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ABSTRACT

Given a finite group G, there exist Klein surfaces, bordered
X and unbordered non-orientable S, such that G acts as an
automorphism group of X and of S. The minimum alge-
braic genus ρ(G) of the surfaces X is called the real genus of
G, and the minimal topological genus σ̃(G) of the surfaces
S is the symmetric crosscap number of G. In this work we
study the relation between the real genus and the symmetric
crosscap number of a group G and how both parameters can
be compared. For instance, we see that there exist groups G

such that the difference σ̃(G)−ρ(G) = t for all even negative
numbers t. In order to get it, we correct some inaccuracies in
previous works, on these parameters for the groups Cm×Dn

and Dm ×Dn. On the other hand, for some important fam-
ilies of groups, we prove that σ̃(G) = ρ(G) + 1. We use it to
eliminate possible gaps in the symmetric crosscap spectrum,
enforcing the conjecture that 3 is in fact the unique gap.
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.
RESUMEN

Dado un grupo finito G, existen superficies de Klein, con
borde X y sin borde no-orientables S, tales que G actúa
como un grupo de automorfismos de X y de S. El género al-
gebraico mínimo ρ(G) de las superficies X se llama el género
real de G, y el género topológico mínimo σ̃(G) de las su-
perficies S es el “symmetric crosscap number” de G, que lla-
maremos género imaginario aunque no es una denominación
estándar. En este trabajo, estudiamos la relación entre el
género real y el imaginario de un grupo G y cómo se pueden
comparar ambos parámetros. Por ejemplo, vemos que exis-
ten grupos G tales que la diferencia σ̃(G) − ρ(G) = t para
todos los números negativos pares t. Para ello, corregimos al-
gunas inexactitudes en trabajos previos sobre estos parámet-
ros para los grupos Cm × Dn y Dm × Dn. Por otra parte,
para algunas familias importantes de grupos, demostramos
que σ̃(G) = ρ(G) + 1. Esto lo utilizamos para eliminar posi-
bles huecos en el espectro simétrico imaginario, dando evi-
dencia adicional a la conjetura de que 3 es, de hecho, el único
hueco posible.

Keywords and Phrases: Real genus, symmetric crosscap number, Klein surfaces.
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1 Introduction and preliminaries

A Klein surface X is a compact surface endowed with a dianalytic structure. Klein surfaces may

be seen as a generalization of Riemann surfaces, including bordered and non-orientable surfaces.

An orientable unbordered Klein surface is a Riemann surface.

In the study of Klein surfaces and their automorphism groups, the non-Euclidean crystallographic

groups (NEC groups, in short) play an essential role. An NEC group Γ is a discrete subgroup of

the group of isometries of the hyperbolic plane H with compact quotient H/Γ.

For the convenience of the reader we give a minimum of preliminaries about NEC groups and Klein

surfaces (for details see [4]).

An NEC group Γ is a discrete subgroup of isometries of the hyperbolic plane H, including orien-

tation reversing elements, with compact quotient X = H/Γ. Every NEC group Γ has associated

the following symbol called signature:

σ(Γ) = (g,±, [m1, . . . ,mr], {(ni,1, . . . , ni,si), i = 1, . . . , k}), (1.1)

where the numbers g, r, k and si are non-negative integers, mi, ni,j are integers such that mi, ni,j ≥
2. The number g is the topological genus of X, and the sign determines the orientability of X.

The numbers mi are the proper periods corresponding to cone points in X. The

brackets (ni,1, . . . , ni,si) are the period-cycles. The number k of period-cycles is equal to the number

of boundary components ofX. Numbers ni,j are the periods of the period-cycle (ni,1, . . . , ni,si) also

called link-periods, corresponding to corner points in the boundary ofX. The number p = αg+k−1,

where α = 2 or 1 according to the sign be “+” or “−”, respectively, is called the algebraic genus of

X.

An NEC group with the above signature is generated by xi, (i = 1, . . . , r); ei, (i = 1, . . . , k); ci,j ,

(i = 1, . . . , k; j = 0, . . . , si); and ai, bi (i = 1, . . . , g) if σ has sign “+” or di (i = 1, . . . , g) if σ has

sign “−”, and relations

xmi
i = 1; i = 1, . . . , r;

c2i,j−1 = c2i,j = (ci,j−1ci,j)
ni,j = 1; i = 1, . . . , k; j = 1, . . . , si;

e−1
i ci,0eici,si = 1; i = 1, . . . , k;∏r
i=1 xi

∏k
i=1 ei

∏g
i=1(aibia

−1
i b−1

i ) = 1; (if σ has sign “ + ”);∏r
i=1 xi

∏k
i=1 ei

∏g
i=1 d

2
i = 1; (if σ has sign “− ”).

The isometries xi are elliptic, ei, ai, bi are hyperbolic, ci are reflections and di are glide reflections.

They are called canonical generators.
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Every NEC group Γ with signature (1.1) has associated a fundamental region whose area µ(Γ),

called the area of the group, is

µ(Γ) = 2π

αg + k − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

ni,j

) ,

with α = 2 or 1 according to the sign being “+” or “−”. The group given by the presentation above

can be represented as an NEC group with signature (1.1) if and only if its area is greater than 0.

We denote by |Γ| the expression µ(Γ)/2π and call it the reduced area of Γ.

If Γ is a subgroup of an NEC group Γ′ of finite index N , then Γ is also an NEC group and the

following Riemann-Hurwitz formula holds:

µ(Γ) = Nµ(Γ′).

