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ABSTRACT

This work investigates the existence and uniqueness of a so-
lution to a discrete Robin boundary value problem involving
the anisotropic p⃗-mean curvature operator. The existence re-
sult is established through variational methods, specifically
by applying the Mountain Pass Theorem of Ambrosetti and
Rabinowitz in combination with Ekeland’s Variational Prin-
ciple. Uniqueness is obtained under the assumption of Lips-
chitz continuity on the nonlinear term.

RESUMEN

Este trabajo investiga la existencia y unicidad de una solu-
ción a un problema discreto de valores en la frontera de Robin
que involucra el operador de p⃗-curvatura media anisotrópico.
El resultado de existencia se establece a través de métodos
variacionales, específicamente aplicando el Teorema del Paso
de la Montaña de Ambrosetti y Rabinowitz en combinación
con el Principio Variacional de Ekeland. La unicidad se ob-
tiene bajo la hipótesis de continuidad Lipschitz del término
no-lineal.
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1 Introduction

In this article, we study the following nonlinear discrete Robin problem.−△
((
1 + ϕp(k−1) (△u(k − 1))

)
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
= λf(k, u(k)), k ∈ Z [1, T ] ,

△u(0) = u(T + 1) = 0,

(1.1)

where T ≥ 2 is a positive integer.

For fixed integers a, b such that a < b, we denote by Z [a, b] the discrete interval {a, a+1, . . . , b−1, b}.
The parameter λ is positive. The forward difference operator is given by △u(k−1) = u(k)−u(k−1).

The function ϕp(k) : R → R is defined by ϕp(k)(s) =
|s|p(k)√

1 + |s|2p(k)
, for every s ∈ R. The functions

p and f will be defined precisely in the subsequent sections.

In problem (1.1), we consider two boundary conditions: a Neumann boundary condition (△u(0) =
0) and a Dirichlet boundary condition (u(T + 1) = 0). In the literature, these are referred to as

mixed boundary conditions (see [25]).

Difference equations arise in many research fields as the discrete counterpart of partial differential

equations and are often studied via numerical analysis. In this context, the operator in problem

(1.1),

△

((
1 +

|△u(k − 1)|p(k−1)√
1 + |△u(k − 1)|2p(k−1)

)
|△u(k − 1)|p(k−1)−2△u(k − 1)

)
represents the discrete counterpart of the following p⃗-anisotropic operator

((
1 +

|u′(t)|p(t)√
1 + |u′(t)|2p(t)

)
|u′(t)|p(t)−2u′(t)

)′

.

In recent years, equations involving the anisotropic p⃗-mean curvature operator, under various

boundary conditions, have become a significant and captivating research topic. Problem (1.1) has

been specifically analyzed in [4], where Dirichlet-type boundary conditions were applied through

the use of variational methods and critical point theory. In this framework, problem (1.1) also

serves as a discrete analogue of the following problem.


−

((
1 +

|u′(t)|p(t)√
1 + |u′(t)|2p(t)

)
|u′(t)|p(t)−2u′(t)

)′

= λf(t, u(t)), t ∈ (0, 1),

u′(0) = u(1) = 0.

(1.2)

Problem (1.2) and its multi-dimensional variants arise in various applications, including elasticity

mechanics [38,41], electrorheological fluids [14,20,37,38], and image restoration [11]. In [11], Chen

et al. studied a functional with a variable exponent 1 ≤ p(t) ≤ 2, which serves as a model for
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image denoising, enhancement and restoration.

The existence of a solution to a nonlinear difference equation can be proved using fixed point

theory and the method of upper and lower solution techniques, as seen in [12,21] and the references

therein. It is well known that critical point theory is a crucial tool for addressing problems involving

differential equations.

Variational methods for difference equations were introduced by Guo and Yu [18]. The variational

methods have been employed to study various equations, yielding different results. We refer to

recent results involving anisotropic discrete boundary value problems [15–17,23,25, 26, 29, 39] and

references therein. Discrete problems involving anisotropic exponents were firstly discussed in

[24,32].

In [32], by using the mountain pass theorem and Ekeland variational principle, the authors proved

the existence of a continuous spectrum of eigenvalues for the following problem−△
(
ϕp(k−1) (△u(k − 1))

)
= λ|u(k)|q(k)−2, k ∈ Z [1, T ] ,

u(0) = u(T + 1) = 0,
(1.3)

where ϕp(·)(s) = |s|p(·)−2s, p : Z [0, T ] → [2,∞), q : Z [1, T ] → [2,∞) and λ is a positive constant.

