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ABSTRACT

We study uncertainty principles for a generalized Fourier
transform F,, associated with the pair of partial differential
operators (D, D) originally introduced by Flensted-Jensen
and later extended by Triméche. This transform, is defined
via the Jacobi kernel and an appropriate weighted measure.
We establish an LP? — L? version of Miyachi’s theorem, from
which we deduce Cowling-Price-type results. Additionally,
we establish a local uncertainty principle in the sense of Faris

and provide related numerical estimates.
RESUMEN

Estudiamos principios de incertidumbre para una trans-
formada de Fourier generalizada F,, asociada al par de
operadores diferenciales parciales (D, Do) originalmente in-
troducidos por Flensted-Jensen y luego extendidos por
Triméche. Esta transformada esté definida a través del nu-
cleo de Jacobi y una medida pesada apropiada. Establece-
mos una version L? — L4 del teorema de Miyachi, a partir del
cual deducimos resultados de tipo Cowling-Price. Adicional-
mente, establecemos un principio de incertidumbre local en
el sentido de Faris y entregamos estimaciones numéricas rela-

cionadas.
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1 Introduction

In the context of harmonic analysis on symmetric spaces, Flensted-Jensen [7] introduced a pair of
partial differential operators fundamental to the study of spherical functions on simply connected
semisimple Lie groups:

0? 0 1 0?

0
D=2 and D,=-2 4[(2n—1)cothy+ tanhy] — — —— 2
55 o 9 +[(2n — 1) cothy 4 tanh y] By coshy 00

where n is a positive integer. Triméche [16] extended these operators by generalizing the integer
parameter n — 1 to a positive real parameter a > 0, thereby developing an associated harmonic
analysis framework centered around a generalized Fourier transform F,. For suitable functions,

this transform is given by

Faf\p) = //R . (W, ) u(y,0) dma(y,0),

where ¢_» , is constructed from the classical Jacobi kernel wﬁ’)‘ via the formula:

i)\O(

oA u(y,0) = €% (cosh y)A‘Pﬁ’/\(y)

and the measure

dme(y,0) = 92(atl) (sinh y)?*T! coshy dy df

reflects the intrinsic non-Euclidean geometry of the underlying space. Unlike classical Jacobi
transforms, where X is fixed, F, treats A as a spectral variable. This key innovation makes F, a
natural and powerful tool for analyzing radial functions on the universal covering group of U(n, 1).
Although significant work has been done to explore various aspects of this transform [7,9,12,16],
its potential within the framework of uncertainty principles remains largely unexplored. This
paper aims to address this gap by establishing several uncertainty principles for F,(f). We begin
by recalling that classical examples of such principles include decay-based results like Hardy’s

theorem [8], which states that if

2

f(z)] < ce™ ™ and |f(y)] < ce™,

then f = 0 when ab > %, and f is Gaussian otherwise. Cowling-Price [2| extended this to

L? — L7 integrability conditions, while Miyachi [13] introduced logarithmic integrability conditions,

requiring

e‘”Qf € LY(R) + L®(R), / log™ (W) dy < o0,
R

where log™ z = max(log,0). Miyachi extended Hardy’s theorem by replacing pointwise decay

with logarithmic integrability conditions, thereby enlarging the class of admissible functions.
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This work establishes an analogue of Miyachi’s theorem for the generalized Fourier transform F,,
associated with the operator pair (D, D,). Our approach, which leverages sharp estimates of the
generalized Jacobi kernel, distinguishes itself from previous techniques. These include methods re-
liant on Bessel operators and the Dunkl setting [1,10], Laguerre polynomials for Riemann-Liouville
operators [10], or Abel transforms and heat kernels in Jacobi analysis [3]. This builds upon several

related studies on uncertainty principles found in [4,9,12,14].