If the group has neither proper periods nor link-periods, it is called a surface group and has the

following signature

σ(Γ) = (g,±, [−], {(−), k. . ., (−)}),

For a Klein surface X with p ≥ 2, there exists a NEC surface group Γ such that X = H/Γ. A

finite group G of order N is an automorphism group of X = H/Γ if and only if there exists an

NEC group Λ such that Γ is a normal subgroup of Λ with index N and G = Λ/Γ. Since Γ is a

surface group, it does not contain elements of finite order other than reflections. Therefore, there

must be an epimorphism θ : Λ → G with kernel Γ, such that the relations defining Λ are preserved

by θ.

Given a finite group G there exist bordered Klein surfaces X such that G acts as an automorphism

group of X, and also unbordered non-orientable surfaces S, such that G acts on S. The minimum

algebraic genus of the surfaces X is called the real genus of G, ρ(G), and the minimal topological

genus of the surfaces S is the symmetric crosscap number of G, σ̃(G). In order to obtain these

parameters we need to study NEC groups Λ with minimal area such that G = Λ/Γ.

An extensive study has been made on both parameters ρ(G) and σ̃(G). The numbers which are

ρ(G) for some G form the real genus spectrum, whilst those which are σ̃(G) form the symmetric

crosscap spectrum. None of these spectra is still completely known, and the relationship between

both parameters is a tool for that study. When an integer does not belong to either spectrum, it

is called a gap of that spectrum.

Regarding the real genus, there is no group with real genus 2, 12 or 24 [14]. No other gap was

currently known to exist, but in the very recent paper [6], it is proved that 72 is also a gap.

Therefore, the first number for which it is not known whether it belongs to the spectrum is 84.
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For the symmetric crosscap spectrum, the present knowledge is based on [1]. May proved that

there does not exist any group G such that σ̃(G) = 3. For N > 3, if N is a gap of the symmetric

crosscap spectrum then N lies in four congruence classes mod 120, namely 3, 51, 75 and 99, and

it satisfies additional conditions. The present result will be given below in Theorem 3.4. However,

many numbers satisfying those necessary conditions actually belong to the spectrum. In fact, no

gap apart from 3 is currently known.

2 Results on real genus and symmetric crosscap number

The goal of the present work is to compare both parameters ρ(G) and σ̃(G). It is worth noting

that very often

σ̃(G) = ρ(G) + 1. (2.1)

This property holds for important classes of groups, but it is not true in general. When it holds

for a group G, we say that G satisfies Property (2.1).

2.1 Groups of odd order

First, the authors proved in [1] that the Property (2.1) holds for all groups of odd order.

Theorem 2.1 ([1, Corollary 1]). If G has odd order, then σ̃(G) = ρ(G) + 1.

2.2 Abelian groups

Property (2.1) is also true for Abelian groups. In [18] J. Rodríguez mentions in Remark 6.2 that

“the crosscap number of an Abelian group relates with its real genus straightforwardly: σ̃(G) =

ρ(G) + 1”. However, as far as we know this result has not appeared anywhere, and we are now

providing its proof, taking into account that both parameters are already known in the case of

Abelian groups, obtained by McCullough and Gromadzki in [16] and [11] respectively.

First, we quote the result on real genus.

Theorem 2.2 ([16]). Let G be a non-cyclic Abelian group of order N , G ̸= C2 × C2 × C2,

C2 × C2k (k ≥ 1). Write

G = Ce1 × · · · × Cem × Cd1
× · · · × Cdl

× Cn
2 ,

ei multiple of 4, dj odd, ei+1|ei, d1|em, dj+1|dj. Then ρ(G) is

A) 1 +N
(
n+

∑m
i=1

(
1− 1

ei

)
+
∑l

j=1

(
1− 1

dj

)
− 1
)
, n < m.
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B) 1 +N
(
m+ t+

(
1− 1

2dt

)
+
∑l

j=t+1

(
1− 1

dj

)
− 2
)
, if m < n ≤ m+ 2l− 1, n−m = 2t− 1.

C) 1 +N
(
m+ t+

∑l
j=t+1

(
1− 1

dj

)
− 1
)
, if m ≤ n ≤ m+ 2l, n−m = 2t.

D) 1 + N(3m+2l+n−3)
4 , if n ≥ m+ 2l + 1.

On the other hand, for the symmetric crosscap number the result is the following

Theorem 2.3 ([11]). Let G be a non-cyclic Abelian group of order N , G ̸= C2 × C2 × C2,

C2 ×C2k (k ≥ 1). If G has non-cyclic 2-Sylow subgroup, write G = Cm1
× · · · ×Cmk

×Cs
2 , where

m1, . . . ,ml are odd, ml+1 . . . ,mk are even, mi|mi+1, and s is as large as possible. Then σ̃(G) is

i) 2 +N
(
k − 1−

∑k−s
i=1

1
mi

)
, if s− (k − l) ≤ 0.

ii) 2 +N(k − 1), if s− (k − l) = 2l.

iii) 2 +N
(
k − 1 + s−k−l+1

4

)
, if s− (k − l) > 2l.

iv) 2 +N
(
k − 1−

∑(k+l−s)/2
i=1

1
mi

)
, if 0 < s− (k − l) < 2l, s− (k − l) even.

v) 2 +N
(
k − 1− 1

2m(k+l−s+1)/2
−
∑(k+l−s−1)/2

i=1
1
mi

)
, if 0 < s− (k − l) < 2l, s− (k − l) odd.