In [24], Koné and Ouaro showed, by using the minimization method, the existence and uniqueness

of weak solutions to the following problem−△ (a(k − 1,△u(k − 1))) = f(k), k ∈ Z [1, T ] ,

u(0) = u(T + 1) = 0.
(1.4)

We note that problem (1.4) is a generalization of (1.3). Indeed, in the particular case where

a(k, ξ) = |ξ|p(k)−2ξ for all k ∈ Z [0, T ] and ξ ∈ R, the operator in (1.4) reduces to the p(k)-

Laplacian, i.e.,

△p(k−1)u(k − 1) := ϕp(k−1) (△u(k − 1)) = |△u(k − 1)|p(k−1)−2△u(k − 1).

In [22], the authors studied the following Robin problem△2u(k − 1) = f(k, u(k)), k ∈ Z [1, T ] ,

u(0) = △u(T ) = 0.
(1.5)

Using the strongly monotone operator principle and critical point theory, the authors proved the

existence of nontrivial solutions for (1.5).
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In [10], Chen et al. considered the following Robin problem
∇

(
△uk√

1− (△uk)2

)
+ λµk(uk)

q = 0, k ∈ Z [1, T ] ,

△u0 = uT+1 = 0.

(1.6)

By combining the method of upper and lower solutions with Brouwer degree theory and Szulkin’s

critical point theory for convex, lower semicontinuous perturbations of C1 functions, the authors

determined the ranges of the parameter λ for which problem (1.6) admits zero, one, or two positive

solutions. In [28], by using critical point theory, the authors considered the existence of infinitely

many positive solutions of the following discrete Robin problem with ϕ-Laplacian−△(φp(△uk−1)) + qkφp(uk) = λf(k, uk), k ∈ Z [1, T ] ,

△u0 = uT+1 = 0,
(1.7)

where φp is a special ϕ-Laplacian operator (see [31]) defined by φp(s) =
p|s|p−2s

2
√

1 + |s|p
with p ≥ 2.

In [19], by using variational methods, Hadjian and Bagheri established the existence of at least

one nontrivial solution for the following problem−△(ϕc(△uk−1)) = λf(k, uk), k ∈ Z [1, T ] ,

u0 = uT+1 = 0,
(1.8)

where ϕc is a special ϕ-Laplacian operator (see [31]) defined by ϕc(s) =
s√

1 + s2
.

For the study of the following Robin problem involving a second-order nonlinear difference equation
∇

(
△uk√

1− (△uk)2

)
+ λf(k, uk) = 0, k ∈ Z [1, T ] ,

△u0 = αu1 = 0, uT+1 = 0,

(1.9)

we refer to [36]. In the particular case where f(k, t) = µkt
q and α = 1, we obtain the problem

studied by Chen et al. [10]. The authors used different methods to obtain the existence and

multiplicity of solutions for a discrete boundary value problem in [1, 2, 5, 7, 9, 34,40].

In this article, we use the Ambrosetti-Rabinowitz mountain pass theorem (see [3]), Ekeland’s

variational principle and a Lipschitz continuity condition on the nonlinear term. Using these tools,

we establish the existence and uniqueness of a nontrivial solution to a discrete Robin problem

involving equations with the anisotropic p⃗-mean curvature operator.

The remainder of this article is organized as follows. In Section 2, we present some auxiliary
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results related to problem (1.1) and recall the abstract critical point theorem. Section 3 develops

the variational framework associated with problem (1.1) and introduces our main results. Finally,

we identify conditions under which problem (1.1) admits a unique nontrivial solution.

2 Preliminaries

Throughout this article, we denote

p+ = max
k∈Z[0,T ]

p(k), p− = min
k∈Z[0,T ]

p(k), r+ = max
k∈Z∈[1,T ]

r(k) and r− = min
k∈Z[1,T ]

r(k).

We consider the T -dimensional Banach space

H = {u : Z [0, T + 1] → R such that △u(0) = u(T + 1) = 0} ,

equipped with the norm

∥u∥ =

(
T∑

k=1

|△u(k)|p
−

)1/p−

. (2.1)

However, we will use the following norm in H at times

∥u∥∞ = max
k∈Z[0,T+1]

|u(k)|, for all u ∈ H.

The space H will also be equipped with the following Luxemburg norm

∥u∥p(·) = inf

{
µ > 0 :

T∑
k=1

1

p(k)

∣∣∣∣△u(k)µ

∣∣∣∣p(k) ≤ 1

}
.

Since on H, all norms are equivalent, then there exist two constants 0 < K1 < K2 such that

K1∥u∥p(·) ≤ ∥u∥ ≤ K2∥u∥p(·). (2.2)

Next, let ρp(·) : H → R be given by

ρp(·)(u) =

T∑
k=1

1

p(k)
|△u(k)|p(k) .

Remark 2.1. If u ∈ H, then the following properties hold.

