
CUBO, A Mathematical Journal

Vol. 27, no. 3, pp. 681–700, December 2025
DOI: 10.56754/0719-0646.2703.681

Some inequalities associated with a partial
differential operator

Raoudha Laffi1,B

1 Department of Mathematics, Faculty of

Sciences of Tunis, LR11ES11, El Manar

University, Tunis, 5100, Tunisia.

rawdhalaffi@gmail.comB

ABSTRACT

We study uncertainty principles for a generalized Fourier
transform Fα, associated with the pair of partial differential
operators (D,Dα) originally introduced by Flensted-Jensen
and later extended by Trimèche. This transform, is defined
via the Jacobi kernel and an appropriate weighted measure.
We establish an Lp − Lq version of Miyachi’s theorem, from
which we deduce Cowling-Price-type results. Additionally,
we establish a local uncertainty principle in the sense of Faris
and provide related numerical estimates.

RESUMEN

Estudiamos principios de incertidumbre para una trans-
formada de Fourier generalizada Fα, asociada al par de
operadores diferenciales parciales (D,Dα) originalmente in-
troducidos por Flensted-Jensen y luego extendidos por
Trimèche. Esta transformada está definida a través del nú-
cleo de Jacobi y una medida pesada apropiada. Establece-
mos una versión Lp−Lq del teorema de Miyachi, a partir del
cual deducimos resultados de tipo Cowling-Price. Adicional-
mente, establecemos un principio de incertidumbre local en
el sentido de Faris y entregamos estimaciones numéricas rela-
cionadas.
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1 Introduction

In the context of harmonic analysis on symmetric spaces, Flensted-Jensen [7] introduced a pair of

partial differential operators fundamental to the study of spherical functions on simply connected

semisimple Lie groups:

D =
∂

∂θ
and Dn =

∂2

∂y2
+ [(2n− 1) coth y + tanh y]

∂

∂y
− 1

cosh2 y

∂2

∂θ2
,

where n is a positive integer. Trimèche [16] extended these operators by generalizing the integer
parameter n − 1 to a positive real parameter α > 0, thereby developing an associated harmonic

analysis framework centered around a generalized Fourier transform Fα. For suitable functions,

this transform is given by

Fαf(λ, µ) =
∫∫

R+×R
f(y, θ)φ−λ,µ(y, θ) dmα(y, θ),

where φ−λ,µ is constructed from the classical Jacobi kernel φα,λµ via the formula:

φλ,µ(y, θ) = eiλθ(cosh y)λφα,λµ (y)

and the measure

dmα(y, θ) = 22(α+1)(sinh y)2α+1 cosh y dy dθ

reflects the intrinsic non-Euclidean geometry of the underlying space. Unlike classical Jacobi

transforms, where λ is fixed, Fα treats λ as a spectral variable. This key innovation makes Fα a

natural and powerful tool for analyzing radial functions on the universal covering group of U(n, 1).

Although significant work has been done to explore various aspects of this transform [7, 9, 12, 16],

its potential within the framework of uncertainty principles remains largely unexplored. This

paper aims to address this gap by establishing several uncertainty principles for Fα(f). We begin

by recalling that classical examples of such principles include decay-based results like Hardy’s

theorem [8], which states that if

|f(x)| ≤ ce−ax
2

and |f̂(y)| ≤ ce−by
2

,

then f = 0 when ab > 1
4 , and f is Gaussian otherwise. Cowling-Price [2] extended this to

Lp−Lq integrability conditions, while Miyachi [13] introduced logarithmic integrability conditions,

requiring

eax
2

f ∈ L1(R) + L∞(R),
∫
R
log+

(
|f̂(y)|eby2

β

)
dy <∞,

where log+ x = max(log x, 0). Miyachi extended Hardy’s theorem by replacing pointwise decay

with logarithmic integrability conditions, thereby enlarging the class of admissible functions.
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This work establishes an analogue of Miyachi’s theorem for the generalized Fourier transform Fα,

associated with the operator pair (D,Dα). Our approach, which leverages sharp estimates of the

generalized Jacobi kernel, distinguishes itself from previous techniques. These include methods re-

liant on Bessel operators and the Dunkl setting [1,10], Laguerre polynomials for Riemann-Liouville

operators [10], or Abel transforms and heat kernels in Jacobi analysis [3]. This builds upon several

related studies on uncertainty principles found in [4, 9, 12,14].