And if N is odd, or G has cyclic 2-Sylow subgroup write G = Cm1
× · · · ×Cmr

, mi|mi+1 and then

σ̃(G) is

vi) 2 +N
(
−1 +

∑r
i=1

(
1− 1

mi

))
.

Since in both Theorems the group G has been described in a different way, it is not too easy to

compare ρ(G) and σ̃(G). We shall do it now, by proving

Theorem 2.4. Let G be a non-cyclic Abelian group G ̸= C2 × C2 × C2, C2 × C2k (k ≥ 1). Then

σ̃(G) = ρ(G) + 1.

Proof. We start with each of the four possibilities for ρ(G), namely A, B, C and D.

The translation of the parameters between both Theorems is as follows. In [16], m is the number

of factors that are multiples of 4, l is the number of odd factors and n is the number of factors 2.

Instead, in [11], k − l is the number of factors multiple of 4, l is the number of odd factors and s

is the number of factors 2.

We start with case A. Then n < m in [16] is equivalent to s < k−l, what implies that s−(k−l) < 0,

and we are in case i) in [11]. Hence

ρ(G) = 1 +N

n+

l∑
i=1

(
1− 1

di

)
+

m∑
j=n+1

(
1− 1

ej

)
− 1


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translates to

ρ (G) = 1 +N

s+ l + (k − l − s)− 1−
l∑

i=1

1

di
−

m+l∑
j=l+s+1

1

ej


= 1 +N

k − 1−
l∑

i=1

1

di
−

m+l∑
j=l+s+1

1

ej

 = 1 +N

(
k − 1−

k−s∑
i=1

1

mi

)
= σ̃ (G)− 1.

Now, we consider the case B. Then m < n ≤ m + 2l − 1, n − m = 2t − 1 odd. This implies

k− l < s ≤ k− l+2l− 1 = k+ l− 1, s− (k− l) odd, and so 0 < s− (k− l) ≤ 2l− 1 with s− (k− l)
odd. We are in case v) in [11]. Then

ρ (G) = 1 +N

(
m+ t+

(
1− 1

2dt

)
+

l∑
i=t+1

(
1− 1

di

)
− 2

)

translates to

ρ (G) = 1 +N

k − l +
s− k + l + 1

2
+

(
1− 1

2d(s−k+l+1)/2

)
+

l∑
i=(s−k+l+3)/2

(
1− 1

di

)
− 2


= 1 +N

k − l +
s− k + l + 1

2
+ 1 + l − s− k + l + 3

2
+ 1− 2− 1

2d(s−k+l+1)/2

−
l∑

i=(s−k+l+3)/2

1

di


= 1 +N

k − l − 1

2m(l−s+k+1)/2

−
(l−s+k−1)/2∑

i=1

1

mi

 = σ̃ (G)− 1.

We move to case D, where n ≥ m+2l+1. This implies s ≥ (k−l)+2l+1, and so s−(k−l) ≥ 2l+1.

Hence s− (k − l) > 2l, and this corresponds to the case iii). In this case

ρ(G) =
1 +N(3m+ 2l + n− 3)

4

corresponds to

ρ(G) = 1 +N
3k − 3l + 2l + s− 3

4
= 1 +N

3k − l + s− 3

4

= 1 +N

(
k − 1 +

s− k − l + 1

4

)
= σ̃(G)− 1.

Finally, we must deal with the case C, where m ≤ n ≤ m + 2l, n −m = 2t is even. This means

that k − l ≤ s ≤ k + l, with s− (k − l) = 2t. This possibility splits into three subcases.

If s− (k − l) = 0, we are in case i), and

ρ(G) = 1 +N

(
m+ t+

l∑
i=t+1

(
1− 1

di

))
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means that

ρ(G) = 1 +N

(
k − l + l −

l∑
i=t+1

1

di
− 1

)
= 1 +N

(
k − 1−

k−s∑
i=1

1

mi

)
= σ̃(G)− 1.

Now, if s−(k−l) = 2l, we are in case ii) and s−(k−l) = 2l implies t = (n−m)/2 = (s−(k−l))/2 = l,

and so

ρ(G) = 1 +N

(
m+ t+

l∑
i=t+1

(
1− 1

di

))
= 1 +N(k − l + l − 1) = 1 +N(k − 1) = σ̃(G)− 1.

For the remaining values of s− (k − l) we go to case iv). Then

ρ(G) = 1 +N

(
m+ t−

l∑
i=t+1

(
1− 1

di

)
− 1

)

= 1 +N

(
m+ t+ (l − t)− 1−

l∑
i=t+1

1

di

)

= 1 +N

(
m+ l − 1−

l∑
i=t+1

1

di

)
.

Since l − t = l − (s− (k − l))/2 = (k − s+ l)/2, we have

ρ(G) = 1 +N

k − 1−
(k−s+l)/2∑

i=1

1

mi

 = σ̃(G)− 1.

Remark 2.5. Theorem 2.4 enables a comparison of the results from both papers [2] and [15]. Call

Sc
ab the set of numbers in the symmetric crosscap spectrum which are σ̃(A) for some Abelian group

A, and Sr
ab the set of numbers in the real genus spectrum which are ρ(A) for some Abelian group A.

The set Sc
ab was studied in [2], and the set Sr

ab in [15]. Since we have proved that σ̃(A) = ρ(A)+1

for each Abelian group A, the results in both papers imply each other. For instance, if n is even,

then n ∈ Sc
ab if and only if n ≡ 2 (mod 4) (Theorem 2 of [2]), and if n is odd, then n ∈ Sr

ab if and

only if n ≡ 1 (mod 4) (Theorem 1 in [15]). In the same way, all partial results on the structure of

each of both sets obtained in those two papers can be translated in terms of the other, by using the

fundamental equality σ̃(A) = ρ(A) + 1.