Alongside these decay-based principles, a distinct, support-based perspective was developed by
Faris and Price. This approach quantifies uncertainty not through rates of decay, but through the
spatial concentration of a function and the frequency dispersion of its transform. The Faris-Price
[5,15] expresses this idea via measurable sets: for f € L?(R") and a measurable set E C R", one

has

~ 2a a n
[ 1F@Pde < Ko B el 13 0<a <

Such support-based principles provide explicit constants that govern the trade-off between spatial

localization and spectral dispersion.

A second main contribution is the establishment of a local uncertainty principle of Faris-type for
Fu- The theoretical result guarantees the existence of an optimal constant Ky 4 (7o (F)) but does
not provide its explicit form. To bridge this gap, we employ numerical optimization techniques to

compute this constant, quantifying the precise trade-off between spatial and spectral localization.

The paper is organized as follows. Section 2 develops the harmonic analysis framework for F, and
provides the necessary kernel bounds. Section 3 proves Miyachi- and Cowling-Price-type theorems.
Section 4 establishes the Faris-type principle and conducts a numerical investigation to compute

the associated optimal constants.

2 Mathematical framework

2.1 Generalized Jacobi Kernel

Let a be a positive real number and let K = [0, +o0o[xR. Following [16], we consider the differential

operators:
p=2
Do =% 4 (20 +1)cothy + tanhy) 2 L 1)2 21
a—aiy2+[(04+ )CO y+ an y]aiy—m@—f—(a-i—)
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For complex parameters A\, u € C, the system

Du = idu,
Dou = —p?u, (2.2)
u(0,0) = 1, %(0,9):0&)1«961@

has a unique solution given by the generalized Jacobi kernel:

Pau(y,8) = € (coshy) o (y), (2.3)
where % is the Jacobi kernel [6]:
1 1-—-
oM y) = 2 (OHN\J; +w,a+/\; w, ;o + 1; — sinh? ) (2.4)

expressed in terms of the Gaussian hypergeometric function oF.

For y > 0 and 0 € R, the kernel admits the integral representation [16]:

2
oxu(y,8) = smhy / / (coshy cos ) — cosh )™t cos(us)e 0T dyp ds, (2.5)

where w = w(s,y) = arccos(cosh s/ coshy). When y = 0, the kernel simplifies to ¢y ,(0,0) = e™*’.

The spectral space K =L UQ consists of:

]L:RX[O7+OO[3 Q: U(D+UD77L)
meN

where:
D ={(a+2m+1+mn,in) |n >0} and D, ={(—a—2m—1-mn,in)|n>0}.

The kernel satisfies the uniform bound [16]:

YO, p) €K, sup loanu(y,0)] = 1. (2.6)
(y,0)€eK

The kernel relates to the generalized Riemann-Liouville transform X, through:

(Y, 0) = Xo (cos(p)e™) (y,0),

where

Xof(y,0) /fxt (2, t,y,6)dz di

with kernel

K(z,t,y,0) = —aX[O,y] (2)X[—ww] (t — 0)(coshy cos(t — ) — coshz)* ! (sinh y) .
7r
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For the constant function 1, we have the bound:

Xa(1)(y,0) = /KK(x,t,y,Q)dx dt <1. (2.7)

2.2 Generalized Fourier transform

For p € [1,400], we define the weighted Lebesgue spaces as follows:

e For 1 < p < oo, the space L (K) consists of measurable functions f : K — C satisfying

1/p
1l = ( / f(yﬂ)l”dma(yﬂ)) <o,

where the measure is given by

dme(y, 0) = 22T (sinh )22+ cosh y dy db. (2.8)

e For p = oo, the space L (K) consists of measurable functions with finite essential supremum

norm

||fHOO77”oz = esssup|f(y,0)].
(y,0)€K

The generalized Fourier transform F, on L} (K) is defined by:

Faf ) = /K F(.0) 0 (4, 0)dma(y,6),

satisfying the following inequality:

Y €K, | Faf )l < I fllme- (2.9)
The Plancherel measure dv, combines continuous and discrete parts:

1 d\du

/}K 90O (M) = o5 /RX[O,M[Q(A’“)W

1 [ [ : : > , :
* @ > {/ gk +n,in)Ca (s + n,in)dn + / g(—k —n,in)Ca(—K — n, m)dn} :
m=0 0 0

where kK = o + 2m + 1 and:

90 1=inT (o + 1)T(igs)

Ol(}\,ﬂ) =
atA+1414 a—A+1+4
T ( +A+14 /4) T ( +1+ M)

, Cy(\, ) = —2im Res[C1 (N, 2)C1 (N, —2)] 7L
Z=[
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The weight functions satisfy [16]:

K |u? <G O )72 < Ko (14 (AP + [pf?)2let It (2.10)
Ca(\ )] < Ks(1+ A2+ |uf?)2etsltt, (2.11)

The transform F, satisfies the Plancherel identity

[Fa(l27a = I ll2ma-

For 1 < p < 2, the Hausdorff-Young inequality holds:

1FaMara < 1 Fllpmas (2.12)

where ¢ is the conjugate of p. The inversion formula is given by:
£00) = [ FalD)Ondon (0. O ) (213)
The heat kernel relates to Gaussians via:
B2(0) = [ O, 4 0)dva 0, (214)

with more general heat functions:

. o a(N24p2 2
Wi i(a, (y.0)) = lk/ﬂzkk(—u)%e e AN o) Ly, 0)dva (N, ). (2.15)

3 Miyachi-type theorem for the generalized Fourier trans-

form

To establish our main result, we first derive kernel estimates on C2.

Proposition 3.1. For all (\,p) € C? and (y,0) € K,
loau(y,0)] < C(1+ y)e(lﬁul—(aﬂ))ye\m\(|0|+7r)’ (3.1)
where C' > 0. Moreover, since y > 0,

lox,u(y, 0)] < CelSrlyHISAI8+m) (3.2)
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Proof. By [11, Lemma 2.3], for A = p =0,
0.0(y,0) < C(1+y)e~(@+D,
Using |cos(us)| < e/S#I5 and the integral representation (2.5),
loau(y,0)] < CeI%ulyH%AI(IﬁHW)@070<y’9)’

since w € [—m,w]. This proves (3.1). Inequality (3.2) follows by analyzing the decay of f(y) =
(1 +y)e=(@tDY on [0, +o0]. O
We now state a Phragmén-Lindel6f-type lemma sufficient for our needs:

Lemma 3.2 ([10]). Let h be entire on C2. Suppose there exist constants C, B > 0 such that

|h(z1, 22)] < CeB((R2)*+(R=2)") - g / log™t|h(z, y)|dz dy < occ.
R2
Then h is constant.

Lemma 3.3. Let p,q € [1,+00] and f be measurable on K satisfying
W +(101+m)*) +2(aty ¢ L?(K) + LL(K), a > 0. (3.3)

Then Fo(f) is well-defined and entire on C2. Moreover, for all (A, u) € C2,

[SA12+|Su(?

|Fa(f)A,p)| < Ce a7, (3.4)
Proof. The function (A, p) — @_x .(y,0) is entire by (2.3) and (2.4). Using Proposition 3.1,

1F (W, 0)p—xu(y, 0)ma(y, 0)] < CelSNUIFFISuly| £y 0) g (y, 0).

By (3.3), there exist f1 € L?(K) and f; € LZ(K) such that

2

‘f@—)\7uma| S Z gk(Aa ,U/v y7 9),
k=1

where
2

gk (A 11,1y, 8) = CelSNUOHD+Suly o =al*+(01H+m*) =2 Dy £ (4 0)mq (y, 6).
Observe that

| 192 ]3P

[SM(6] + ) +Suly — aly? + (18] + 7)) = ~Bau(y,6) +
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where )
B0 = (vay - ) 5 (vager+m - B0) 5 0
A 2\/a 2va) —
Thus,
9212 +18ul? o
g\, y,0) < Ce AW £ (y,0) e 2T m4 (y, 0).