Alongside these decay-based principles, a distinct, support-based perspective was developed by

Faris and Price. This approach quantifies uncertainty not through rates of decay, but through the

spatial concentration of a function and the frequency dispersion of its transform. The Faris-Price

[5, 15] expresses this idea via measurable sets: for f ∈ L2(Rn) and a measurable set E ⊂ Rn, one

has ∫
E

|f̂(ξ)|2dξ ≤ Kα|E| 2αn ∥|x|αf∥22, 0 < α <
n

2
.

Such support-based principles provide explicit constants that govern the trade-off between spatial

localization and spectral dispersion.

A second main contribution is the establishment of a local uncertainty principle of Faris-type for

Fα. The theoretical result guarantees the existence of an optimal constant Kα,a,q(γα(F )) but does

not provide its explicit form. To bridge this gap, we employ numerical optimization techniques to

compute this constant, quantifying the precise trade-off between spatial and spectral localization.

The paper is organized as follows. Section 2 develops the harmonic analysis framework for Fα and

provides the necessary kernel bounds. Section 3 proves Miyachi- and Cowling-Price-type theorems.

Section 4 establishes the Faris-type principle and conducts a numerical investigation to compute

the associated optimal constants.

2 Mathematical framework

2.1 Generalized Jacobi Kernel

Let α be a positive real number and let K = [0,+∞[×R. Following [16], we consider the differential

operators: 
D =

∂

∂θ
,

Dα =
∂2

∂y2
+ [(2α+ 1) coth y + tanh y]

∂

∂y
− 1

cosh2 y

∂2

∂θ2
+ (α+ 1)2.

(2.1)
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For complex parameters λ, µ ∈ C, the system
Du = iλu,

Dαu = −µ2u,

u(0, 0) = 1, ∂u
∂y (0, θ) = 0 for θ ∈ R

(2.2)

has a unique solution given by the generalized Jacobi kernel:

φλ,µ(y, θ) = eiλθ(cosh y)λφα,λµ (y), (2.3)

where φα,λµ is the Jacobi kernel [6]:

φα,λµ (y) = 2F1

(
α+ λ+ 1 + iµ

2
,
α+ λ+ 1− iµ

2
;α+ 1;− sinh2 y

)
, (2.4)

expressed in terms of the Gaussian hypergeometric function 2F1.

For y > 0 and θ ∈ R, the kernel admits the integral representation [16]:

φλ,µ(y, θ) =
2αα

π
(sinh y)−2α

∫ y

0

∫ ω

−ω
(cosh y cosψ − cosh s)α−1 cos(µs)eiλ(θ+ψ)dψ ds, (2.5)

where ω = ω(s, y) = arccos(cosh s/ cosh y). When y = 0, the kernel simplifies to φλ,µ(0, θ) = eiλθ.

The spectral space K̂ = L ∪ Ω consists of:

L = R× [0,+∞[, Ω =
⋃
m∈N

(D+
m ∪D−

m),

where:

D+
m = {(α+ 2m+ 1 + η, iη) | η > 0} and D−

m = {(−α− 2m− 1− η, iη) | η > 0}.

The kernel satisfies the uniform bound [16]:

∀(λ, µ) ∈ K̂, sup
(y,θ)∈K

|φλ,µ(y, θ)| = 1. (2.6)

The kernel relates to the generalized Riemann-Liouville transform Xα through:

φλ,µ(y, θ) = Xα
(
cos(µ·)eiλ·

)
(y, θ),

where

Xαf(y, θ) =

∫
K
f(x, t)K(x, t, y, θ)dx dt

with kernel

K(x, t, y, θ) =
2αα

π
χ[0,y](x)χ[−ω,ω](t− θ)(cosh y cos(t− θ)− coshx)α−1(sinh y)−2α.
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For the constant function 1, we have the bound:

Xα(1)(y, θ) =

∫
K
K(x, t, y, θ)dx dt ≤ 1. (2.7)

2.2 Generalized Fourier transform

For p ∈ [1,+∞], we define the weighted Lebesgue spaces as follows:

• For 1 ≤ p <∞, the space Lpα(K) consists of measurable functions f : K → C satisfying

∥f∥p,mα =

(∫
K
|f(y, θ)|pdmα(y, θ)

)1/p

<∞,

where the measure is given by

dmα(y, θ) = 22(α+1)(sinh y)2α+1 cosh y dy dθ. (2.8)

• For p = ∞, the space L∞
α (K) consists of measurable functions with finite essential supremum

norm

∥f∥∞,mα
= ess sup

(y,θ)∈K
|f(y, θ)|.