2.3 Groups Cn ×DC3 and Cn × A4

Theorems 2.1 and 2.4 suggest that Property (2.1) holds often. Also other families of groups satisfy

it. Consider the groups of order 12n, Cn×DC3 and Cn×A4. The real genus and symmetric crosscap

number of these groups were obtained in [5] and [9], respectively, and they are presented below
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Table 1

n ρ(Cn ×DC3) σ̃(Cn ×DC3)

2 13 14

3 16 17

6 43 44

odd, (n, 6) = 1 8n− 2 8n− 1

odd, 3 | n, 9 ∤ n 8n− 8 8n− 7

odd, 9 | n 8n− 2 8n− 1

even, 4 ∤ n 9n− 11 9n− 10

even, 4 | n 8n+ 1 8n+ 2

Hence, for all n, σ̃(Cn ×DC3) = ρ(Cn ×DC3) + 1.

For the groups Cn×A4 with n divisible by 3 we have ρ(Cn×A4) = 8n−11 and σ̃(Cn×A4) = 8n−10.

So there exist families of non-Abelian groups of even order satisfying Property (2.1).

2.4 Groups Cm ×Dn

Now, we consider the groups Cm × Dn. Their real genus and symmetric crosscap number were

obtained respectively in [10] and [7]. However, it is necessary to correct a mistake in [7]. In

Proposition 2.3 of that paper, it was stated that σ̃(Cm×Dn) = 2+n(m−2) if m is a multiple of 4

and n is odd. The proof included the claim that it is not possible to obtain a suitable epimorphism

θ : Λ → Cm ×Dn for a group Λ with signature (0,+, [−], {(α), (−)}) for an α ≥ 2. As we will see

this is wrong, and the genus of a surface on which Cm ×Dn acts can be lowered for those values

of m and n if 2n < m, as follows.

Proposition 2.6. Let m be a multiple of 4, n odd, and 2n < m. Then σ̃(Cm×Dn) = 2+m(n−1).

Proof. Let X be a generator of Cm, A and B generators of Dn of order 2, and Λ be an NEC group

with signature (0,+, [−], {(n), (−)}). We define a homomorphism θ from Λ to Cm ×Dn by

θ(e1) = XAB, θ(e2) = X−1BA, θ(c1,0) = A, θ(c1,1) = BAB, θ(c2,0) = Xm/2.

Then, θ(c1,1c1,0) = (BA)2, and so θ((c1,1c1,0)(n+1)/2) = BA. Now, θ(e1(c1,1c1,0)(n+1)/2) = X; and

so, θ(c2,0(e1(c1,1c1,0)(n+1)/2)m/2c1,0) = Xm/2Xm/2A = A. Finally, since BA and A are images of

orientation-preserving elements of Λ, so is B.

The reduced area of Λ is 1
2 (1−

1
n ) =

n−1
2n , and so σ̃(Cm×Dn) ≤ 2+ n−1

2n 2mn = 2+m(n−1). We are

going to see that this bound cannot be lowered. All possible signatures for the group Λ were already

studied in the proof of Proposition 2.3 of [7], excepting those of the form (0,+, [−], {(α), (−)}).
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We complete the work now, considering these signatures. Therefore, suppose that there exists

an epimorphism θ from an NEC group Λ with signature (0,+, [−], {(α), (−)}) for an α ≥ 2 onto

Cm × Dn, and call ψ the composition of θ with the projection of Cm × Dn onto Dn. Since c1,0
has order 2 and n is odd, necessarily ψ(c1,0) = (AB)tA for a certain t. Then, ψ(e1) can have the

form (AB)r or (AB)rA. In any case those two images must generate Dn. If ψ(e1) = (AB)r, then

ψ(e1c1,0) = (AB)r+tA has order 2. So, in order to generate Dn, (AB)r must have order n. Besides,

ψ(c1,1) = (BA)r(AB)tA(AB)r = (AB)t−2rA, and so, ψ(c1,0c1,1) = (AB)tA(AB)t−2rA = (AB)2r

has also order n. Thus, α = n. On the other hand, if ψ(e1) = (AB)rA, then ψ(e1c1,0) =

(AB)r−t, which must have order n. Since ψ(c1,1) = (AB)rA(AB)tA(AB)rA = (AB)2t−tA, then

ψ(c1,0c1,1) = (AB)tA(AB)2r−tA = (AB)2t−2r. Now, both ψ(e1) and ψ(c1,0) have order 2, and so

ψ(e1c1,0) = (AB)r−t must have order n. But then also ψ(c1,0c1,1) has order n, and again α = n.

We have finished, and the inequality 2+m(n− 1) < 2+n(m− 2) holds if and only if 2n < m.

By results in [10] and [7], and Proposition 2.6, we have the following Theorem where for an abuse

of notation we write ρ and σ̃ for ρ(Cm ×Dn) and σ̃(Cm ×Dn).

