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Weak solutions of a discrete Robin problem
involving the anisotropic p-mean curvature operator
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1 Introduction

In this article, we study the following nonlinear discrete Robin problem.

—A (L4 ¢p—1) (Du(k — 1)) |Au(k — 1)[PE=D=2Au(k — 1)) = Af(k,u(k)), ke Z[1,T],
Au(0) =u(T +1) =0,

where T' > 2 is a positive integer.

For fixed integers a, b such that a < b, we denote by Z [a, b] the discrete interval {a,a+1,...,b—1,b}.

The parameter A is positive. The forward difference operator is given by Au(k—1) = u(k)—u(k—1).
|s[P()

1+ |s]2®)

p and f will be defined precisely in the subsequent sections.

The function ¢y : R — R is defined by ¢, (s) = , for every s € R. The functions

In problem (1.1), we consider two boundary conditions: a Neumann boundary condition (Au(0) =
0) and a Dirichlet boundary condition (u(7' + 1) = 0). In the literature, these are referred to as

mixed boundary conditions (see [25]).

Difference equations arise in many research fields as the discrete counterpart of partial differential

equations and are often studied via numerical analysis. In this context, the operator in problem

(L.1),
w(k — 1)|p(k—=1)
A ((1 * V1 |f|A(]Z(kl_)1)|2p(k—1)> [ Dk = DPED* Auk - U)

represents the discrete counterpart of the following p-anisotropic operator

OFO N -2 )
<<1+ 1+|u/(t)m))I ) (t)).

In recent years, equations involving the anisotropic p-mean curvature operator, under various
boundary conditions, have become a significant and captivating research topic. Problem (1.1) has
been specifically analyzed in [4], where Dirichlet-type boundary conditions were applied through
the use of variational methods and critical point theory. In this framework, problem (1.1) also

serves as a discrete analogue of the following problem.

_ M u’ p(t)— u l_ ”
<<1+ 1+|u’(t)|2p(t)>| (P (t)> = Af(tult), te(01),

' (0) = u(1) = 0.

(1.2)

Problem (1.2) and its multi-dimensional variants arise in various applications, including elasticity
mechanics [38,41], electrorheological fluids [14,20,37,38|, and image restoration [11]. In [11], Chen

et al. studied a functional with a variable exponent 1 < p(t) < 2, which serves as a model for
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image denoising, enhancement and restoration.

The existence of a solution to a nonlinear difference equation can be proved using fixed point
theory and the method of upper and lower solution techniques, as seen in [12,21] and the references
therein. It is well known that critical point theory is a crucial tool for addressing problems involving

differential equations.

Variational methods for difference equations were introduced by Guo and Yu [18]. The variational
methods have been employed to study various equations, yielding different results. We refer to
recent results involving anisotropic discrete boundary value problems [15-17,23,25,26,29,39] and
references therein. Discrete problems involving anisotropic exponents were firstly discussed in

[24,32].

In [32], by using the mountain pass theorem and Ekeland variational principle, the authors proved

the existence of a continuous spectrum of eigenvalues for the following problem

—A ((bp(k—l) (Au(k - 1))) = /\‘u(k)|q(k)_2ﬂ keZ [17T] ) (1 3)
w(0) = u(T +1) = 0,

where ¢,)(s) = |s[P)72s, p: Z[0,T] — [2,00), ¢ : Z[1,T] — [2,00) and X is a positive constant.

In [24], Koné and Ouaro showed, by using the minimization method, the existence and uniqueness

of weak solutions to the following problem

—A(alk —1,0u(k = 1)) = f(k), keZ[1,T], (1.4)
u(0) =u(T +1)=0. .

We note that problem (1.4) is a generalization of (1.3). Indeed, in the particular case where
a(k,&) = |€P®=2¢ for all k € Z[0,T] and ¢ € R, the operator in (1.4) reduces to the p(k)-

Laplacian, i.e.,
Dpre—ryu(k — 1) := ¢pp_1y (Du(k — 1)) = [Au(k — D[PED 2 A4k - 1).
In [22], the authors studied the following Robin problem

ANu(k—1) = f(k,u(k), keZ[1,T], (1.5)
u(0) = Au(T) = 0.

Using the strongly monotone operator principle and critical point theory, the authors proved the

existence of nontrivial solutions for (1.5).
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In [10], Chen et al. considered the following Robin problem

A
v (“’“2> F \u(up)? =0, keZ[1,T),

1= (Auyg) (1.6)

A’U,O =Ur+4+1 = 0.