The generalized Fourier transform Fα on L1
α(K) is defined by:

Fαf(λ, µ) =
∫
K
f(y, θ)φ−λ,µ(y, θ)dmα(y, θ),

satisfying the following inequality:

∀(λ, µ) ∈ K̂, |Fαf(λ, µ)| ≤ ∥f∥1,mα
. (2.9)

The Plancherel measure dγα combines continuous and discrete parts:

∫
K̂
g(λ, µ)dγα(λ, µ) =

1

(2π)2

∫
R×[0,+∞[

g(λ, µ)
dλ dµ

|C1(λ, µ)|2

+
1

(2π)2

∞∑
m=0

{∫ ∞

0

g(κ+ η, iη)C2(κ+ η, iη)dη +

∫ ∞

0

g(−κ− η, iη)C2(−κ− η, iη)dη

}
,

where κ = α+ 2m+ 1 and:

C1(λ, µ) =
2α+1−iµΓ(α+ 1)Γ(iµ)

Γ
(
α+λ+1+iµ

2

)
Γ
(
α−λ+1+iµ

2

) , C2(λ, µ) = −2iπRes
z=µ

[C1(λ, z)C1(λ,−z)]−1.
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The weight functions satisfy [16]:

K1|µ|2 ≤ |C1(λ, µ)|−2 ≤ K2(1 + |λ|2 + |µ|2)2[α+ 1
2 ]+1. (2.10)

|C2(λ, µ)| ≤ K3(1 + |λ|2 + |µ|2)2[α+ 1
2 ]+1. (2.11)

The transform Fα satisfies the Plancherel identity

∥Fα(f)∥2,γα = ∥f∥2,mα
.

For 1 ≤ p ≤ 2, the Hausdorff-Young inequality holds:

∥Fα(f)∥q,γα ≤ ∥f∥p,mα , (2.12)

where q is the conjugate of p. The inversion formula is given by:

f(y, θ) =

∫
K̂
Fα(f)(λ, µ)φλ,µ(y, θ)dγα(λ, µ) (2.13)

The heat kernel relates to Gaussians via:

Eαa (y, θ) =

∫
K̂
e−a(λ

2+µ2+(α+1)2)φλ,µ(y, θ)dγα(λ, µ), (2.14)

with more general heat functions:

Wα
k,j(a, (y, θ)) = ik

∫
K̂
λk(−µ)2je−a(λ

2+µ2+(α+1)2)φλ,µ(y, θ)dγα(λ, µ). (2.15)

3 Miyachi-type theorem for the generalized Fourier trans-

form

To establish our main result, we first derive kernel estimates on C2.

Proposition 3.1. For all (λ, µ) ∈ C2 and (y, θ) ∈ K,

|φλ,µ(y, θ)| ≤ C(1 + y)e(|ℑµ|−(α+1))ye|ℑλ|(|θ|+π), (3.1)

where C > 0. Moreover, since y ≥ 0,

|φλ,µ(y, θ)| ≤ Ce|ℑµ|y+|ℑλ|(|θ|+π). (3.2)
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Proof. By [11, Lemma 2.3], for λ = µ = 0,

φ0,0(y, θ) ≤ C(1 + y)e−(α+1)y.

Using |cos(µs)| ≤ e|ℑµ|s and the integral representation (2.5),

|φλ,µ(y, θ)| ≤ Ce|ℑµ|y+|ℑλ|(|θ|+π)φ0,0(y, θ),

since ω ∈ [−π, π]. This proves (3.1). Inequality (3.2) follows by analyzing the decay of f(y) =

(1 + y)e−(α+1)y on [0,+∞[.

We now state a Phragmén-Lindelöf-type lemma sufficient for our needs:

Lemma 3.2 ([10]). Let h be entire on C2. Suppose there exist constants C,B > 0 such that

|h(z1, z2)| ≤ CeB((ℜz1)2+(ℜz2)2) and
∫
R2

log+|h(x, y)|dx dy <∞.

Then h is constant.

