its factors, say k, and take signature

(07 +, [pu kp], {<_)}) or (17 _7 [pu kp], {_})

Then the image of zo must be A”/*Y, and either the image of 1,0 is A"™/? or the image of d; is
A(n—n/k)/Z(Xy)(p—l)/Q_

In the first case it is not possible to generate A as an image of an orientation preserving element,
because the image of any word with an even number of copies of ¢; o will have, as projection onto
C,,, a power of A™/*_ In the second case, the exponent n/k must be even, in order to get that the
image of d?x1x5 be 1. But then also the orientation preserving elements contain an even number
of copies of di, and so only powers of A with even exponent can be obtained. Therefore, also in

this case the element A is not the image of an orientation preserving element.

Thus the area of I' is minimal, and we have that §(C, x Gpq) = 2+¢(pn—n—1), and these groups
satisfy Property (2.1). O

We are now going to use the above results to eliminate many possible gaps in the symmetric

crosscap spectrum. This problem was studied in [1], and the main result was the following:

Theorem 3.4 ([1], Theorem 2). Let N > 3 be a gap of the symmetric crosscap spectrum. Then
N =3, 51, 75 or 99 (mod 120), N # 651 (mod 660), N — 2 is not a square, and N — 2 has some
prime factor p =5 (mod 6).

These conditions, necessary for a number to be a gap, are not sufficient. For N < 10000, they left
sixty-seven numbers which were possible gaps. Three of them are in fact the symmetric crosscap
number of a group, thanks to Theorems 2.3 and 3.1. We show them in the Table 2, where we

indicate N, its class (mod 120), the prime factors of N — 2, and the group G such that 5(G) = N.



672

A. Bacelo, J. J. Etayo & E. Martinez

Table 2
N N = (mod 120) N -2 G, 6(G)=N
1443 3 1441 =11-131 G13.131
4875 15 4873 =11 -443 G13.443
6051 51 6049 = 23-263  Caz x Carg

This leaves sixty-four numbers which are candidates for being a gap, but forty of them are actually

6 (C, x Gpq) for some n, p, ¢ as obtained in Theorem 3.3. We display the respective data in Table 3.

Table 3

N N = (mod 120) N -2 G, 6(G)=N
915 (0] 913 =11-83 Ca1 X Gs.11
1179 99 1177 =11 - 107 Cor X G5.11
1539 99 1537 =29 - 53 Co X Gr.29
1635 (0] 1633 =23-71 Cs X Gs.71
1923 3 1921 =17 - 113 Cs3 x Gr.113
2235 [0) 2233="7-11-29 Ci3 x Gr.a9
2499 99 2497 =11 - 227 Cs7 X Gs.11
2739 99 2737 =7-17-23 Ci2 X G11.23
2763 3 2761 =11-251 Cs x Gs.251
3339 99 3337 =47-71 Cs x Gr.71
3555 (0] 3553 =11-17-19 (g1 X Gs.11
3819 99 3817 =11 - 347 Cs7 X G5.11
4083 3 4081 =7-11-53  Co3 x Gs.11
4323 3 4321 =29 - 149 Cos X Gr.99
4395 (0] 4393 =23 -191 Cs x Gs.191
4899 99 4897 =59 - 83 Cs x Gag.59
5139 99 5137 =11 - 467 Chir X Gs.11
5403 3 5401 = 11 - 491 Cs X G5.491
5499 99 5497 = 23 - 239 Cy x Gr.239
5595 (0] 5593 =7-17-47  Cyoo x Ga.7
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N N = (mod 120) N -2 G, 6(G)=N
5715 75 5713 =29 -197 Cs x Gr.197
6195 75 6193 = 11 - 563 Chia1 X Gs.11
6411 51 6409 =13-17-29  Cs7 x Gr.29
6459 99 6457 = 11 - 587 Cha7r X Gs.11
6723 3 6721 =11-13-47 Cas9 X G3.13
7155 75 7153 = 23 - 311 Cs X G5.311
7515 75 7513 = 11- 683 Cir1 X Gs.11
7635 75 7633 = 17 - 449 Cs X Gr7.449
7731 51 7729 =59 - 131 Cs x G13.131
7779 99 777 ="7-11-101 Ch77r X Gs.11
7803 3 7801 = 29 - 269 Cys X Gr.29
8043 3 8041 =11-17-43 Cys X G3.43
8259 99 8257 =23 - 359 Cs6 X G11.23
8451 51 8449 =7-17-71  Cy x G771
8835 75 8833 =11%2-73 Ce1 X G3.73
8979 99 8977 =47-191 C12 X Gs.101
9099 99 9097 = 11 - 827 Cao7 X Gs.11
9195 75 9193 =29 - 317 Cs3 X Gr.29
9363 3 9361 =11-23-37 Cha7 X G3.37
9915 75 9913 = 23 - 431 Cs X G5.431