By combining the method of upper and lower solutions with Brouwer degree theory and Szulkin’s
critical point theory for convex, lower semicontinuous perturbations of C! functions, the authors
determined the ranges of the parameter A for which problem (1.6) admits zero, one, or two positive
solutions. In [28], by using critical point theory, the authors considered the existence of infinitely

many positive solutions of the following discrete Robin problem with ¢-Laplacian

—A(pp(Dug—1)) + qrpp(ur) = Af(k,u), keZ[1,T], @

Aug = ur41 =0,

pls|P s
2¢/1+ |slP

In [19], by using variational methods, Hadjian and Bagheri established the existence of at least

where ¢, is a special ¢-Laplacian operator (see [31]) defined by ¢,(s) = with p > 2.

one nontrivial solution for the following problem

_A(d)C(Auk*l)) = )‘f(kauk)v kelZ [17T] )

ug = ur41 =0,

S
V1+s2

For the study of the following Robin problem involving a second-order nonlinear difference equation

where ¢, is a special ¢-Laplacian operator (see [31]) defined by ¢.(s) =

v (A“’“> + M f(kup) =0, keZ[1,T),

1— (Auy)? (1.9)

A’U,() = Qu] = 0, Ur4+1 = 0,

we refer to [36]. In the particular case where f(k,t) = uxt? and o = 1, we obtain the problem
studied by Chen et al. [10]. The authors used different methods to obtain the existence and
multiplicity of solutions for a discrete boundary value problem in [1,2,5,7,9,34,40].

In this article, we use the Ambrosetti-Rabinowitz mountain pass theorem (see [3]), Ekeland’s
variational principle and a Lipschitz continuity condition on the nonlinear term. Using these tools,
we establish the existence and uniqueness of a nontrivial solution to a discrete Robin problem

involving equations with the anisotropic p-mean curvature operator.

The remainder of this article is organized as follows. In Section 2, we present some auxiliary
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results related to problem (1.1) and recall the abstract critical point theorem. Section 3 develops
the variational framework associated with problem (1.1) and introduces our main results. Finally,

we identify conditions under which problem (1.1) admits a unique nontrivial solution.

2 Preliminaries

Throughout this article, we denote

*= max p(k), p~ = min pk), r*= max r(k) and r~ = min_ r(k).

keZ[o,T]p b k€Z[0,T) k€Ze(1,T) k€Z[1,T)
We consider the T-dimensional Banach space
H={u:7Z[0,T+1] — R suchthat Au(0)=u(T+1)=0},

equipped with the norm

T 1/p~
Jlull = (Z Au(kﬂp‘) . (2.1)
k=1

However, we will use the following norm in H at times

lulloo = max |u(k)|, forall weH.
k€Z[0,7+1]

The space H will also be equipped with the following Luxemburg norm

p(’f)
<1,.

Since on H, all norms are equivalent, then there exist two constants 0 < K7 < K5 such that

1 u(
|l p.y = inf {u >0 Z o) ’
k=

I

Killullpey < llull < Kallullp.)- (2:2)

Next, let p,y: H — R be given by

T
1 (k)
Py (W) = p(k k)
k=1

Remark 2.1. Ifu € H, then the following properties hold.

lullpey > 1= llullyy < ppey(u) < HUII,?( Y (2.3)

) < ooy (W) < lullp - (2.4)

p()
¢
lullogy < 1= lullz,



CUBO

6 B. Moussa, I. Nyanquini & S. Ouaro

28, 1 (2026)

To establish our main result, we introduce the following quotient
G
> i (18uwp® 1HmMWMuQ

p(k)
T
1 p(k)
Z o7y A

Ay = inf A=
uwe H\{0}

We say that A is an eigenvalue of problem (1.1) whenever the problem admits a nontrivial solution.

It should be emphasized that A; represents the first eigenvalue of problem (1.1) in the particular

case where

Flk,u(k)) = |u(k)P® (k).

In addition, A; serves as a critical threshold parameter governing the existence of nontrivial solu-

tions to problem (1.1), thus guaranteeing the consistency of the analysis.

Let us also define the function
13
F(k,&) = / f(k,s)ds, forall (k,§)e€Z[1,T]xR.
0

We also make the following assumptions for the study of problem (1.1).