∥u∥p(·) > 1 ⇒ ∥u∥p
−

p(·) ≤ ρp(·)(u) ≤ ∥u∥p
+

p(·), (2.3)

∥u∥p(·) < 1 ⇒ ∥u∥p
+

p(·) ≤ ρp(·)(u) ≤ ∥u∥p
−

p(·). (2.4)



6 B. Moussa, I. Nyanquini & S. Ouaro CUBO
28, 1 (2026)

To establish our main result, we introduce the following quotient

Λ1 = inf
u∈H\{0}

T∑
k=1

1

p(k)

(
|△u(k)|p(k) +

√
1 + |△u(k)|2p(k) − 1

)
T∑

k=1

1

p(k)
|u(k)|p(k)

. (2.5)

We say that λ is an eigenvalue of problem (1.1) whenever the problem admits a nontrivial solution.

It should be emphasized that Λ1 represents the first eigenvalue of problem (1.1) in the particular

case where

f(k, u(k)) = |u(k)|p(k)−2u(k).

In addition, Λ1 serves as a critical threshold parameter governing the existence of nontrivial solu-

tions to problem (1.1), thus guaranteeing the consistency of the analysis.

Let us also define the function

F (k, ξ) =

∫ ξ

0

f(k, s) ds, for all (k, ξ) ∈ Z [1, T ]× R.

We also make the following assumptions for the study of problem (1.1).

(H1) For each k ∈ Z[1, T ], the mapping f(k, ·) : R → R is continuous.

(H2) There exist a constant C1 > 0 and a function

r(·) : Z[1, T ] → [2,∞)

such that:

(i) |f(k, ξ)| ≤ C1

(
1 + |ξ|r(k)−1

)
, ∀k ∈ Z[1, T ], ∀ξ ∈ R.

(ii) lim inf
|ξ|→0

F (k, ξ)

|ξ|r(k)
≥ 0, for all k ∈ Z[1, T ].

In particular, assumption (H2)(i) implies that there exists a constant C2 > 0 such that

|F (k, ξ)| ≤ C2

(
1 + |ξ|r(k)

)
, ∀k ∈ Z[1, T ], ∀ξ ∈ R.

(H3) lim inf
|ξ|→∞

F (k, ξ)

|ξ|r−
≥ 0, for all k ∈ Z[1, T ].

(H4) For every λ ∈ (0,Λ1),

lim sup
|ξ|→0

λf(k, ξ)

|ξ|p(k)−2ξ
< Λ1, for all k ∈ Z[1, T ].

(H5) p(·) : Z[0, T ] → (2,∞).
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Example 2.2. The function

f(x, t) :=

|t|p(x)−2t, if |t| < 1

|t|r(x)−2t, if |t| ≥ 1,

with r− > p+, satisfies assumptions (H1), (H2), (H3) and (H4).

This example provides a concrete instance of the broader class of functions considered in problem

(1.1).

In the sequel, we will use the following auxiliary results.

Lemma 2.3 ([16,35]). (a) For all u ∈ H with ∥u∥ > 1,

T∑
k=1

1

p(k)
|△u(k)|p(k) ≥ 1

p+

(
∥u∥p

−
− T

)
.

(b) For all u ∈ H with ∥u∥ < 1,

T∑
k=1

1

p(k)
|△u(k)|p(k) ≥ 1

p+T (p+−p−)/p− ∥u∥p
+

.

(c) For all u ∈ H and for any m ≥ 2,

T∑
k=1

|u(k)|m ≤
(
T (p−−1)/p−

)m
T∥u∥m.

(d) For all u ∈ H and all p+ ≥ 2,

T∑
k=1

|△u(k)|p
+

≤ 2p
+
(
T (p−−1)/p−

)p+

T∥u∥p
+

.

(e) For all u ∈ H and all p+ ≥ 2,

T∑
k=1

1

p(k)
|△u(k)|p(k) ≤ T

p−

[
2p

+
(
T (p−−1)/p−

)p+

∥u∥p
+

+ 1

]
.

The energy functional associated with problem (1.1) is defined by Jλ : H → R as follows

Jλ(u) =

T∑
k=1

[
1

p(k)

(
|△u(k)|p(k) +

√
1 + |△u(k)|2p(k) − 1

)
− λF (k, u(k))

]
. (2.6)
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Definition 2.4. We say that u ∈ H is a weak solution of the problem (1.1) if

T∑
k=1

[(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)−2△u(k)△v(k)− λf(k, u(k))v(k)

]
= 0, (2.7)

for any v ∈ H and

T∑
k=1

[(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k) − λf(k, u(k))u(k)

]
= 0. (2.8)

We define the functionals Φ,Ψ : H → R by

Φ(u) =

T∑
k=1

1

p(k)

(
|△u(k)|p(k) +

√
1 + |△u(k)|2p(k) − 1

)

and

Ψ(u) =

T∑
k=1

F (k, u(k)).

The functional is now written as: Jλ(u) = Φ(u)− λΨ(u).

Proposition 2.5. The functional Jλ is well-defined on H and is of class C1(H,R) with the deriva-

tive given by

⟨J ′
λ(u), v⟩ =

T∑
k=1

[(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)−2△u(k)△v(k)− λf(k, u(k))v(k)

]
, (2.9)

for all u, v ∈ H.