For a compact K C C?, there exists (g, 10) € K such that

(A%EK Axu(y,0) = Axg o (4, 0).

. ISA2+sp?
Since e 1a is bounded on K,

9O\ 11,9,0) < Gi(y, 0) = Cem om0 f(y 0)|e 2D (y,0).

To show F, f is entire, it suffices to prove Gy € L!(K). By Hélder’s inequality,

1
Y

2(atly

/|G1(y,9)|dyd9 < CHﬁe_ v ) (/ e Bxoum0 (40P o= 2(at Dy, (v, 9)dyd0>
K ma \JK

Using (2.8), e~2(@+D¥m (y,0) < C, so

-

/|G1(y,9)|dy do < C Hf1||p,mw (/ —Axg.uo (U,0)P’ dy d0> < 0.
K K

Similarly, for ¢’ conjugate to g,
[ 1Ga(w.6)ldy dt < .
K
Thus F, f is entire.
To prove (3.4), apply Holder’s inequality to g; and go:

1
7/

Faf O )] < Ce55 <||f1||p,m (/ A”(”’“”dyde)
K

+ [ f2

Remark 3.4. Condition (3.3) implies f € LL(K). Indeed, by (2.8) and Hélder’s inequality,

1

(/ e—ap’<y2+(|e+w)2)e—2<a+1>ydma) v
p,meo K

1
7

</ 6aq'<y2+<|e+w>2>e2(a+1>ydma) ‘
q,Ma K

S Millpma + [1f2llgma < oo

2(a+y

10 0)ldma(y.6) < £

2(atly

+ Hfze_ a

1
_ / a’ |22 +\JH|
lame (/K St dyde) ) < O (| e + o llgm)

O
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Theorem 3.5. Let a,b,3> 0, p,q € [1,00], and f be measurable on R?, even in the first variable,

satisfying
ea(y2+(|9\+ﬂ)2)+2(a+1)yf € L (K) 4 L4 (K)
and s
/ log™ [Fof A, et > )d)\ dp < oo. (3.5)
R? B
Then:

o [fab> %, then f =0 a.e.

o Ifab= 1, then f = CE® with |C| < B, where E% is the heat kernel (2.14).
4 4a da

A24p2

Proof. Define h(\ p) = e e Fof(\, ). By Lemma 3.3, h is entire and satisfies

@024 (Rp)?

[h(Ap)| < Ce e

Now consider
/Rz log ™ |h(X, 1) |dA dp = /R log™ (|faf(A,u)|eb<#2+*2>e<ﬁ—b>(”+#2>) d\dy.
e Case ab > %: Since e(as V) +4%) < 1 and Jge e(Fa =D +1%) g\ dp < oo,
/R2 log™ |R(\, ) |dX dp < .

2 2
Lemma 3.2 implies h is constant, so Faf = Ce~"ic . Condition (3.5) forces C' = 0 when

ab> 1,50 f =0 by injectivity of F,.

e Case ab = i: Then

F(\ b(p>+X?)
/ log ™[ h(A, p)|dA dp S/ log™ Faf s )le dhdp < co.
R2 R2 B8
2 2
Lemma 3.2 gives F,f = 067%7 and (3.5) implies |C] < 3. Inverting F, yields f =
CE% . O

4a
Corollary 3.6. Let a,b >0, p,q € [1,00], 1 <r < 0o, and f measurable on R?, even in the first
variable, satisfying

ea(y2+(|9\+w)2)+2(a+1)yf c LZ(K) + Lg(K)

and

[ et o F ) dnd < oc, (3.6)
R2

If ab > %, then f =0 a.e.
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Proof. Since log™ x < z for x > 0,

togrt Pl Qom0 (1 Faf Qo070 )
B - g
Choosing 8 = 1, (3.6) implies
/ log™ | Fa f (N, ) |e2# AN dp < .
R2