(Hy) For each k € Z[1,T], the mapping f(k,-) : R — R is continuous.

(Hz) There exist a constant C; > 0 and a function

r(-):Z[1,T] — [2,00)
such that:

(1) |f(k, &) < C1(1+ |¢"®~Y), vk € Z[1,T), V€ € R.

(it) liminf ——2~ Fik, f)

>0, for all k € Z[1,T).
eloo [¢]r

In particular, assumption (Hz)(¢) implies that there exists a constant Cy > 0 such that

|F(k,&)] < Co(L+ |€"®), VEkeZ[1,T], VEeR.

(H3) liminf F(kr’F) >0, for all k € Z[1,T].

HESIS

(Hy) For every A € (0,A1),

limsup ——~—=— Af(, )

<Ay, forall keZ[1,T].
1o [E[PRI=2¢ L]
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Example 2.2. The function

Fat) = [P =2 if 1t < 1
@72 if ] > 1,

with r~ > pT, satisfies assumptions (Hy), (Hz), (H3) and (Hy).

This example provides a concrete instance of the broader class of functions considered in problem

(1.1).
In the sequel, we will use the following auxiliary results.

Lemma 2.3 ([16,35]). (a) For allu € H with ||Ju] > 1,
T
1 p(k) 1
> PT_T).
3 o 1Aur® 2 + (™~ 1)
(b) For alluw € H with |Jul| <1,

T 1 N
p(k) P
kE_ — \Au I > AT [[wll

(¢) For allu € H and for any m > 2,

M=

fu(R)™ < (70707 ) ),

e
Il

1

(d) For allu € H and all p™ > 2,

+
Z|Au ‘p <9r" (T(p’fl)/p’)p T”qu*.

(e) For allu € H and all p* > 2,
T +
1 T - -
§ ’ |Au(k‘)‘p(k) < [2P+ (T(P -1)/p )p HquJr + 1} )

The energy functional associated with problem (1.1) is defined by Jy : H — R as follows

ZT:{ (Au (k)P + 1+Au(k)|2p<k>1> AF(k,u(k))} (2.6)

k=1
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Definition 2.4. We say that u € H is a weak solution of the problem (1.1) if
T
> (1 dpiay (Bulk) | Dulk) =2 Aulk) Av(k) = Af (k, ulk))o (k)| =0, (2.7)
k=1

for any v € H and

T
> (1 + Gy (Buk)) [Aulk)"® = Af(k,ulk)u(k)| = 0. (2.8)

k=1

We define the functionals ®, ¥ : H — R by

T
=> Wlk) (|Au(k:)|p(k) + /1 + |Au(k)|2p) — 1>
k=1

and

:iF(k‘ukz

k=1

The functional is now written as: Jy(u) = ®(u) — AU (u).

Proposition 2.5. The functional Jy is well-defined on H and is of class C*(H,R) with the deriva-

tive given by

)= D7 [(1+ by (Bul) | 8u() P92 A(k) Ao(l) = A, ulk)o(B)] - (29)

k=1

for all u,v € H.

The proof of Proposition 2.5 is a consequence of the proof of the following lemma.

Lemma 2.6. The functionals ® and ¥ are well-defined on H, and both belong to the class
CY(H,R). Moreover, their derivatives are given by

f(ksu(k))o(k),

[M]=

T
<<I>/(u), U> = Z (1 + qj)p(k)(Au(k))) ‘Au(kﬂp(k)_QAu(k)Av(k), <\I],(u)>v> =
k=1

x>
Il

1
for all u,v € H.

Furthermore, the critical points of the functional Jy in H coincide with the weak solutions of
problem (1.1).

Since the proof of Lemma 2.6 is very similar to that of Lemma 3.4 in [17] and Lemma 2.3 in [23],
it is omitted.

Owing to the finite-dimensional setting, every weak solution of problem (1.1) is a strong (i.e.,
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classical) solution. Consequently, solving problem (1.1) amounts to finding the critical points of

the functional J.

We now introduce the following results, which will be useful in the subsequent analysis.
Proposition 2.7 ([33]). Assume that the condition (Hs) holds. Then, Ay > 0.

Definition 2.8. Let E be a real Banach space and let J : E — R be a functional. We say that
J satisfies the Palais-Smale condition (abbreviated as (PS) condition) if every sequence {u,} C F

such that {J(uy,)} is bounded and J'(u,) — 0 as n — oo, admits a convergent subsequence in E.