The proof of Proposition 2.5 is a consequence of the proof of the following lemma.

Lemma 2.6. The functionals Φ and Ψ are well-defined on H, and both belong to the class

C1(H,R). Moreover, their derivatives are given by

⟨Φ′(u), v⟩ =
T∑

k=1

(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)−2△u(k)△v(k), ⟨Ψ′(u), v⟩ =

T∑
k=1

f(k, u(k))v(k),

for all u, v ∈ H.

Furthermore, the critical points of the functional Jλ in H coincide with the weak solutions of

problem (1.1).

Since the proof of Lemma 2.6 is very similar to that of Lemma 3.4 in [17] and Lemma 2.3 in [23],

it is omitted.

Owing to the finite-dimensional setting, every weak solution of problem (1.1) is a strong (i.e.,
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classical) solution. Consequently, solving problem (1.1) amounts to finding the critical points of

the functional J .

We now introduce the following results, which will be useful in the subsequent analysis.

Proposition 2.7 ([33]). Assume that the condition (H5) holds. Then, Λ1 > 0.

Definition 2.8. Let E be a real Banach space and let J : E → R be a functional. We say that

J satisfies the Palais-Smale condition (abbreviated as (PS) condition) if every sequence {un} ⊂ E

such that {J(un)} is bounded and J ′(un) → 0 as n→ ∞, admits a convergent subsequence in E.

Moreover, a sequence {un} ⊂ E is said to satisfy the Palais-Smale condition at level c ∈ R, denoted

by (PS)c, if

J(un) → c and J ′(un) → 0 as n→ ∞.

Lemma 2.9 ([39]). Let E be a finite-dimensional Banach space and let J ∈ C1(E,R) be an

anti-coercive functional. Then, J satisfies the (PS) condition.

Lemma 2.10 ([30, Mountain pass lemma]). Let E be a real Banach space. Assume that J ∈
C1(E,R) satisfies the (PS) condition. Suppose also that:

(i) J(0) = 0;

(ii) there exist ρ > 0 and α > 0 such that J(u) ≥ α for all u ∈ E with ∥u∥ = ρ;

(iii) there exists u1 in E with ∥u1∥ ≥ ρ such that J(u1) < 0.

Then, J has a critical value c ≥ α which can be characterized by

c = inf
h∈Γ

max
s∈[0,1]

J (h(s)) ,

where Γ = {h ∈ C ([0, 1], E) : h(0) = 0, h(1) = u1}.

Theorem 2.11 ([30]). Let E be a real Banach space and J : E → R. If J is weakly lower

semicontinuous and coercive, i.e. lim
∥x∥→∞

J(x) = ∞, then there exists x0 ∈ E such that inf
x∈E

J(x) =

J(x0).

Moreover if J ∈ C1(E,R), then x0 is a critical point of J , i.e. J ′(x0) = 0.

Theorem 2.12 ([13, Ekeland’s variational principle]). Let X be a complete metric space and

Φ : X → R a lower semicontinuous function bounded from below. Then, for every ϵ > 0 and u ∈ X

be given such that

Φ(u) ≤ inf
u∈X

Φ(u) + ϵ,

there exists uϵ ∈ X such that
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(i) Φ(uϵ) ≤ Φ(u),

(ii) d(uϵ, u) < ϵ,

(iii) Φ(uϵ) < Φ(u) + ϵd(u, uϵ) for each u ̸= uϵ.

Corollary 2.13 ([13]). Let X be a complete metric space and Φ : X → R be a lower semicontinuous

function bounded below. Assume that Φ ∈ C1(X,R). Then, for every ε > 0, there exists uε ∈ X

such that

(i) Φ(uε) ≤ inf
u∈X

Φ(u) + ε,

(ii) ∥Φ′(uε)∥ ≤ ε.

3 Existence and uniqueness of weak nontrivial solutions

This section focuses on the existence and uniqueness of nontrivial weak solutions to problem (1.1).

We have the following result.

Theorem 3.1. Assume that the hypotheses (H1)-(H5) hold. If (r− > p+) or (r+ < p−) or

(r− < p−), then there exist λ∗, ρ,Λ∗ > 0 such that for any λ > λ∗ and Λ1 − ρ ∈ (λ,Λ∗), the

problem (1.1) has at least one weak nontrivial solution.

Proof. We can distinguish the following three cases:

Case 1: r− > p+

In this instance, we will demonstrate that Jλ possesses a “mountain pass geometry.”

Lemma 3.2. Assume that the hypotheses of Theorem 3.1 are satisfied, then.

(i) There exist a, ϱ > 0 and ρ,Λ∗ > 0 such that for any λ > 0 and Λ1 − ρ ∈ (λ,Λ∗), one has

Jλ(u) ≥ a > 0 for all u ∈ H with ∥u∥ = ϱ.