By Theorem 3.5, f = 0 if ab > ;. If ab = §, f = CE% with |[C| < 1, but (3.6) holds only if
4a
C =0. O

Theorem 3.7 (Cowling-Price Type). Let f be measurable on R?, even in the first variable, with
a,b>0,1<p,q< o0, satisfying

ea(y2+(\9|+ﬂ)2)+2(a+1)yf € L2(K)

and

SR FL FO )| € L(K). (3.7)

If ab > i, then f =0 a.e.
Proof. Since LP(K) C L?(K) 4+ L4(K), (3.3) holds. From (3.7) and (2.10),

/ebQ(#2+>\2)‘]:af(/\,M)|‘1|Cl(/\’u)|_2d)\ dp < oo
L

implies
[ IE O d < o0
R?

by the evenness of F, f in u. Corollary 3.6 with » = ¢ completes the proof. O

Remark 3.8. This work establishes a Cowling-Price-type uncertainty principle (Theorem 3.7)
within the Miyachi framework. It is instructive to compare this result with those derived from the
Beurling-Hormander framework, such as the one found in [12]. The two approaches are distinct

in their hypotheses and their conclusions, particularly at the critical exponent ab = 1/4.

(1) Comparison of hypotheses:
e In the Miyachi framework requires strict exponential decay without polynomial weights:

et WMty p c [p(K) SN F, £ € LE(K).
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e In the Beurling-Hormander framework [12] permits a tempered decay, allowing polyno-

mial weights:

| flealy ol / | FofletMHl?
S dmg < oo, Zalll iy, < oo
/K<1+|y,e>N M =20 A+ oy e

(2) Comparison of conclusions at ab = 1/4:

e Under the Miyachi hypotheses, the conclusion is a sharp uniqueness result: f =0 is the

only function that satisfies the conditions.

e Under the Beurling-Hormander hypotheses, the conclusion is a characterization result:

the function f must be a finite linear combination of heat kernel modes:
f(yv 9) = Z ak,le?,j (ya 9),
k+j<N—1

where Wi, are defined by relation (2.15).

4 Local uncertainty principle and numerical study

In this section, we provide a local uncertainty principle of Faris-type for the generalized Fourier
transform F,. This result quantifies the impossibility of a function f and its transform F,(f)
being simultaneously concentrated on sets of finite measure. We derive an inequality bounding the
concentration of F,(f) on a set F' by the spatial dispersion of f. We then compute the optimal

constant numerically, quantifying the precise trade-off between spatial and spectral localization.
4.1 Faris-type local uncertainty principle
Faris local uncertainty theorem for the generalized Fourier F, states

Theorem 4.1. If 1 <p <2, q= p’%l and 0 < a < % then for all f € L2(K) and all measurable

subset ' C K satisfying 0 < Ya(F) < o0,

([ 17t )" < Kona GatE) ( [ I(yﬁ)lpIf(yﬂ)pdma(y,@));7 (4.1)

where Kq q,q 15 @ constant which depend on the measure of the subset F, v (F').

Proof. Let F be a measurable subset of K. Let us denote B the Euclidean ball of radius r > 0.

B={(.60) €K, |(y.0)l =V + <r}.
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We get
1Fa(f) Xellgra < IFalfxa) Xellgq, T 1FalfXae) Xellyn, -

On the other hand
1Fa(fxs) Xl = /ﬁmum(m e o l? da (A1)

< Fa (o)l s /me,u) e (M p).