Moreover, a sequence {u,} C E is said to satisfy the Palais-Smale condition at level ¢ € R, denoted
by (PS)e, if

J(up) —c and J'(up,)—0 as n— oco.

Lemma 2.9 ([39]). Let E be a finite-dimensional Banach space and let J € C*(E,R) be an

anti-coercive functional. Then, J satisfies the (PS) condition.

Lemma 2.10 ([30, Mountain pass lemmal). Let E be a real Banach space. Assume that J €
CY(E,R) satisfies the (PS) condition. Suppose also that:

(#7) there exist p > 0 and o > 0 such that J(u) > « for all uw € E with |Ju|| = p;

(#i1) there exists uy in E with ||uy| > p such that J(uy) < 0.
Then, J has a critical value ¢ > « which can be characterized by

= inf h
°T A )

where T' = {h € C ([0,1], E) : h(0) =0, h(1) = u1}.

Theorem 2.11 ([30]). Let E be a real Banach space and J : E — R. If J is weakly lower
semicontinuous and coercive, i.e. lim J(z) = oo, then there exists xo € E such that ing J(x) =
fAS

llzll—o0
J(.CC())
Moreover if J € CY(E,R), then zq is a critical point of J, i.e. J'(zo) = 0.

Theorem 2.12 ([13, Ekeland’s variational principle]). Let X be a complete metric space and
® : X — R a lower semicontinuous function bounded from below. Then, for everye >0 andu € X
be given such that

O(u) < inf ®(u)+e,

ueX

there exists u. € X such that
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(1) ®(ue) < @(u),
(i1) d(ue, ) < e,
(151) P(ue) < P(u) + ed(u,ue) for each u # Ue.

Corollary 2.13 ([13]). Let X be a complete metric space and ® : X — R be a lower semicontinuous
function bounded below. Assume that ® € C1(X,R). Then, for every e > 0, there exists u. € X
such that

(i) ®(uc) < inf (u) +e,

(i0) (19" (ue)ll <e.

3 Existence and uniqueness of weak nontrivial solutions

This section focuses on the existence and uniqueness of nontrivial weak solutions to problem (1.1).
We have the following result.

Theorem 3.1. Assume that the hypotheses (Hy)-(Hs) hold. If (r— > pT) or (r* < p~) or
(r— < p7), then there exist \*,p, A* > 0 such that for any X > \* and Ay — p € (A, A*), the

problem (1.1) has at least one weak nontrivial solution.

Proof. We can distinguish the following three cases:

Case 1: v~ > p*

In this instance, we will demonstrate that Jy possesses a “mountain pass geometry.”

Lemma 3.2. Assume that the hypotheses of Theorem 3.1 are satisfied, then.

(i) There exist a,p > 0 and p, A* > 0 such that for any X > 0 and Ay — p € (A, A*), one has

Ia(w)>a>0 forall we H with |ul=e.

(i) There exists e € H with |e|]| > o such that
Jr(e) < 0.

Proof. (i) Using hypothesis (Hy), for any A € (0, A1), we can find p, § > 0 such that A < A; —p

and

Af(k,€) < (Ay —p) [€[PW=2¢, forall (k&) € Z[L,T] xR and [¢] < B.
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In particular, if f is as in Example 2.2, then g = 1.

We deduce for £ € (0, 8], that

13 3
FUR) < (01— p) [ 5P 2sds = (0 =) [ 00 2sds =~ (0 = ) P
0 0 p(k)
and for £ € [—f3,0), we infer that
0 0 1
AF() < (A1 =) [ s 2sds = (01— p) [ (=0 2sds = = (A1 = ) e ®
¢ ¢ p(k)
Then, it follows that
AF(k, &) < % (Ay —p) [P forall keZ[1,T] and [¢] <p. (3.1)
p

Let w € H be such that |u(k)| < $ for all k € Z[1,T]. Then, by relation (2.1), we have
Jul| < 28T"/7".
Now, let u € H be fixed such that ||u|| < 1. Define
K = min {2BT1/1’7, 1} .