Theorem 2.7. The real genus and the symmetric crosscap number of the groups Cm×Dn are the

following

m odd, n even, n < 2m ρ = 1 +m(n− 2) σ̃ = 2 +m(n− 2)

m odd, n even, n ≥ 2m ρ = 1 + n(m− 1) σ̃ = 2 + n(m− 1)

m, n odd, m > n ρ = 1 +m(n− 1) σ̃ = 2 +mn−m− n

m, n odd, m < n ρ = 1 + n(m− 1) σ̃ = 2 +mn−m− n

m = n odd ρ = 1 +m(m− 2) σ̃ = 2 +m(m− 2)

m, n even ρ = 1 +mn σ̃ = 2 +mn

m a multiple of 4, n odd, m < 2n ρ = 1 + n(m− 2) σ̃ = 2 + n(m− 2)

m a multiple of 4, n odd, m > 2n ρ = 1 +m(n− 1) σ̃ = 2 +m(n− 1)

Corollary 2.8. Observe that σ̃(Cm ×Dn) = ρ(Cm ×Dn) + 1, except when m and n are different

odd numbers. In such a case, for m > n, σ̃(Cm × Dn) = ρ(Cm × Dn) + 1 − n; and if n > m,

σ̃(Cm×Dn) = ρ(Cm×Dn)+1−m. Both results provide all even negative numbers for the difference

σ̃(G)− ρ(G).

2.5 Groups Dm ×Dn

Now we shall consider the groups Dm × Dn. Their symmetric crosscap number was obtained in

[7], and the real genus in [5]. Observe that the real genus for m and n odd was calculated in

Proposition 2(a) of [5], and included with a misprint in Theorem 3 there. The result should be

read as follows: If m and n are odd, n < m, then ρ(Dm ×Dn) = 1 +m(n− 1).
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In turn, the mistake stated above on σ̃(Cm×Dn) produced a couple of wrong results on σ̃(Dm×Dn)

which we must correct here. For m odd and n even, Proposition 8 in [7] states that σ̃(Dm×Dn) =

m(n− 2) + 2. This is correct for n ≤ 2m, but if 2m < n, then the symmetric crosscap number of

Dm ×Dn is in fact smaller, as given by the forthcoming two results.

Proposition 2.9. Let m be an odd number, n an even number with n/2 odd and 2m < n. Then,

σ̃(Dm ×Dn) = 2 + (m− 1)n.

Proof. Let A and B be generators of Dm of order 2, and C and D generators of Dn of order 2.

Take Λ to be an NEC group with signature (0,+, [−], {(2m, 2, 2, 2)}), and define a homomorphism

θ from Λ to Dm ×Dn by

θ(c1,0) = A, θ(c1,1) = BD, θ(c1,2) = B(CD)n/2, θ(c1,3) = (CD)n/2C, θ(c1,4) = A.

Then, θ(c1,0c1,1) = ABD, and so, θ((c1,0c1,1)m) = D, θ((c1,0c1,1)m+1) = AB. Now, θ(c1,1c1,3) =

B(DC)n/2+1. Since (DC)n/2+1 has order n/2 which is odd, θ((c1,1c1,3)n/2) = B. And so,

θ((c1,0c1,1)
m+1(c1,1c1,3)

n/2) = A.

Finally, θ(c1,2c1,3) = BC, and so, θ((c1,1c1,3)n/2c1,2c1,3) = C. So Dm × Dn is generated by the

images of orientation-preserving elements of Λ.

The reduced area of Λ is 1
4 − 1

4m , and so σ̃(Dm ×Dn) ≤ 2 + 4mn
(
1
4 − 1

4m

)
= 2 + (m− 1)n.

We now prove that this is in fact σ̃(Dm ×Dn) by comparing with σ̃(Cm ×Dn) as obtained in [7].

By Proposition 2.2.i) of that paper, for m odd, n even, with 2m < n, σ̃(Cm ×Dn) = 2+n(m− 1).

Since σ̃(Dm ×Dn) ≥ σ̃(Cm ×Dn), we have finished.

Proposition 2.10. Let m be an odd number, n a multiple of 4, and 2m < n. Then, σ̃(Dm×Dn) =

2 + (m− 1)n.

Proof. Let A and B generators of Dm, and C and D generators of Dn, all of them of order 2. Take

Λ an NEC group of signature (0,+, [−], {(2m, 2, 2, 2)}), and define a homomorphism θ from Λ to

Dm ×Dn by

θ(c1,0) = A, θ(c1,1) = BD, θ(c1,2) = (CD)n/2, θ(c1,3) = C, θ(c1,4) = A.

Then, θ(c1,0c1,1) = ABD. Since m is odd, θ((c1,0c1,1)m) = D, and θ((c1,0c1,1)
m+1) = AB. Now,

θ(c1,3(c1,0c1,1)
m) = CD, and so, θ((c1,3(c1,0c1,1)m)n/2) = (CD)n/2. So,

θ(c1,0c1,2(c1,3(c1,0c1,1)
m)n/2) = A and θ(c1,3c1,2(c1,3(c1,0c1,1)

m)n/2) = C.
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Finally, θ(c1,0c1,2(c1,3(c1,0c1,1)m)n/2(c1,0c1,1)
m+1) = B. So, Dm ×Dn is generated by the images

of orientation-preserving elements of Λ.

The reduced area of Λ is 1
4 − 1

4m , and so σ̃(Dm × Dn) ≤ 2 + 4mn
(
1
4 − 1

4m

)
= 2 + (m − 1)n =

σ̃(Cm ×Dn). The proof is finished.

Hence, from [10] and [8] along with Propositions 2.8 and 2.9, we have the following Theorem.