Then
1Fa(fxe) Xellgn, < GalENT 1Fa(fxa) loome- (4.2)

Moreover
[Fa(fXpe) Xellgqn < NFalfXpe)llyn, - (4.3)

According to relations (4.2) and (4.3), we obtain

1Falf) Xellgna < alPNT 1Falfxs) oo + 1 FalFXoe)ly -

Therefore (2.9) and (2.12) yield to

1
[FafXrllgq, < (alF))7 [1fXs + 1 X se [l m,, - (4.4)

Using Holder inequality, we get

xalhon < ([ 0P |<y,9>|“”dma<y,e>); ([ 1601 o 0 0ma3.0))

Applying polar coordinates we get

/ By’ XpW0) fogg T oa,
Il (y, 0)]|*2 2—-qa

Since
)dm 0 92(a+ a+1) B 0
/ ‘ y’ yv ) a(y, ) < 2(at1) 2( Dr / y’)dydﬂ

then we deduce that

2 (03 T g7(1 a
1 Xz l1ma < Caaqe @D ra= | (y,0)|" fllpmas (4.5)

where

1
22(a+1) q
Ca,a,q = (ﬂ— ) . (46)

2 —qa
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According to relations (4.5) and (4.4) and the fact that

15X e < @O IR W O X, looima < 7™ 1(y, 01 £ .,

we conclude that

1FafXpllgq, < 9@ O fllpma, (4.7)

where g is a function from ]0, 4+o00[ into R, given by
g(r) = Ae’re 47 (4.8)

where

1 2 2
A=Caaq(1a(F))* >0, bz;(a—|—1)>0, c:g—a>0. (4.9)

The function g is continuous and coercive on |0, 4+o0[ since

lim g(r) =400 and lim g(r) = +oo.

r—0+ r—+o00

Thus, g attains a minimum. Differentiating, we get
g (r)=Ae’ r " (bor +¢) —ar L. (4.10)
Setting ¢'(r) = 0 is equivalent to solving
h(r) == A’ rte(br 4+ ¢) — a.
Since c+a = % > 0, the function h is continuous and strictly increasing on |0, +oo[, with

lim h(r)=—a <0, lim h(r)=+oo.

r—0+ r—+00

Therefore, there exists a unique 7* > 0 such that h(r*) = a, so ¢’(r*) = 0. Since g is coercive, this

critical point is the unique global minimum of g. Let us denote this unique minimum of g by

Kaa,0(7a(F)) = min g(r). (4.11)

Finally, relation (4.7) yields (4.1), completing the proof. O
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4.2 Numerical study of the optimal constant

This section presents a comprehensive numerical investigation of the function g(r) defined in Equa-

tion (4.7), which determines the optimal constant Ky 4 ¢(7a(F)) in Theorem 4.1. We recall that
g(r) = AeP"re 4+ r=a,

where the parameters are defined in relation (4.9).

To find the global minimizer »* > 0 of ¢g(r), we implement the Newton-Raphson method to solve

the equation ¢’(r) = 0. The first and second derivatives of g(r) are:

g (r) = A" r L (br 4 ¢) —ar—27 1,

g"(r) = Ae" 72 [(br + ¢)* + (¢ — 1)(br + ¢) — ¢| + ala+ 1)r*72.

The Newton-Raphson iteration scheme is given by:

Tn+l = Th —
We initialize the algorithm with ro = 0.1 and use a convergence criterion of
|71 — 7| < 107C.
e Numerical computation. We choose specific parameter values:

p=15 — 80 q =3,
a = 0.5,
a=0.5 — satisfies a < %,

Yo(F)=1 — for simplicity.

Now compute the constants:

. 1/3 1/3
A= Caug- (1a(F)"* = (%) = (75%3) ~ (50.265)/3 ~ 3.691,

b=2(05+1)=1,

2
3
c=2-0.5~0.1667.

Thus, the function simplifies to

g(r) ~ 3.601 - & - 701667 | =05,
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The Newton-Raphson method converges rapidly to the solution, as demonstrated in Table 1.

Table 1: Newton-Raphson iterations.

Iteration (n) on g (rn)
0 0.100000 -12.456
1 0.157832 -2.891
2 0.180214 -0.327
3 0.183105 -0.006
4 0.183127 -0.000012
5 0.183127 ~ 0

The algorithm converges in 5 iterations to r* a2 0.1831, yielding the minimum value g(r*) ~
5.677. The following Figure 1 illustrates the behavior of g(r), confirming the existence of a
unique minimum where the term r~% dominates as » — 07 and the term Ae’"r¢ dominates

as r — +oc.