Then, for any v € H satisfying ||u|| < &, it follows from relations (2.5), (3.1), and assertions

(b) and (¢) of Lemma 2.3 that

T T
p 1 p
JA(U) > ‘P(U) - (Al - P) I; ]T|U(k)| (k) (Al - P) 2:: m\u(/{” (k)
lu(k)|>1 Jlu(k)|>1
> 00)— (A1 - )Y ol ® - (84— )Y Lo
W 1 mhﬂﬂgu(” 1 mhﬂﬁau(
Ay — (A — AL —p) — .
> 2=t =g - 20§ )

P o) g ot D= P) (1) -
> _ 7 St S
ot Jul?” = B2 (200m7) "
= (Cw’#_f — (A1 — P)Cz) o,

where ¢y and ¢y are positive constants.

.
. co? 7" . -
Hence, choosing A* = L, then, for any A1 — p € (A, A*), there exist some positive

202
i
c10f

numbers 0 < p < k and a = > 0 such that Jy(u) > a > 0 for all uw € H with |Jul| = e.
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(#9) Fix A > 0. By (Hs), for any € > 0, there exists > 0 such that
F(k,&) >¢el¢]”, forall ke€Z[1,T] andall £€R, with [¢>n.
Since £ = F(k, &) —£|¢|” is continuous on [—n, n], there is a constant C,, > 0 such that
F(k, &) —el¢]” > —C,, forall keZ[1,T] andall &€ [—n,n.
Hence, we get
F(k,&) >¢el¢]” —C,, forall (k&) € Z[1,T] x R. (3.2)

So, from (3.2) and Lemma 2.3 (€), we obtain

T
tﬂm)zggpé)<AM@WW+w/L+Au%Wﬂm—1>—Ag;F@m%D
; T T B -
< =3 18uR® =AY (culk) - )
k=1 k=1
o7 [ o o \P' + L -
gp_2p<Tp> ullP” +1 —Mg;m%ﬂ +ATC,,. (3.3)
As
— — T — —
el <27 =17 (Julk + DI + fu()) <
k=1

which means that

p_—r_

u(B)"™ =27 T o " (3-4)

[M]=

k=1

Then, it follows from (3.3) and (3.4) that

.
T p=-1\P — pT-r” - 2T
A@<VTM%TP> Mw—mrwrf\wr+F+Mm. (3.5)

Since r~ > pT, Jx(u) — —o0 as |lul]| = oco. Thus, Jy is anti-coercive. Consequently, there

exists e € H with |le|| > o such that Jy(e) < 0. O
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Lemma 3.3. Assume that the hypotheses of Theorem 3.1 hold. Then, for any A > 0, the functional

J satisfies Palais-Smale condition.

Proof. By Lemma 3.2 (i), the functional Jy is anti-coercive. Therefore, by Lemma 2.3, the
functional J satisfies the Palais-Smale condition for any A > 0. Thus, our problem (1.1) has at

least one nontrivial solution. O

Case 2: r™ <p~

In the second case, we apply a direct variational approach. We verify that the functional Jy has a
critical point. Let A > 0 be fixed, since H is a finite-dimensional space and Jy, is of class C*(H,R),

it is sufficient to prove that Jy is coercive.

Let ||u]| > 1. Then, by (2.5), (2.6), (a) and (¢) of Lemma 2.3, one has

T T
1
Iaw) > @) = (A —p) D —=[u®)PP = (A —p) Y —=|uk)P®
2 ) 2 i)
|lu(k)|>1 Ju(k)|>1
G A
> d(u) — (A — ——|u(k)|"®) — (A — ——|u(k)|PR)
> ®(u) — (A p)g:lp(k)l (%) (A p)g:lp(k)| (k)
Ay — (A1 — p) (A1 — p) — +
> R S N T
> SR - S S )
Pt — A=) (om0 e —
> 5l (T ) Tl = K(T),
where K (7)) is a positive constant. Therefore, choosing A* = P —, since r™ <p~,

Aq (T(p‘—l)/p‘)T T
one deduces that .J, is coercive.

Now, let u, € H be a global minimum of Jy, which is a critical point of Jy and, in turn, a weak

solution of the problem (1.1).

We now show that wu, is nontrivial for A large enough.

Let d € (0,1) be a fixed real and ko € Z [1,T], we define a function w € H by
d it k=ko,

w(k) =
0 if keZ[1,T)— {ko.
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Then, we deduce by (Hz)(ii) that

1 /
J)\(’LU) = m <|d|p(k0) + 1+ ‘d|2p(k0) - 1) - )\F(k(],'ll}(ko))

2 . 2 .
< |dP*o) — AF(ko,d) < —dP” — ACd"" .
p(ko) P
Thus, if we choose \* as
M= g

=0
then for any A > A* and r™ < p~, Jy(w) < 0. Since u, is a global minimum of Jy, it follows that

Jx(uy) < 0 for any A > A*; therefore u, is a weak nontrivial solution of problem (1.1).