(ii) There exists e ∈ H with ∥e∥ > ϱ such that

Jλ(e) < 0.

Proof. (i) Using hypothesis (H4), for any λ ∈ (0,Λ1), we can find ρ, β > 0 such that λ ≤ Λ1 − ρ

and

λf(k, ξ) ≤ (Λ1 − ρ) |ξ|p(k)−2ξ, for all (k, ξ) ∈ Z [1, T ]× R and |ξ| ≤ β.
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In particular, if f is as in Example 2.2, then β = 1.

We deduce for ξ ∈ (0, β], that

λF (k, ξ) ≤ (Λ1 − ρ)

∫ ξ

0

|s|p(k)−2s ds = (Λ1 − ρ)

∫ ξ

0

sp(k)−2s ds =
1

p(k)
(Λ1 − ρ) |ξ|p(k)

and for ξ ∈ [−β, 0), we infer that

λF (k, ξ) ≤ (Λ1 − ρ)

∫ 0

ξ

|s|p(k)−2s ds = (Λ1 − ρ)

∫ 0

ξ

(−s)p(k)−2s ds =
1

p(k)
(Λ1 − ρ) |ξ|p(k).

Then, it follows that

λF (k, ξ) ≤ 1

p(k)
(Λ1 − ρ) |ξ|p(k), for all k ∈ Z [1, T ] and |ξ| ≤ β. (3.1)

Let u ∈ H be such that |u(k)| ≤ β for all k ∈ Z[1, T ]. Then, by relation (2.1), we have

∥u∥ ≤ 2βT 1/p−
.

Now, let u ∈ H be fixed such that ∥u∥ ≤ 1. Define

κ = min
{
2βT 1/p−

, 1
}
.

Then, for any u ∈ H satisfying ∥u∥ ≤ κ, it follows from relations (2.5), (3.1), and assertions

(b) and (c) of Lemma 2.3 that

Jλ(u) ≥ Φ(u)− (Λ1 − ρ)

T∑
k=1

|u(k)|>1

1

p(k)
|u(k)|p(k) − (Λ1 − ρ)

T∑
k=1

|u(k)|>1

1

p(k)
|u(k)|p(k)

≥ Φ(u)− (Λ1 − ρ)
T∑

k=1

1

p(k)
|u(k)|r(k) − (Λ1 − ρ)

T∑
k=1

1

p(k)
|u(k)|p(k)

≥ Λ1 − (Λ1 − ρ)

Λ1
Φ(u)− (Λ1 − ρ)

p+

T∑
k=1

|u(k)|r
−

≥ ρ

Λ1p+
T (p−−p+)/p−

∥u∥p
+

− (Λ1 − ρ)

p+

(
T (p−−1)/p−

)r−
T∥u∥r

−

=
(
c1ϱ

p+−r− − (Λ1 − ρ)c2

)
ϱr

−
,

where c1 and c2 are positive constants.

Hence, choosing Λ∗ =
c1ϱ

p+−r−

2c2
, then, for any Λ1 − ρ ∈ (λ,Λ∗), there exist some positive

numbers 0 < ϱ < κ and a =
c1ϱ

p+

2
> 0 such that Jλ(u) ≥ a > 0 for all u ∈ H with ∥u∥ = ϱ.
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(ii) Fix λ > 0. By (H3), for any ε > 0, there exists η > 0 such that

F (k, ξ) ≥ ε|ξ|r
−
, for all k ∈ Z [1, T ] and all ξ ∈ R, with |ξ| > η.

Since ξ → F (k, ξ)− ε|ξ|r− is continuous on [−η, η], there is a constant Cη > 0 such that

F (k, ξ)− ε|ξ|r
−
≥ −Cη, for all k ∈ Z [1, T ] and all ξ ∈ [−η, η] .

Hence, we get

F (k, ξ) ≥ ε|ξ|r
−
− Cη, for all (k, ξ) ∈ Z [1, T ]× R. (3.2)

So, from (3.2) and Lemma 2.3 (e), we obtain

Jλ(u) =

T∑
k=1

1

p(k)

(
|△u(k)|p(k) +

√
1 + |△u(k)|2p(k) − 1

)
− λ

T∑
k=1

F (k, u(k))

≤ 2

p−

T∑
k=1

|△u(k)|p(k) − λ

T∑
k=1

(
ε|u(k)|r

−
− Cη

)
≤ 2T

p−

[
2p

+

(
T

p−−1

p−

)p+

∥u∥p
+

+ 1

]
− λε

T∑
k=1

|u(k)|r
−
+ λTCη. (3.3)

As

∥u∥p
−
≤ 2p

−−1
T∑

k=1

(
|u(k + 1)|p

−
+ |u(k)|p

−
)
≤

2p
−

T∑
k=1

|u(k)|p
−
≤ 2p

−
T

r−−p−

r−

(
T∑

k=1

|u(k)|r
−

) p−

r−

,

which means that
T∑

k=1

|u(k)|r
−
≥ 2−r−T

p−−r−

p− ∥u∥r
−
. (3.4)