Lemma 3.3. Let p, q ∈ [1,+∞] and f be measurable on K satisfying

ea(y
2+(|θ|+π)2)+2(α+1)yf ∈ Lpα(K) + Lqα(K), a > 0. (3.3)

Then Fα(f) is well-defined and entire on C2. Moreover, for all (λ, µ) ∈ C2,

|Fα(f)(λ, µ)| ≤ Ce
|ℑλ|2+|ℑµ|2

4a . (3.4)

Proof. The function (λ, µ) 7→ φ−λ,µ(y, θ) is entire by (2.3) and (2.4). Using Proposition 3.1,

|f(y, θ)φ−λ,µ(y, θ)mα(y, θ)| ≤ Ce|ℑλ|(|θ|+π)+|ℑµ|y|f(y, θ)|mα(y, θ).

By (3.3), there exist f1 ∈ Lpα(K) and f2 ∈ Lqα(K) such that

|fφ−λ,µmα| ≤
2∑
k=1

gk(λ, µ, y, θ),

where

gk(λ, µ, y, θ) = Ce|ℑλ|(|θ|+π)+|ℑµ|ye−a(y
2+(|θ|+π)2)−2(α+1)y|fk(y, θ)|mα(y, θ).

Observe that

|ℑλ|(|θ|+ π) + |ℑµ|y − a(y2 + (|θ|+ π)2) = −∆λ,µ(y, θ) +
|ℑλ|2 + |ℑµ|2

4a
,
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where

∆λ,µ(y, θ) =

(√
ay − |ℑµ|

2
√
a

)2

+

(√
a(|θ|+ π)− |ℑλ|

2
√
a

)2

≥ 0.

Thus,

gk(λ, µ, y, θ) ≤ Ce
|ℑλ|2+|ℑµ|2

4a e−∆λ,µ(y,θ)|fk(y, θ)|e−2(α+1)ymα(y, θ).

For a compact K ⊂ C2, there exists (λ0, µ0) ∈ K such that

min
(λ,µ)∈K

∆λ,µ(y, θ) = ∆λ0,µ0
(y, θ).

Since e
|ℑλ|2+|ℑµ|2

4a is bounded on K,

gk(λ, µ, y, θ) ≤ Gk(y, θ) = Ce−∆λ0,µ0
(y,θ)|fk(y, θ)|e−2(α+1)ymα(y, θ).

To show Fαf is entire, it suffices to prove Gk ∈ L1
α(K). By Hölder’s inequality,

∫
K
|G1(y, θ)|dy dθ ≤ C

∥∥∥f1e− 2(α+1)y
p

∥∥∥
p,mα

(∫
K
e−∆λ0,µ0

(y,θ)p′e−2(α+1)ymα(y, θ)dy dθ

) 1
p′

.

Using (2.8), e−2(α+1)ymα(y, θ) ≤ C, so

∫
K
|G1(y, θ)|dy dθ ≤ C ∥f1∥p,mα

(∫
K
e−∆λ0,µ0

(y,θ)p′dy dθ

) 1
p′

<∞.

Similarly, for q′ conjugate to q, ∫
K
|G2(y, θ)|dy dθ <∞.

Thus Fαf is entire.

To prove (3.4), apply Hölder’s inequality to g1 and g2:

|Fαf(λ, µ)| ≤ Ce
|ℑλ|2+|ℑµ|2

4a

(
∥f1∥p,mα

(∫
K
e−∆λ,µ(y,θ)p

′
dy dθ

) 1
p′

+ ∥f2∥q,mα

(∫
K
e−∆λ,µ(y,θ)q

′
dy dθ

) 1
q′
)

≤ Ce
|ℑλ|2+|ℑµ|2

4a (∥f1∥p,mα
+ ∥f2∥q,mα

) .