Case 3: r~ <p~

In this case, we apply the Ekeland’s variational principle.

Lemma 3.4. Assume that (Hz)(ii) holds and r— < p~. Then, there is v € H such that Jx(v) < 0.

1
O\ o
Proof. Take d € (0, k), where & is as in the proof of Lemma 3.2 (i), such that d < <]920) .
Let ko € Z[1,T] with r(kg) = r~. Consider any fixed T € H such that T(ky) = d and T(k) = 0 for
any k € Z[1,T]\ {ko}. Using the condition (Hs)(ii), we have

2 2 _ -
I\ (T) < dptko) — \Cdrtko) < Zgp” — \Cd" .
p(ko) p
Then,
J)\(ﬁ) <0,
“AC\ T
for all d < (1)2> . The proof is thus complete. O

Relation (7) of Lemma 3.2 implies that

inf
uGH(%B,;, J)\(U) - 07
where B, = {u € H such that ||u|]| < k}. On the other hand, observe that Lemma 3.3 implies that

1
O\
there exists 7 € H such that Jy(7) < 0, for every d < <]920) . Recall that 7 € int B,.

Thus,
inf J,\(u) < 0.

u€int B,
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So, it follows

weittp, M < 2 )

Let € > 0 be fixed, such that

0<e< infB Ja(uw) — inf  Jy(u).

u€dB, u€int B,

Applying Ekeland’s variational principle to the functional Jy : B, — R, there exists u. € B,; such
that
In(ue) < inf Jy(uw) +e¢ and  Jy(ue) < Ja(u) +e€llu —ue| for all u # u..

u€EDB,
Moreover,

Ia(ue) < inf Ja(u)+e< inf  Jy(u) +e< eHalfB Ix(u),

u€EBy u€int B,

then, we infer that u. € int B,,. Next, we introduce the function ) : B, — R defined by
Ya(u) = Ia(u) +€l|lu —u|| for all u # u,.

So, it follows that . is a minimum point of ¥, and thus

w)\(ue + 0’0) — 1/))\(UE)

>0 3.6
7 >0, (3.6)

for all v € B, and all 6 > 0 small enough. Therefore, using relation (3.6), we deduce that

Ia(ue + 0v) — Iy (ue
e 200 = Ialte) o > 0.
0
Letting # — 0%, we obtain

J\(ue,v) +€llv|| >0 forall ueH, (3.7)

where J4 (ue, v) is the directional derivative of the function Jy at w. in the direction of v. Since

Ta(ue, v) = (J3(ue),v) = Jx(ue)v,

we obtain from (3.7),
[ 73 (ue)ll < e.

Thus, we deduce that there exists a sequence {u,} C int B,; such that

Ir(up) = c= inf Jy(u) and Ji(u,) =0 as n— co.

u€EB,
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As the sequence {u,} is bounded in H, then there exists ug € H such that, up to a subsequence,

{un} converges to ug in H. Hence, the problem (1.1) has a nontrivial solution. O

Lemma 3.5. Let A > 0. Suppose that conditions (H1)-(Hs) are satisfied. If w € H is a solution

of problem (1.1), then there exist two positive constants k1 and ko such that k1 < |lu]| < k2.

Proof. The proof of this lemma is organized into two steps, as outlined below.

Step 1. Assume that u € H is a solution of (1.1) with [Jul[,.) < 1. Set ¢ = P

p_—1 p* '
AT ) TK?"

Since f satisfies (Hy), for any A € (0, A1), there exist p, 8 > 0 such that A < A; — p < ( and

M (k&) < (A —p) [€P®=2¢ forall keZ[1,T] and £e€R with |¢]<g.
On the other hand, by (H2)(4), there exists a positive constant L such that
ANf(k, O < L™= forall (k&) € Z[L,T] xR and [¢] > B,
where L = A\ (W + 1). Consequently, we get that
AMf(k,6)] < (A —p) [€PP1 + LIg ™1 forall keZ[1,T] and ¢eR.