According to above results only twenty-four numbers N remain as potential gaps in the symmetric

crosscap spectrum, with 3 < N < 10000. They are shown in Table 4.

These results reinforce the conjecture that there is no other gap besides 3 in the spectrum of the

symmetric crosscap number.

Now, we are going to study the particular case N = 699, the smallest number for which it is
unknown whether it represents a gap in the spectrum. This will demonstrate how to use the
relationship between the real genus and symmetric crosscap number, and how Property (2.1) is
useful when it holds. Unfortunately, this is not the case for this value of N and the group G
already known to satisfy p(G) = N — 1.
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Table 4: Table 4

N N = (mod 120) N -2

699 99 697 =17 - 41

1083 3 1081 = 23 - 47
1515 () 1513 =17-89
2331 o1 2329 =17-137
3651 51 3649 = 41 -89
3843 3 3841 = 23 - 167
3963 3 3961 = 17 - 233
4371 o1 4369 = 17 - 257
4635 (0] 4633 = 41-113
5019 99 5017 =29 - 173
5355 75 5353 = 53 - 101
5619 99 5617 = 41-137
6003 3 6001 =17 - 353
6315 75 6313 = 59 - 107
6819 99 6817 = 17-401
7851 51 7849 = 47 - 167
7899 99 7897 = 53 - 149
8499 99 8497 = 29 - 293
8811 51 8809 = 23 - 383
8859 99 8857 = 17- 521
8883 3 8881 = 83 - 107
9171 o1 9169 = 53 - 173
9555 75 9553 = 41 - 233
9675 75 9673 = 17 - 569

Since 41 =1 (mod 4), there exists a semidirect product Cy x Cyq, with presentation
(X, Y | Y*=X"=1,XY =YX?).

Now call G = Cy x (Cy x Cy1), and Z a generator of Cy. This group G has real genus 698, see
Corollary 6 of [14]. So, if it satisfies Property (2.1), we have a group with symmetric crosscap
number 699. Let us study G. Its elements of order 2 lie in Cy x Cy1, and they have the form
X*Y2, For, (XFY?)? = XFY2XFY? = Y XY XFY2 = Y2XB1hXFY?2 = Y2X826y2 = 1, and it

is clear that no other element has order 2.

Now, consider an NEC group A with signature (0, +, [2, 36], {(—)}) and an epimorphism 6 : A — G
defined by

0(z1) = XY?, O(x2)=YZ, 0ler) =YX 'Z71 Ocro) = XPY2
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The kernel of this epimorphism is a non-orientable unbordered surface group, because o(XY?) = 2,

o(YZ) = 36, and

O(xi1m0e)) = XY?YZY X177 = Xyix—1t =1,
ey terpercio) = XYPZXPOY2Yy X 1771 X 10y? = XY3X10V3 x9y2
_ Y3X729X10Y3X9Y2 _ Y3X739y3ng2 — Y6X739-729+9y2 —_ YS —1.

Besides, (AT) = G, because
0(29) = (YZ2)? =Y 0=3)=Y2)* =2 0(x123°) = (XY*)Y?*=X
The genus of the corresponding surface is
1 1

17
9. 4-41) (1—-+41———1)+2=9-4-41- — +2=17-41+2 = 699.
( )( 5" 36 >+ 36 M

It only remains to prove that this is the minimum genus of a non-orientable unbordered surface on
which G acts. But this is not the case. Consider an NEC group I" with signature (0, +, [36], {(41)})
and an epimorphism 6 : I' — G defined by

0(x1) =YZ, O(er) =Y 'Z7 B(cr0) = XY?, O(c1n) = XPYV2
Then,

O(e;teroercin) = YZXY2Y 1 Z71X32Y? = Y XY X2Y? =YY XOX®Y?2 = 1.