Remark 3.4. Condition (3.3) implies f ∈ L1
α(K). Indeed, by (2.8) and Hölder’s inequality,

∫
K
|f(y, θ)|dmα(y, θ) ≤

∥∥∥f1e− 2(α+1)y
p

∥∥∥
p,mα

(∫
K
e−ap

′(y2+(|θ|+π)2)e−2(α+1)ydmα

) 1
p′

+
∥∥∥f2e− 2(α+1)y

q

∥∥∥
q,mα

(∫
K
e−aq

′(y2+(|θ|+π)2)e−2(α+1)ydmα

) 1
q′

≲ ∥f1∥p,mα
+ ∥f2∥q,mα

<∞.
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Theorem 3.5. Let a, b, β > 0, p, q ∈ [1,∞], and f be measurable on R2, even in the first variable,

satisfying

ea(y
2+(|θ|+π)2)+2(α+1)yf ∈ Lpα(K) + Lqα(K)

and ∫
R2

log+
|Fαf(λ, µ)|eb(µ

2+λ2)

β
dλ dµ <∞. (3.5)

Then:

• If ab > 1
4 , then f = 0 a.e.

• If ab = 1
4 , then f = CEα1

4a

with |C| ≤ β, where Eα1
4a

is the heat kernel (2.14).

Proof. Define h(λ, µ) = e
λ2+µ2

4a Fαf(λ, µ). By Lemma 3.3, h is entire and satisfies

|h(λ, µ)| ≤ Ce
(ℜλ)2+(ℜµ)2

4a .

Now consider∫
R2

log+|h(λ, µ)|dλ dµ =

∫
R2

log+
(
|Fαf(λ, µ)|eb(µ

2+λ2)e(
1
4a−b)(λ2+µ2)

)
dλ dµ.

• Case ab > 1
4 : Since e(

1
4a−b)(λ2+µ2) ≤ 1 and

∫
R2 e

( 1
4a−b)(λ2+µ2)dλ dµ <∞,∫

R2

log+|h(λ, µ)|dλ dµ <∞.

Lemma 3.2 implies h is constant, so Fαf = Ce−
λ2+µ2

4a . Condition (3.5) forces C = 0 when

ab > 1
4 , so f = 0 by injectivity of Fα.

• Case ab = 1
4 : Then

∫
R2

log+|h(λ, µ)|dλ dµ ≤
∫
R2

log+
|Fαf(λ, µ)|eb(µ

2+λ2)

β
dλ dµ <∞.

Lemma 3.2 gives Fαf = Ce−
λ2+µ2

4a , and (3.5) implies |C| ≤ β. Inverting Fα yields f =

CEα1
4a

.

Corollary 3.6. Let a, b > 0, p, q ∈ [1,∞], 1 ≤ r < ∞, and f measurable on R2, even in the first

variable, satisfying

ea(y
2+(|θ|+π)2)+2(α+1)yf ∈ Lpα(K) + Lqα(K)

and ∫
R2

ebr(µ
2+λ2)|Fαf(λ, µ)|rdλ dµ <∞. (3.6)

If ab ≥ 1
4 , then f = 0 a.e.
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Proof. Since log+ x ≤ x for x > 0,

log+
|Fαf(λ, µ)|eb(µ

2+λ2)

β
≤

(
|Fαf(λ, µ)|eb(µ

2+λ2)

β

)r
.

Choosing β = 1, (3.6) implies∫
R2

log+|Fαf(λ, µ)|eb(µ
2+λ2)dλ dµ <∞.

By Theorem 3.5, f = 0 if ab > 1
4 . If ab = 1

4 , f = CEα1
4a

with |C| ≤ 1, but (3.6) holds only if

C = 0.

Theorem 3.7 (Cowling-Price Type). Let f be measurable on R2, even in the first variable, with

a, b > 0, 1 ≤ p, q <∞, satisfying

ea(y
2+(|θ|+π)2)+2(α+1)yf ∈ Lpα(K)

and

eb(µ
2+λ2)|Fαf(λ, µ)| ∈ Lqα(K̂). (3.7)

If ab ≥ 1
4 , then f = 0 a.e.

Proof. Since Lp(K) ⊂ Lp(K) + Lq(K), (3.3) holds. From (3.7) and (2.10),∫
L
ebq(µ

2+λ2)|Fαf(λ, µ)|q|C1(λ, µ)|−2dλ dµ <∞

implies ∫
R2

ebq(µ
2+λ2)|Fαf(λ, µ)|qdλ dµ <∞

by the evenness of Fαf in µ. Corollary 3.6 with r = q completes the proof.

Remark 3.8. This work establishes a Cowling-Price-type uncertainty principle (Theorem 3.7)

within the Miyachi framework. It is instructive to compare this result with those derived from the

Beurling-Hörmander framework, such as the one found in [12]. The two approaches are distinct

in their hypotheses and their conclusions, particularly at the critical exponent ab = 1/4.