—— g(r) = 3.6911.0r0-1667 4 -0.5
=== Minimum at r=0.183
----- g(rmin) =5.677

30

25 A

)

(0.183, 5.67

Figure 1: Behavior of g(r) for p = 1.5, « = 0.5, a = 0.5.

4.3 Asymptotic behavior of K, ,,(7.(F))

In the previous numerical study, the measure of the frequency set was fixed at v,(F) = 1 to
compute a specific value for the optimal constant. We now analyze the behavior of K4 o.4(7a(F))
over the full range of its domain, particularly in the asymptotic regimes where v, (F) — 07 or
Yo (F) — +o00. This analysis reveals the intrinsic scaling properties of the uncertainty principle and
provides practical insight into the trade-off between spatial and frequency localization governed by

the parameters a, a, p.
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Behavior as 7, (F) — 0"

When 7, (F) — 07, by relation (4.9) we have A — 0. From (4.8), the dominant term in

a

g(r) becomes r~%, so we expect the minimizing r* to grow. We have

g (r)=0<= A" r* Ybor +¢) —ar ' =0 <= A" Hbr +¢) = ar™ 7L,

Applying logarithms, we get
InA+br+ (c+a)lnr+1n(br 4+ ¢) = Ina.

For small A, the term br dominates, so we approximate:

br*zln(%) = r*%%ln(%).

By substituting into g(r*), we obtain

<A
=
Q
]
BN
=
i)
=
[}
i)
[}
=
=
[}
=
&
=
=+
o
2
Q
—
B
~—"
N—
Qe
=
@
oL
@
=)
<
@

where Cy 4 4 is given by (4.6).

Behavior as 7, (F) — +oo

Since 74 (F) — +00, then A — +00. On the other hand, the dominant term in g(r) is Ae®"r¢,

so we expect the minimizing 7* to shrink. The equation ¢'(r) = 0 gives us
AP N (br 4 ¢) = ar™7 L.

For large A, the left hand side dominates, so we balance terms by taking r* — 0%. Assume

r* is small and expand e’ ~ 1 + br. Then
A+ br*) () (b + ) = a(r*) "L

Yields to
A *\c—1 ~ *\—a—1 *ycta i
(') ma(rt) T = ()~
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Thus:

Since 7* — 0T, the second term dominates:

a

*\—a Ca,a, CYa F /a ﬁ
Kowa(ra(F)) ~ () ~(” .

This contrasting behavior is illustrated in Figure 2, which shows the function g(r) for extreme
values of 7, (F). The left panel shows the slow logarithmic decay for v, (F) — 0, while the
right panel demonstrates the power-law growth for v, (F) — +o0o. The vertical dashed lines

indicate the minimizing radius r* in each case.

— YalF)=0.01
--- m=0475

YelF) =100.0

--- n=0.047
- K=15.398

140 3000

1201 2500

100
2000 -

80 4

gln

1500 -

60

1000 1
40 4

500 +
204

(a) Behavior of g(r) for small v, (F). (b) Behavior of g(r) for large vo (F).

Figure 2

e Numerical computation The following table presents numerical values of the minimizing
radius ro and the optimal constant K 4 q(7a(F)) for different values of ~,(F), using the

parameters:
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Table 2: Numerical values of the optimal radius r* and constant K q 4.

’YQ(F) A ’I"* Ka,a,q
10~ 0.037 13.12 0.276
107° 0.079 11.72 0.295
10~4 0.171 10.32 0.316
1073 0.369 8.92 0.341
1072 0.795 7.52 0.372
1071 1.713 6.12 0.404

1 3.691 0.183 5.677
10 7.937 0.089 12.309
102 17.088 0.042 24.891
103 36.913 0.020 48.712
10* 79.370 0.009 94.868
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