Then, it follows from (3.3) and (3.4) that

Jλ(u) ≤
T

p−
2p

++1

(
T

p−−1

p−

)p+

∥u∥p
+

− λε2−r−T
p−−r−

p− ∥u∥r
−
+

2T

p−
+ λTCη. (3.5)

Since r− > p+, Jλ(u) → −∞ as ∥u∥ → ∞. Thus, Jλ is anti-coercive. Consequently, there

exists e ∈ H with ∥e∥ > ϱ such that Jλ(e) < 0.
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Lemma 3.3. Assume that the hypotheses of Theorem 3.1 hold. Then, for any λ > 0, the functional

Jλ satisfies Palais-Smale condition.

Proof. By Lemma 3.2 (ii), the functional Jλ is anti-coercive. Therefore, by Lemma 2.3, the

functional Jλ satisfies the Palais-Smale condition for any λ > 0. Thus, our problem (1.1) has at

least one nontrivial solution.

Case 2: r+ < p−

In the second case, we apply a direct variational approach. We verify that the functional Jλ has a

critical point. Let λ > 0 be fixed, since H is a finite-dimensional space and Jλ is of class C1(H,R),

it is sufficient to prove that Jλ is coercive.

Let ∥u∥ > 1. Then, by (2.5), (2.6), (a) and (c) of Lemma 2.3, one has

Jλ(u) ≥ Φ(u)− (Λ1 − ρ)

T∑
k=1

|u(k)|>1

1

p(k)
|u(k)|p(k) − (Λ1 − ρ)

T∑
k=1

|u(k)|>1

1

p(k)
|u(k)|p(k)

≥ Φ(u)− (Λ1 − ρ)

T∑
k=1

1

p(k)
|u(k)|r(k) − (Λ1 − ρ)

T∑
k=1

1

p(k)
|u(k)|p(k)

≥ Λ1 − (Λ1 − ρ)

Λ1
Φ(u)− (Λ1 − ρ)

p+

T∑
k=1

|u(k)|r
+

≥ ρ

Λ1p+
∥u∥p

−
− (Λ1 − ρ)

p+

(
T (p−−1)/p−

)r+
T∥u∥r

+

−K(T ),

where K(T ) is a positive constant. Therefore, choosing Λ∗ =
ρ

Λ1

(
T (p−−1)/p−)r+ T , since r+ < p−,

one deduces that Jλ is coercive.

Now, let u∗ ∈ H be a global minimum of Jλ, which is a critical point of Jλ and, in turn, a weak

solution of the problem (1.1).

We now show that u∗ is nontrivial for λ large enough.

Let d ∈ (0, 1) be a fixed real and k0 ∈ Z [1, T ], we define a function w ∈ H by

w(k) =

d if k = k0,

0 if k ∈ Z [1, T ]− {k0}.
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Then, we deduce by (H2)(ii) that

Jλ(w) =
1

p(k0)

(
|d|p(k0) +

√
1 + |d|2p(k0) − 1

)
− λF (k0, w(k0))

≤ 2

p(k0)
|d|p(k0) − λF (k0, d) ≤

2

p−
dp

−
− λCdr

+

.

Thus, if we choose λ∗ as

λ∗ =
2

p−C
dp

−−r+ ,

then for any λ > λ∗ and r+ < p−, Jλ(w) < 0. Since u∗ is a global minimum of Jλ, it follows that

Jλ(u∗) < 0 for any λ > λ∗; therefore u∗ is a weak nontrivial solution of problem (1.1).

Case 3: r− < p−

In this case, we apply the Ekeland’s variational principle.

Lemma 3.4. Assume that (H2)(ii) holds and r− < p−. Then, there is v ∈ H such that Jλ(v) < 0.

Proof. Take d ∈ (0, κ), where κ is as in the proof of Lemma 3.2 (ii), such that d <
(
p−λC

2

) 1

p−−r−

.

Let k0 ∈ Z [1, T ] with r(k0) = r−. Consider any fixed v ∈ H such that v(k0) = d and v(k) = 0 for

any k ∈ Z [1, T ] \ {k0}. Using the condition (H2)(ii), we have

Jλ(v) ≤
2

p(k0)
dp(k0) − λCdr(k0) ≤ 2

p−
dp

−
− λCdr

−
.

Then,

Jλ(v) < 0,

for all d <
(
p−λC

2

) 1

p−−r−

. The proof is thus complete.

Relation (i) of Lemma 3.2 implies that

inf
u∈∂Bκ

Jλ(u) > 0,

where Bκ = {u ∈ H such that ∥u∥ ≤ κ}. On the other hand, observe that Lemma 3.3 implies that

there exists v ∈ H such that Jλ(v) < 0, for every d <

(
p−λC

2

) 1

p−−r−

. Recall that v ∈ intBκ.