Besides, (I'") = G, because

e(x%8) =7,
0(z3) =Y,
9(01,001,1) _ XY2X32Y2 _ Y2X81X32Y2 _ Y2X31Y2 _ Y4X31-81 _ XlO.

So that, 6((c1,0c1,1)%") = X3 = X. Now, we compute the genus, and it is

1 1 1 20 1
4-41 1—— —(1-—=]-1)4+2=9441-( — - = | +2=20-9-4—41+2 = 681.
(9 )(( 36>+2( 41> >+ 9 <41 36)+ 0-9 + 68

Hence 6(G) < 681, in fact it equals 681, and so the group G does not satisfy Property (2.1), and

no group with symmetric crosscap number 699 is known yet.
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4 Gaps in the real genus spectrum

All odd numbers belong to the real genus spectrum, since C. L. May proved in [12] that the dicyclic
group DC,, of order 4n has real genus 2n + 1. So the problem of determining the spectrum of the
real genus restricts to even numbers. It is known that 2, 12, 24 and 72 are not the real genus of
any group. In his paper [14], C. L. May obtained families of groups whose real genera cover most
of the even numbers. For instance, for NV < 10000, his results leave 328 numbers for which it is
unknown whether they belong to the real genus spectrum. M. Pires has calculated explicitly those

numbers in [17]. Most of them are multiple of 12, but there are also numbers N = 2,6, 8 (mod 12).

Unfortunately, the groups G for which we know that 6(G) = 1,7,9 (mod 12) do not satisfy
Property (2.1) and cannot be used to eliminate gaps in the real genus spectrum. The situation
is very different for N = 2 (mod 12). According to [17], the numbers N = 2 (mod 12) with
N < 10000, which are not yet known to belong to the real genus spectrum are 1082, 3842, 6266,
7850, 8810 and 8882. Let us pay attention to 6266 = 26 (mod 60). In [1] it was proved that for
each k > 0, a semidirect product G = C5 x Csi16 satisfies 6(Gy) = 60k + 27. We are going to
show that these groups satisfy Property (2.1), and so p(Gy) = 60k + 26.

Proposition 4.1. Let k > 0, and Gj, = Cs x Csy 16k, with presentation (A, B | B> = AST16k =
1, BA = AB?). Then, p(G}) = 60k + 26.

Proof. One can see in [1] or [17] that the element BA%*** has order 4, and AT is the unique
element of G}, of order 2. Since BA?>*** and A generate G, take an NEC group A with signature
(0,4, 4,8 4+ 16k],{(—)}), and define  : A — G, by

0(z1) = BATT*, O(x0) = A, 0(er) = AT B7Y 6(c1o) = 1.

Then, 6 is an epimorphism, the reduced area of A is |A| = gﬁgz, and p(Gr) < 14 o(Gy)|A| =

14 (40+80k) gﬁé’; = 60k+26. In order to see that this is in fact p(Gy,), recall that the signature of

the suitable group A must have a period-cycle with two consecutive link-periods equal to 2, or an
empty period-cycle, see [3]. Since G}, has a unique element of order 2, the first possibility does not
hold. So, A must have an empty period-cycle, and for getting a smaller reduced area, its signature
must have the form (0, +, [m1,mo], {(—)}). Then, by using the same arguments as in Proposition 7
of [1], it follows that the minimal area is indeed attained for the signature (0, +, [4, 8+ 16k], {(—)}).
Thus, p(Gy) = 60k + 26. Observe that in particular p(G1o4) = 6266. O

On the contrary, for the five other values of N, namely 1082, 3842, 7850, 8810 and 8882, it is not
known whether N + 1 belongs to the symmetric crosscap spectrum, see Table 4. Hence, these pairs

(N, N + 1) seem to be a convenient target for identifying possible gaps in both spectra.
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