Using the above inequality, (2.2), (2.4), (2.8) and Lemma 2.3 (c), we obtain

N EN] 1 <&
lullyey < poy @) = 37 s 18ulk) O < o= 37 [ Au(k)
k:lp k=1
T
1
sp—,Z(uasp(m(Au(k))) | Au(k) [P = kau (k)
k=1
A ) o) 4 AL »
< — (M- )Z|( )l Z|U )|
p k=1
/\ T
< X - S+ 23t
p k=1
+ +
A p==1\P AL ’
< 2 - (17 ) Tl +(T - ) Tl

+

+
A p==1\? AL pm=1\ " ot ot
< - (157) TR g, + 25 (7)) TSl
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Therefore,
+ T
A p==1\P o
1= 2 (157) TRt
p
||u||p(- I o
— <T p > TK)
P
Set .
AP rt—pt
1—— (M )(T@‘) TK?Y
Kl = L s
p~—1
— (T » > TK;
p
and note that
0<ky<l1
Indeed, since
A< A — P

p”—1 pt +,
A(T - ) TK?

it follows that .

A p=-1\? +
0<1l——(AL—p)(T » TKY < 1.
p

+

p_—1 r
Clearly, AL <T » > TKgJr > p~. Hence, 0 < k] < 1.

Step 2. Suppose that u € H is a solution of (1.1) such that ||ul|,.) > 1. Then, there exists a

constant k3 > 1 such that [jul|,.) < 3.

According to (2.6) and (2.8), one has

T T
r (J,\(u) +AY F(k, u(k))) =~ A f(k,u(k))u(k)
k=1

k=1
T T
=r" Z]ﬁ <|Au(k)|P(’f> + /1 + | Au(k)|2pk) — 1) > (14 by (Au(k))) [Auk)[P™)
k=1 k=1
_ T T _ T
> LS I8uP® - Y 1auip® = (2 -1) 3 sup®.
p k=1 k=1 p k=1

Recall the Ambrosetti-Rabinowitz condition:

for all (k,&) € Z[1,T]) xR and for some 7~ >pt. (3.8)

€ = Flhe)

Integrating, we obtain that (3.2) holds (see [6, Remark 5.2] or [8, Remark 3.7]).
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Combining the above inequalities with (2.2), (3.5), (3.8) and Lemma 2.3, it follows that

- (uw A P, u<k>>) Ak ulk)u(k)
k=1 k=1

T T
1

<o Ia(w) Ay fhu(k))u(k) = Ay f (b u(k))u(k)

k=1 k=1
=r"Jy(u) =r" }1lr€1§ Sren[zgﬁ] Ix(h(s)) <r~ Slél[%}i] Iy (se) <r~ max I ( Tl )

o pr _ p_—r— r
<7~ max 1_2”++1 (T » ) + el — =277 T e s HGHT +£+)\TC
=P ez lelpey P~

+

T pT —1 p - p_—r— — - 2T

<r- max (_2” (T p- ) serKg+ A2 T v " K +—+ )\TC'n> ,
82 p p

where e € H is given by Lemma 3.2 (7). Hence from (2.3), we infer that

(;:r — 1) ||U||§E) < (; - 1) Py (u) = (;1 - 1) ép(l) | Au(k)P®

p_—1

n
- T ——1\* e Y
< " max <2p++1 (T P > SP+K§+ Y Sl A K7 ++)\TC77>.
p

Let

+

T ot ” = 2T
o(s) = T2p++1 (T P ) SP+K§+ —Ae27" T v " K 4+ — 4+ ATC,
p

and %( s) = 0. Since r~ > pT, then o(s) = —oco as s — oco.

Therefore,

+

d T p=—1\? p_—r_ _
d—g(s) = T2p++1 (T P ) p+K§+s”+*1 A2 T ey TKy T T
s p

which implies that

T _ +11 p_—1 Pt +
——2r (T Pt Ky
s P —

A2 T Ky
So,

+ —T
T pmo1\P T
Z?21’”1 (T " > ptEY

Ae2=m T o KT

S =
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Let
1/
r— (T _+.4 po1\ P + = - - 2 v
— —721’ + (T P ) Sp Kp _AE2_T T P ST K{ +T+)\TC7]
.|\ p
K/z == —
pj_

which is equivalent to saying

_ r _ r
T Omaz(s) > —2T + 1~ A\TC,, > ]?2T > 2 o

3

Since r~ > pT and 2 < p~ < p(+) < p* < oo, we infer that k3 > 1 and by (2.2), there exist
some constants k1 = K1k}, ko = Kok} such that k1 < |Jul] < ka.
The proof of Lemma 3.5 is then complete. [

Next, we examine conditions under which our problem (1.1) has a unique non trivial solution.