Theorem 2.11. The real genus and symmetric crosscap number of the groups Dm ×Dn are the

following

m odd, n even, n < 2m ρ = 1 +m(n− 2) σ̃ = 2 +m(n− 2)

m odd, n even, n ≥ 2m ρ = 1 + n(m− 1) σ̃ = 2 + n(m− 1)

m, n odd, m > n ρ = 1 +m(n− 1) σ̃ = 1 + (m− 1)(n− 1)

m = n odd ρ = 1 +m(m− 2) σ̃ = 2 +m(m− 2)

m, n even ρ = 1 +mn σ̃ = 2 +mn

Remark 2.12. Thus, the groups Dm × Dn satisfy Property (2.1), except when m and n are

different odd numbers. In that case, σ̃(Dm ×Dn) − ρ(Dm ×Dn) = 1 − n, and so this difference

provides again, as in Corollary 2.8, all even negative numbers.

3 Gaps in the symmetric crosscap spectrum

Our next results are inspired by [14, Theorem 6]. In that result, C. L. May studied the groups

Cn ×Gpq.

Let p < q be two odd primes such that p | q − 1. Then there exists a non-Abelian group of order

pq, denoted by Gpq. This group admits a presentation given by generators S and T , and relations

Sq = T p = 1, T−1ST = Sr, where rp ≡ 1(mod q), r ̸≡ 1(mod q). Then ST has order p, and so

X = T , Y = ST , are two generators of Gpq of order p. It follows that ρ(Gpq) = q(p − 2) + 1,

[13, Theorem 4], and, applying Theorem 2.1, we have:

Theorem 3.1. Let p < q be two odd primes such that p | q − 1. Then σ̃(Gpq) = q(p− 2) + 2.

Now consider the groups G = Cn ×Gpq. We are going to study the real genus and the symmetric

crosscap number of G. In the case when n is coprime with pq, the real genus of G is given by the

following theorem of May:

Theorem 3.2 ([14], Theorem 6). Let p < q be two odd primes such that p | q−1, and n an integer

coprime with pq. Then ρ(Cn ×Gpq) = 1 + q(pn− n− 1).

Now we turn to the symmetric crosscap number of these groups.



CUBO
27, 3 (2025)

Real genus and symmetric crosscap number of a group 671

Theorem 3.3. Let p < q be two odd primes such that p | q − 1, and n an integer coprime with

pq. Then σ̃(Cn ×Gpq) = 2 + q(pn− n− 1).

Proof. If n is odd, then Cn ×Gpq has odd order, and we apply Theorem 2.1 and Theorem 3.2.

Now, we show that these groups satisfy Property (2.1) also in the case when n is even. Let us

take X and Y to be the generators of Gpq of order p as above, and denote by A the generator of

Cn. Consider an NEC group Γ with signature (0,+, [p, np], {(−)}), and define the epimorphism θ

from Γ onto Cn × Gpq by θ(x1) = X, θ(x2) = AY , θ(e1) = (AXY )−1, θ(c1,0) = An/2. Since n

and p are coprime, there exist integers α, β, such that αn + βp = 1. Then, θ(xαn2 ) = (AY )αn =

Y αn = Y 1−βp = Y , θ(xβp2 ) = (AY )βp = Aβp = A1−αn = A. Besides, θ
(
x
βpn/2
2 c1,0

)
= 1, and so

the kernel contains an orientation reversing element. So, σ̃(Cn ×Gpq) ≤ 2 + q(pn− n− 1).

Now we need to see that the area of Γ is minimal. The only possibility to reduce the area is to

substitute n with one of its factors, say k, and take signature

(0,+, [p, kp], {(−)}) or (1,−, [p, kp], {−}).

Then the image of x2 must be An/kY , and either the image of c1,0 is An/2 or the image of d1 is

A(n−n/k)/2(XY )(p−1)/2.

In the first case it is not possible to generate A as an image of an orientation preserving element,

because the image of any word with an even number of copies of c1,0 will have, as projection onto

Cn, a power of An/k. In the second case, the exponent n/k must be even, in order to get that the

image of d21x1x2 be 1. But then also the orientation preserving elements contain an even number

of copies of d1, and so only powers of A with even exponent can be obtained. Therefore, also in

this case the element A is not the image of an orientation preserving element.

Thus the area of Γ is minimal, and we have that σ̃(Cn×Gpq) = 2+q(pn−n−1), and these groups

satisfy Property (2.1).

We are now going to use the above results to eliminate many possible gaps in the symmetric

crosscap spectrum. This problem was studied in [1], and the main result was the following:

Theorem 3.4 ([1], Theorem 2). Let N > 3 be a gap of the symmetric crosscap spectrum. Then

N ≡ 3, 51, 75 or 99 (mod 120), N ̸≡ 651 (mod 660), N − 2 is not a square, and N − 2 has some

prime factor p ≡ 5 (mod 6).

These conditions, necessary for a number to be a gap, are not sufficient. For N < 10000, they left

sixty-seven numbers which were possible gaps. Three of them are in fact the symmetric crosscap

number of a group, thanks to Theorems 2.3 and 3.1. We show them in the Table 2, where we

indicate N , its class (mod 120), the prime factors of N − 2, and the group G such that σ̃(G) = N .
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Table 2

N N ≡ (mod 120) N − 2 G, σ̃(G) = N

1443 3 1441 = 11 · 131 G13·131

4875 15 4873 = 11 · 443 G13·443

6051 51 6049 = 23 · 263 C23 × C276

This leaves sixty-four numbers which are candidates for being a gap, but forty of them are actually

σ̃(Cn×Gpq) for some n, p, q as obtained in Theorem 3.3. We display the respective data in Table 3.