(1) Comparison of hypotheses:

• In the Miyachi framework requires strict exponential decay without polynomial weights:

ea(y
2+(|θ|+π)2)+2(α+1)yf ∈ Lpα(K), eb(λ

2+µ2)|Fαf | ∈ Lqα(K̂).
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• In the Beurling-Hörmander framework [12] permits a tempered decay, allowing polyno-

mial weights:

∫
K

|f |ea|y+π,θ|2

(1 + |y, θ|)N
dmα <∞,

∫
K̂

|Fαf |eb|λ,µ|
2

(1 + |λ, µ|)N
dγα <∞.

(2) Comparison of conclusions at ab = 1/4:

• Under the Miyachi hypotheses, the conclusion is a sharp uniqueness result: f = 0 is the

only function that satisfies the conditions.

• Under the Beurling-Hörmander hypotheses, the conclusion is a characterization result:

the function f must be a finite linear combination of heat kernel modes:

f(y, θ) =
∑

k+j<N−1

ak,jWα
k,j(y, θ),

where Wα
k,j are defined by relation (2.15).

4 Local uncertainty principle and numerical study

In this section, we provide a local uncertainty principle of Faris-type for the generalized Fourier

transform Fα. This result quantifies the impossibility of a function f and its transform Fα(f)
being simultaneously concentrated on sets of finite measure. We derive an inequality bounding the

concentration of Fα(f) on a set F by the spatial dispersion of f . We then compute the optimal

constant numerically, quantifying the precise trade-off between spatial and spectral localization.

4.1 Faris-type local uncertainty principle

Faris local uncertainty theorem for the generalized Fourier Fα states

Theorem 4.1. If 1 < p ≤ 2, q = p
p−1 and 0 < a < 2

q then for all f ∈ Lpα(K) and all measurable

subset F ⊂ K̂ satisfying 0 < γα(F ) < +∞,

(∫
F

|Fαf(λ, µ)|q dγα(λ, µ)
) 1

q

≤ Kα,a,q (γα(F ))

(∫
K
|(y, θ)|p |f(y, θ)|p dmα(y, θ)

) 1
p

, (4.1)

where Kα,a,q is a constant which depend on the measure of the subset F , γα(F ).

Proof. Let F be a measurable subset of K̂. Let us denote B the Euclidean ball of radius r > 0.

B =
{
(y, θ) ∈ K, |(y, θ)| =

√
y2 + θ2 < r

}
.
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We get

∥Fα(f) χF
∥q,γα ≤ ∥Fα(fχB

) χ
F
∥q,γα + ∥Fα(fχBc ) χF

∥q,γα .

On the other hand

∥Fα(fχB
) χ

F
∥qq,γα =

∫
K̂
|Fα(fχB

)(λ, µ) χ
F
(λ, µ)|q dγα(λ, µ)

≤ ∥Fα(fχB
)∥q∞,γα

∫
K̂
χ

F
(λ, µ) dγα(λ, µ).

Then

∥Fα(fχB
) χ

F
∥q,γα ≤ (γα(F ))

1
q ∥Fα(fχB

)∥∞,γα . (4.2)

Moreover

∥Fα(fχBc ) χF
∥q,γα ≤ ∥Fα(fχBc )∥q,γα . (4.3)

According to relations (4.2) and (4.3), we obtain

∥Fα(f) χF
∥q,γα ≤ (γα(F ))

1
q ∥Fα(fχB

)∥∞,γα + ∥Fα(fχBc )∥q,γα .

Therefore (2.9) and (2.12) yield to

∥FαfχF
∥q,γα ≤ (γα(F ))

1
q ∥fχ

B
∥1,mα

+ ∥fχ
Bc∥p,mα

. (4.4)

Using Hölder inequality, we get

∥fχ
B
∥1,mα

≤
(∫

K
|f(y, θ)|p |(y, θ)|ap dmα(y, θ)

) 1
p
(∫

K
|(y, θ)|−aq χ

B
(y, θ)dmα(y, θ)

) 1
q

.

Applying polar coordinates we get∫
K

χ
B
(y, θ)

∥(y, θ)∥aq
dy dθ =

π

2− qa
r2−qa.