Thus,

inf
u∈intBκ

Jλ(u) < 0.
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So, it follows

inf
u∈intBκ

Jλ(u) < inf
u∈∂Bκ

Jλ(u).

Let ϵ > 0 be fixed, such that

0 < ϵ < inf
u∈∂Bκ

Jλ(u)− inf
u∈intBκ

Jλ(u).

Applying Ekeland’s variational principle to the functional Jλ : Bκ → R, there exists uϵ ∈ Bκ such

that

Jλ(uϵ) < inf
u∈Bκ

Jλ(u) + ϵ and Jλ(uϵ) < Jλ(u) + ϵ∥u− uϵ∥ for all u ̸= uϵ.

Moreover,

Jλ(uϵ) < inf
u∈Bκ

Jλ(u) + ϵ ≤ inf
u∈intBκ

Jλ(u) + ϵ < inf
u∈∂Bκ

Jλ(u),

then, we infer that uϵ ∈ intBκ. Next, we introduce the function ψλ : Bκ → R defined by

ψλ(u) = Jλ(u) + ϵ∥u− uϵ∥ for all u ̸= uϵ.

So, it follows that uϵ is a minimum point of ψλ and thus

ψλ(uϵ + θv)− ψλ(uϵ)

θ
≥ 0, (3.6)

for all v ∈ Bκ and all θ > 0 small enough. Therefore, using relation (3.6), we deduce that

Jλ(uϵ + θv)− Jλ(uϵ)

θ
+ ϵ∥v∥ ≥ 0.

Letting θ → 0+, we obtain

J ′
λ(uϵ, v) + ϵ∥v∥ ≥ 0 for all u ∈ H, (3.7)

where J ′
λ(uϵ, v) is the directional derivative of the function Jλ at uϵ in the direction of v. Since

J ′
λ(uϵ, v) = ⟨J ′

λ(uϵ), v⟩ = J ′
λ(uϵ)v,

we obtain from (3.7),

∥J ′
λ(uϵ)∥ ≤ ϵ.

Thus, we deduce that there exists a sequence {un} ⊂ intBκ such that

Jλ(un) → c = inf
u∈Bκ

Jλ(u) and J ′
λ(un) → 0 as n→ ∞.
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As the sequence {un} is bounded in H, then there exists u0 ∈ H such that, up to a subsequence,

{un} converges to u0 in H. Hence, the problem (1.1) has a nontrivial solution.

Lemma 3.5. Let λ > 0. Suppose that conditions (H1)-(H5) are satisfied. If u ∈ H is a solution

of problem (1.1), then there exist two positive constants κ1 and κ2 such that κ1 ≤ ∥u∥ ≤ κ2.

Proof. The proof of this lemma is organized into two steps, as outlined below.

Step 1. Assume that u ∈ H is a solution of (1.1) with ∥u∥p(·) ≤ 1. Set ζ =
p−

λ

(
T

p−−1

p−

)p+

TKp+

2

.

Since f satisfies (H4), for any λ ∈ (0,Λ1), there exist ρ, β > 0 such that λ ≤ Λ1 − ρ < ζ and

λf(k, ξ) ≤ (Λ1 − ρ) |ξ|p(k)−2ξ for all k ∈ Z [1, T ] and ξ ∈ R with |ξ| ≤ β.

On the other hand, by (H2)(i), there exists a positive constant L such that

λ|f(k, ξ)| ≤ L|ξ|r(k)−1, for all (k, ξ) ∈ Z [1, T ]× R and |ξ| > β,

where L = λ
(

1
βr(k)−1 + 1

)
. Consequently, we get that

λ|f(k, ξ)| ≤ (Λ1 − ρ) |ξ|p(k)−1 + L|ξ|r(k)−1 for all k ∈ Z [1, T ] and ξ ∈ R.

Using the above inequality, (2.2), (2.4), (2.8) and Lemma 2.3 (c), we obtain

∥u∥p
+

p(·) ≤ ρp(·)(u) =

T∑
k=1

1

p(k)
|△u(k)|p(k) ≤ 1

p−

T∑
k=1

|△u(k)|p(k)

≤ 1

p−

T∑
k=1

(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k) = λ

p−

T∑
k=1

f(k, u(k))u(k)

≤ λ

p−
(Λ1 − ρ)

T∑
k=1

|u(k)|p(k) + λL

p−

T∑
k=1

|u(k)|r(k)

≤ λ

p−
(Λ1 − ρ)

T∑
k=1

|u(k)|p
+

+
λL

p−

T∑
k=1

|u(k)|r
+

≤ λ

p−
(Λ1 − ρ)

(
T

p−−1

p−

)p+

T∥u∥p
+

+
λL

p−

(
T

p−−1

p−

)r+

T∥u∥r
+

≤ λ

p−
(Λ1 − ρ)

(
T

p−−1

p−

)p+

TKp+

2 ∥u∥p
+

p(·) +
λL

p−

(
T

p−−1

p−

)r+

TKr+

2 ∥u∥r
+

p(·).
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Therefore,

∥u∥p(·) ≥


1− λ

p−
(Λ1 − ρ)

(
T

p−−1

p−

)p+

TKp+

2

λL

p−

(
T

p−−1

p−

)r+

TKr+

2


1

r+−p+

.