Table 3

N N ≡ (mod 120) N − 2 G, σ̃(G) = N

915 75 913 = 11 · 83 C21 ×G5·11

1179 99 1177 = 11 · 107 C27 ×G5·11

1539 99 1537 = 29 · 53 C9 ×G7·29

1635 75 1633 = 23 · 71 C6 ×G5·71

1923 3 1921 = 17 · 113 C3 ×G7·113

2235 75 2233 = 7 · 11 · 29 C13 ×G7·29

2499 99 2497 = 11 · 227 C57 ×G5·11

2739 99 2737 = 7 · 17 · 23 C12 ×G11·23

2763 3 2761 = 11 · 251 C3 ×G5·251

3339 99 3337 = 47 · 71 C8 ×G7·71

3555 75 3553 = 11 · 17 · 19 C81 ×G5·11

3819 99 3817 = 11 · 347 C87 ×G5·11

4083 3 4081 = 7 · 11 · 53 C93 ×G5·11

4323 3 4321 = 29 · 149 C25 ×G7·29

4395 75 4393 = 23 · 191 C6 ×G5·191

4899 99 4897 = 59 · 83 C3 ×G29·59

5139 99 5137 = 11 · 467 C117 ×G5·11

5403 3 5401 = 11 · 491 C3 ×G5·491

5499 99 5497 = 23 · 239 C4 ×G7·239

5595 75 5593 = 7 · 17 · 47 C400 ×G3·7
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N N ≡ (mod 120) N − 2 G, σ̃(G) = N

5715 75 5713 = 29 · 197 C5 ×G7·197

6195 75 6193 = 11 · 563 C141 ×G5·11

6411 51 6409 = 13 · 17 · 29 C37 ×G7·29

6459 99 6457 = 11 · 587 C147 ×G5·11

6723 3 6721 = 11 · 13 · 47 C259 ×G3·13

7155 75 7153 = 23 · 311 C6 ×G5·311

7515 75 7513 = 11 · 683 C171 ×G5·11

7635 75 7633 = 17 · 449 C3 ×G7·449

7731 51 7729 = 59 · 131 C5 ×G13·131

7779 99 7777 = 7 · 11 · 101 C177 ×G5·11

7803 3 7801 = 29 · 269 C45 ×G7·29

8043 3 8041 = 11 · 17 · 43 C94 ×G3·43

8259 99 8257 = 23 · 359 C36 ×G11·23

8451 51 8449 = 7 · 17 · 71 C20 ×G7·71

8835 75 8833 = 112 · 73 C61 ×G3·73

8979 99 8977 = 47 · 191 C12 ×G5·191

9099 99 9097 = 11 · 827 C207 ×G5·11

9195 75 9193 = 29 · 317 C53 ×G7·29

9363 3 9361 = 11 · 23 · 37 C127 ×G3·37

9915 75 9913 = 23 · 431 C6 ×G5·431

According to above results only twenty-four numbers N remain as potential gaps in the symmetric

crosscap spectrum, with 3 < N < 10000. They are shown in Table 4.

These results reinforce the conjecture that there is no other gap besides 3 in the spectrum of the

symmetric crosscap number.

Now, we are going to study the particular case N = 699, the smallest number for which it is

unknown whether it represents a gap in the spectrum. This will demonstrate how to use the

relationship between the real genus and symmetric crosscap number, and how Property (2.1) is

useful when it holds. Unfortunately, this is not the case for this value of N and the group G

already known to satisfy ρ(G) = N − 1.
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Table 4: Table 4

N N ≡ (mod 120) N − 2

699 99 697 = 17 · 41
1083 3 1081 = 23 · 47
1515 75 1513 = 17 · 89
2331 51 2329 = 17 · 137
3651 51 3649 = 41 · 89
3843 3 3841 = 23 · 167
3963 3 3961 = 17 · 233
4371 51 4369 = 17 · 257
4635 75 4633 = 41 · 113
5019 99 5017 = 29 · 173
5355 75 5353 = 53 · 101
5619 99 5617 = 41 · 137
6003 3 6001 = 17 · 353
6315 75 6313 = 59 · 107
6819 99 6817 = 17 · 401
7851 51 7849 = 47 · 167
7899 99 7897 = 53 · 149
8499 99 8497 = 29 · 293
8811 51 8809 = 23 · 383
8859 99 8857 = 17 · 521
8883 3 8881 = 83 · 107
9171 51 9169 = 53 · 173
9555 75 9553 = 41 · 233
9675 75 9673 = 17 · 569

Since 41 ≡ 1 (mod 4), there exists a semidirect product C4 ⋊ C41, with presentation

⟨X,Y | Y 4 = X41 = 1, XY = Y X9⟩.

Now call G = C9 × (C4 ⋊ C41), and Z a generator of C9. This group G has real genus 698, see

Corollary 6 of [14]. So, if it satisfies Property (2.1), we have a group with symmetric crosscap

number 699. Let us study G. Its elements of order 2 lie in C4 ⋊ C41, and they have the form

XkY 2. For, (XkY 2)2 = XkY 2XkY 2 = Y X9kY XkY 2 = Y 2X81kXkY 2 = Y 2X82kY 2 = 1, and it

is clear that no other element has order 2.