Since ∫
K
|(y, θ)|−aq χ

B
(y, θ)dmα(y, θ) ≤ 22(α+1)e2(α+1)r

∫
K

χ
B
(y, θ)

|(y, θ)|aq
dy dθ

then we deduce that

∥fχ
B
∥1,mα

≤ Cα,a,qe
2
q (α+1)r r

2
q−a ∥ |(y, θ)|a f∥p,mα

, (4.5)

where

Cα,a,q =

(
π 22(α+1)

2− qa

) 1
q

. (4.6)
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According to relations (4.5) and (4.4) and the fact that

∥fχ
Bc∥pp,mα

≤ ∥ |(y, θ)|a f∥pp,mα
∥ |(y, θ)|−ap χc

B
∥∞,mα ≤ r−ap∥ |(y, θ)|a f∥pp,mα

we conclude that

∥FαfχF
∥q,γα ≤ g(r)∥ |(y, θ)|a f∥p,mα , (4.7)

where g is a function from ]0,+∞[ into R, given by

g(r) = Aebrrc + r−a, (4.8)

where

A = Cα,a,q
(
γα(F )

) 1
q > 0, b =

2

q
(α+ 1) > 0, c =

2

q
− a > 0. (4.9)

The function g is continuous and coercive on ]0,+∞[ since

lim
r→0+

g(r) = +∞ and lim
r→+∞

g(r) = +∞.

Thus, g attains a minimum. Differentiating, we get

g′(r) = Aebrrc−1(br + c)− ar−a−1. (4.10)

Setting g′(r) = 0 is equivalent to solving

h(r) := Aebrrc+a(br + c)− a.

Since c+ a = 2
q > 0, the function h is continuous and strictly increasing on ]0,+∞[, with

lim
r→0+

h(r) = −a < 0, lim
r→+∞

h(r) = +∞.

Therefore, there exists a unique r∗ > 0 such that h(r∗) = a, so g′(r∗) = 0. Since g is coercive, this

critical point is the unique global minimum of g. Let us denote this unique minimum of g by

Kα,a,q

(
γα(F )

)
:= min

r>0
g(r). (4.11)

Finally, relation (4.7) yields (4.1), completing the proof.
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4.2 Numerical study of the optimal constant

This section presents a comprehensive numerical investigation of the function g(r) defined in Equa-

tion (4.7), which determines the optimal constant Kα,a,q(γα(F )) in Theorem 4.1. We recall that

g(r) = Aebrrc + r−a,

where the parameters are defined in relation (4.9).

To find the global minimizer r∗ > 0 of g(r), we implement the Newton-Raphson method to solve

the equation g′(r) = 0. The first and second derivatives of g(r) are:

g′(r) = Aebrrc−1(br + c)− ar−a−1,

g′′(r) = Aebrrc−2
[
(br + c)2 + (c− 1)(br + c)− c

]
+ a(a+ 1)r−a−2.

The Newton-Raphson iteration scheme is given by:

rn+1 = rn − g′(rn)

g′′(rn)
.

We initialize the algorithm with r0 = 0.1 and use a convergence criterion of

|rn+1 − rn| < 10−6.

• Numerical computation. We choose specific parameter values:

p = 1.5 → so q = 3,

α = 0.5,

a = 0.5 → satisfies a < 2
q ,

γα(F ) = 1 → for simplicity.

Now compute the constants:
A = Cα,a,q ·

(
γα(F )

)1/3
=
(
π·22(0.5+1)

2−3·0.5

)1/3
=
(
π·23
0.5

)1/3
≈ (50.265)1/3 ≈ 3.691,

b = 2
3 (0.5 + 1) = 1,

c = 2
3 − 0.5 ≈ 0.1667.

Thus, the function simplifies to

g(r) ≈ 3.691 · er · r0.1667 + r−0.5.
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The Newton-Raphson method converges rapidly to the solution, as demonstrated in Table 1.

Table 1: Newton-Raphson iterations.

Iteration (n) rn g′(rn)

0 0.100000 -12.456
1 0.157832 -2.891
2 0.180214 -0.327
3 0.183105 -0.006
4 0.183127 -0.000012
5 0.183127 ≈ 0

The algorithm converges in 5 iterations to r∗ ≈ 0.1831, yielding the minimum value g(r∗) ≈
5.677. The following Figure 1 illustrates the behavior of g(r), confirming the existence of a

unique minimum where the term r−a dominates as r → 0+ and the term Aebrrc dominates

as r → +∞.