Lemma 3.6. There exists a constant ¢ > 0 such that for all k € Z[1,T] and s > 0,

mmﬂume»wW%mwﬂﬁfwwwm—uu+%w@wm*ﬁZme%

where ¢ = min{1,p~ — 1}.

Proof. For all s > 0, we observe that

(1+ bpi(5)) sPR)=2 > op(k)=2 _ 1 y op(k)—2

One also has
a(bp(k) §) = p(k)sp(k')_l

s (1 + st(k))3/2.

At more, one has

#0120 () 4 (k) — 1) (14 0(5)) 572
() = 1) P02 4 () = DO

— ky—1 Sp(k)*Q +
(v(k) — 1) TN




20 B. Moussa, I. Nyanquini & S. Ouaro CUBO

28, 1 (2026)

Hence, for all s > 0,

mind (14 Gy (5)) 772, s“’“”%(s) + (p(k) = 1) (1 + dpee(5)) 57972} >

min{1,p~ —1}s?®=2. O

As in [27], one has the following result.

Lemma 3.7. There exists a positive constant ¢ such that
((1 + Gp(i) () [EP 726 — (14 by (m) \nlp(’“)’Qn) (§—n) > 4?7 PB g —ppr®),

for all §,n € R with (§,n) # (0,0).

Let us now introduce the following hypothesis.

—ed2 Pt
(Hg) There exist a constant 0 < § < p+ such that

p==1\P
A(T ) TKY (2637 7

1k, &) — f(k,n)| <5lE—nP ™Y forall keZ[1,T] and &neR with &£

One has the following result.

Theorem 3.8. Under assumptions (Hy)-(Hs) and (Hg), there exists a unique nontrivial solution

of problem (1.1).

Proof. Let u and v be two non-trivial solutions to problem (1.1). Then, by (2.7), we have

T

,i (1+ pery (Du(k))) [ Dulk) PP =2 Auk) Au — ) (k) = A ]; Sk, u(k))(u—v)(k)  (3.9)
and
é (14 Gy (Av(K))) [ Av(k)PE 2 Av(k) A — v) (k) = /\if(k:, v(E))(u—v)(k).  (3.10)
Subtracting (3.9) and (3.10), we obtain
é { (1+ dpiy (Du(k)) [ Aulk) PP =2 Au(k) = (1+ dpiry (Av(k))) |20 (k)PP =2 A0 (k) | Al = v) (k)
AXT: Fl,v(k))] (u —v)(k). (3.11)
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If [|u —v||p) <1, then using (2.4), Lemma 3.6, (3.11), (Hg) and Lemma 2.3 (c), we deduce from

(2.2) that

T
1
6427p+Hu—11||5:) < 427" Pp(y (U — ) —_2042 PR) | Au(k) —

\ /\

<_§j( (14 by (Du(k)) [ 2u(k) P2 Au(k)

o)™

— (1 + ¢py (Dv(k))) |Av(k)|p(k)‘2Av(k)) (Au(k) — Ao(k))

T
:7§§juwww»—ﬂhwmnm—ww>
k=1
A < N\ o+
< 32 St~ o) <22 () Tl
A [ e\ S+
<) TR - ol

Therefore,

9—p* )\5 P ot
c4 - pe T »- TKS

pcd2 "

Recall that the constant ¢ is such that § <

¥ p+ .
A (T = ) TKY"
Hence, |ju — v||§zr,) = 0, which implies that u = v.

Now, let [|u — v||,) > 1. Similarly, we can deduce that

.
lu ], <o.

+
ot - _pt Ao ——1\? + +
cA?P ||u—v||§(.) < AP py(u—v) <= (T b ) TK? ||u—v||g(.).

p

Consequently,

— 42-—pt
pfp> p AP

%) (T = ) TKL"

l[u =l

Which is equivalent to say

P+*P

pcd2 P’

p_—1 p* 4
M(Tv—) TK?

lu—vlpey >
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p~cd? —p"

It is then clear that if u, v are solutions to problem (1.1) and ¢ < ,

p——1

_ pt
)\(T - ) TR (2k5)7 7

then
205 < [[u = vllpcy < lullpy + ooy < 265,

This contradicts the assumption that [[u — v||,.y > 1. Consequently, it follows that u = v. O
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