Now, consider an NEC group Λ with signature (0,+, [2, 36], {(−)}) and an epimorphism θ : Λ → G

defined by

θ(x1) = XY 2, θ(x2) = Y Z, θ(e1) = Y X−1Z−1, θ(c1,0) = X10Y 2.
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The kernel of this epimorphism is a non-orientable unbordered surface group, because o(XY 2) = 2,

o(Y Z) = 36, and

θ(x1x2e1) = XY 2Y ZY X−1Z−1 = XY 4X−1 = 1,

θ(e−1
1 c1,0e1c1,0) = XY 3ZX10Y 2Y X−1Z−1X10Y 2 = XY 3X10Y 3X9Y 2

= Y 3X729X10Y 3X9Y 2 = Y 3X739Y 3X9Y 2 = Y 6X739·729+9Y 2 = Y 8 = 1.

Besides, θ(Λ+) = G, because

θ(x92) = (Y Z)9 = Y θ(x282 ) = (Y Z)28 = Z θ(x1x
18
2 ) = (XY 2)Y 2 = X

The genus of the corresponding surface is

(9 · 4 · 41)
(
1− 1

2
+ 1− 1

36
− 1

)
+ 2 = 9 · 4 · 41 · 17

36
+ 2 = 17 · 41 + 2 = 699.

It only remains to prove that this is the minimum genus of a non-orientable unbordered surface on

which G acts. But this is not the case. Consider an NEC group Γ with signature (0,+, [36], {(41)})
and an epimorphism θ : Γ → G defined by

θ(x1) = Y Z, θ(e1) = Y −1Z−1, θ(c1,0) = XY 2, θ(c1,1) = X32Y 2.

Then,

θ(e−1
1 c1,0e1c1,1) = Y ZXY 2Y −1Z−1X32Y 2 = Y XY X32Y 2 = Y Y X9X32Y 2 = 1.

Besides, θ(Γ+) = G, because

θ(x281 ) = Z,

θ(x91) = Y,

θ(c1,0c1,1) = XY 2X32Y 2 = Y 2X81X32Y 2 = Y 2X31Y 2 = Y 4X31·81 = X10.

So that, θ((c1,0c1,1)37) = X370 = X. Now, we compute the genus, and it is

(9 ·4 ·41)
((

1− 1

36

)
+

1

2

(
1− 1

41

)
− 1

)
+2 = 9 ·4 ·41 ·

(
20

41
− 1

36

)
+2 = 20 ·9 ·4−41+2 = 681.

Hence σ̃(G) ≤ 681, in fact it equals 681, and so the group G does not satisfy Property (2.1), and

no group with symmetric crosscap number 699 is known yet.
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4 Gaps in the real genus spectrum

All odd numbers belong to the real genus spectrum, since C. L. May proved in [12] that the dicyclic

group DCn of order 4n has real genus 2n+ 1. So the problem of determining the spectrum of the

real genus restricts to even numbers. It is known that 2, 12, 24 and 72 are not the real genus of

any group. In his paper [14], C. L. May obtained families of groups whose real genera cover most

of the even numbers. For instance, for N < 10000, his results leave 328 numbers for which it is

unknown whether they belong to the real genus spectrum. M. Pires has calculated explicitly those

numbers in [17]. Most of them are multiple of 12, but there are also numbers N ≡ 2, 6, 8 (mod 12).

Unfortunately, the groups G for which we know that σ̃(G) ≡ 1, 7, 9 (mod 12) do not satisfy

Property (2.1) and cannot be used to eliminate gaps in the real genus spectrum. The situation

is very different for N ≡ 2 (mod 12). According to [17], the numbers N ≡ 2 (mod 12) with

N < 10000, which are not yet known to belong to the real genus spectrum are 1082, 3842, 6266,

7850, 8810 and 8882. Let us pay attention to 6266 ≡ 26 (mod 60). In [1] it was proved that for

each k ≥ 0, a semidirect product Gk = C5 ⋊ C8+16k satisfies σ̃(Gk) = 60k + 27. We are going to

show that these groups satisfy Property (2.1), and so ρ(Gk) = 60k + 26.

Proposition 4.1. Let k ≥ 0, and Gk = C5 ⋊ C8+16k, with presentation ⟨A,B | B5 = A8+16k =

1, BA = AB2⟩. Then, ρ(Gk) = 60k + 26.

Proof. One can see in [1] or [17] that the element BA2+4k has order 4, and A4+8k is the unique

element of Gk of order 2. Since BA2+4k and A generate Gk, take an NEC group Λ with signature

(0,+, [4, 8 + 16k], {(−)}), and define θ : Λ → Gk by

θ(x1) = BA2+4k, θ(x2) = A, θ(e1) = A5+12kB−1, θ(c1,0) = 1.

Then, θ is an epimorphism, the reduced area of Λ is |Λ| = 5+12k
8+16k , and ρ(Gk) ≤ 1 + o(Gk)|Λ| =

1+(40+80k) 5+12k
8+16k = 60k+26. In order to see that this is in fact ρ(Gk), recall that the signature of

the suitable group Λ must have a period-cycle with two consecutive link-periods equal to 2, or an

empty period-cycle, see [3]. Since Gk has a unique element of order 2, the first possibility does not

hold. So, Λ must have an empty period-cycle, and for getting a smaller reduced area, its signature

must have the form (0,+, [m1,m2], {(−)}). Then, by using the same arguments as in Proposition 7

of [1], it follows that the minimal area is indeed attained for the signature (0,+, [4, 8+16k], {(−)}).
Thus, ρ(Gk) = 60k + 26. Observe that in particular ρ(G104) = 6266.

On the contrary, for the five other values of N , namely 1082, 3842, 7850, 8810 and 8882, it is not

known whether N+1 belongs to the symmetric crosscap spectrum, see Table 4. Hence, these pairs

(N,N + 1) seem to be a convenient target for identifying possible gaps in both spectra.
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