Figure 1: Behavior of g(r) for p = 1.5, α = 0.5, a = 0.5.

4.3 Asymptotic behavior of Kα,a,q(γα(F ))

In the previous numerical study, the measure of the frequency set was fixed at γα(F ) = 1 to

compute a specific value for the optimal constant. We now analyze the behavior of Kα,a,q(γα(F ))

over the full range of its domain, particularly in the asymptotic regimes where γα(F ) → 0+ or

γα(F ) → +∞. This analysis reveals the intrinsic scaling properties of the uncertainty principle and

provides practical insight into the trade-off between spatial and frequency localization governed by

the parameters α, a, p.
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• Behavior as γα(F ) → 0+

When γα(F ) → 0+, by relation (4.9) we have A → 0+. From (4.8), the dominant term in

g(r) becomes r−a, so we expect the minimizing r∗ to grow. We have

g′(r) = 0 ⇐⇒ Aebrrc−1(br + c)− ar−a−1 = 0 ⇐⇒ Aebrrc−1(br + c) = ar−a−1.

Applying logarithms, we get

lnA+ br + (c+ a) ln r + ln(br + c) = ln a.

For small A, the term br dominates, so we approximate:

br∗ ≈ ln
( a
A

)
=⇒ r∗ ≈ 1

b
ln
( a
A

)
.

By substituting into g(r∗), we obtain

g(r∗) ≈ Aebr
∗
(r∗)c + (r∗)−a ≈ a(r∗)−a ≈ a

(
b

ln(a/A)

)a
.

Since A is proportional to
(
γα(F )

) 1
q , we derive

Kα,a,q(γα(F )) ∼ a

 b

ln
(

a
Cα,a,qγα(F )1/q

)
a

as γα(F ) → 0+,

where Cα,a,q is given by (4.6).

• Behavior as γα(F ) → +∞

Since γα(F ) → +∞, then A→ +∞. On the other hand, the dominant term in g(r) is Aebrrc,

so we expect the minimizing r∗ to shrink. The equation g′(r) = 0 gives us

Aebrrc−1(br + c) = ar−a−1.

For large A, the left hand side dominates, so we balance terms by taking r∗ → 0+. Assume

r∗ is small and expand ebr ≈ 1 + br. Then

A(1 + br∗)(r∗)c−1(br∗ + c) ≈ a(r∗)−a−1.

Yields to

Ac(r∗)c−1 ≈ a(r∗)−a−1 =⇒ (r∗)c+a ≈ a

Ac
.
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Thus:

r∗ ≈
( a

Ac

) 1
c+a

=

(
a

Cα,a,qcγα(F )1/q

) 1
c+a

.

Substituting into g(r∗):

g(r∗) ≈ Aebr
∗
(r∗)c + (r∗)−a ≈ A(r∗)c + (r∗)−a.

Since r∗ → 0+, the second term dominates:

Kα,a,q(γα(F )) ≈ (r∗)−a ≈
(
Cα,a,qcγα(F )

1/q

a

) a
c+a

.

This contrasting behavior is illustrated in Figure 2, which shows the function g(r) for extreme

values of γα(F ). The left panel shows the slow logarithmic decay for γα(F ) → 0+, while the

right panel demonstrates the power-law growth for γα(F ) → +∞. The vertical dashed lines

indicate the minimizing radius r∗ in each case.

(a) Behavior of g(r) for small γα(F ). (b) Behavior of g(r) for large γα(F ).

Figure 2

• Numerical computation The following table presents numerical values of the minimizing

radius r0 and the optimal constant Kα,a,q(γα(F )) for different values of γα(F ), using the

parameters:

p = 1.5, α = 0.5, a = 0.5.
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Table 2: Numerical values of the optimal radius r∗ and constant Kα,a,q.

γα(F ) A r∗ Kα,a,q

10−6 0.037 13.12 0.276
10−5 0.079 11.72 0.295
10−4 0.171 10.32 0.316
10−3 0.369 8.92 0.341
10−2 0.795 7.52 0.372
10−1 1.713 6.12 0.404

1 3.691 0.183 5.677
10 7.937 0.089 12.309
102 17.088 0.042 24.891
103 36.913 0.020 48.712
104 79.370 0.009 94.868
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