Set

κ∗1 =


1− λ

p−
(Λ1 − ρ)

(
T

p−−1

p−

)p+

TKp+

2

λL

p−

(
T

p−−1

p−

)r+

TKr+

2


1

r+−p+

and note that

0 < κ∗1 < 1.

Indeed, since

λ ≤ Λ1 − ρ <
p−

λ

(
T

p−−1

p−

)p+

TKp+

2

,

it follows that

0 < 1− λ

p−
(Λ1 − ρ)

(
T

p−−1

p−

)p+

TKp+

2 < 1.

Clearly, λL
(
T

p−−1

p−

)r+

TKr+

2 > p−. Hence, 0 < κ∗1 < 1.

Step 2. Suppose that u ∈ H is a solution of (1.1) such that ∥u∥p(·) ≥ 1. Then, there exists a

constant κ∗2 > 1 such that ∥u∥p(·) ≤ κ∗2.

According to (2.6) and (2.8), one has

r−

(
Jλ(u) + λ

T∑
k=1

F (k, u(k))

)
− λ

T∑
k=1

f(k, u(k))u(k)

= r−
T∑

k=1

1

p(k)

(
|△u(k)|p(k) +

√
1 + |△u(k)|2p(k) − 1

)
−

T∑
k=1

(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)

≥ r−

p+

T∑
k=1

|△u(k)|p(k) −
T∑

k=1

|△u(k)|p(k) =
(
r−

p+
− 1

) T∑
k=1

|△u(k)|p(k).

Recall the Ambrosetti-Rabinowitz condition:

r−

ξ
≤ f(k, ξ)

F (k, ξ)
, for all (k, ξ) ∈ Z [1, T ]× R and for some r− > p+. (3.8)

Integrating, we obtain that (3.2) holds (see [6, Remark 5.2] or [8, Remark 3.7]).
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Combining the above inequalities with (2.2), (3.5), (3.8) and Lemma 2.3, it follows that

r−

(
Jλ(u) + λ

T∑
k=1

F (k, u(k))

)
− λ

T∑
k=1

f(k, u(k))u(k)

≤ r−Jλ(u) + r−λ

T∑
k=1

1

r−
f(k, u(k))u(k)− λ

T∑
k=1

f(k, u(k))u(k)

= r−Jλ(u) = r− inf
h∈Γ

max
s∈[0,1]

Jλ (h(s)) ≤ r− max
s∈[0,1]

Jλ (se) ≤ r− max
s≥0

Jλ

(
s

e

∥e∥p(·)

)

≤ r− max
s≥0

 T

p−
2p

++1

(
T

p−−1

p−

)p+

sp
+ ∥e∥p+

∥e∥p+

p(·)

− λε2−r−T
p−−r−

p− sr
− ∥e∥r−

∥e∥r−p(·)
+

2T

p−
+ λTCη


≤ r− max

s≥0

(
T

p−
2p

++1

(
T

p−−1

p−

)p+

sp
+

Kp+

2 − λε2−r−T
p−−r−

p− sr
−
Kr−

1 +
2T

p−
+ λTCη

)
,

where e ∈ H is given by Lemma 3.2 (ii). Hence from (2.3), we infer that

(
r−

p+
− 1

)
∥u∥p

−

p(·) ≤
(
r−

p+
− 1

)
ρp(·)(u) =

(
r−

p+
− 1

) T∑
k=1

1

p(k)
|△u(k)|p(k)

≤ r−

p−
max
s≥0

(
T

p−
2p

++1

(
T

p−−1

p−

)p+

sp
+

Kp+

2 − λε2−r−T
p−−r−

p− sr
−
Kr−

1 +
2T

p−
+ λTCη

)
.

Let

σ(s) =
T

p−
2p

++1

(
T

p−−1

p−

)p+

sp
+

Kp+

2 − λε2−r−T
p−−r−

p− sr
−
Kr−

1 +
2T

p−
+ λTCη

and
dσ

ds
(s) = 0. Since r− > p+, then σ(s) → −∞ as s→ ∞.

Therefore,

dσ

ds
(s) =

T

p−
2p

++1

(
T

p−−1

p−

)p+

p+Kp+

2 sp
+−1 − λε2−r−T

p−−r−

p− r−Kr−

1 sr
−−1,

which implies that

sr
−−p+

=

T

p−
2p

++1

(
T

p−−1

p−

)p+

p+Kp+

2

λε2−r−T
p−−r−

p− r−Kr−
1

.

So,

s =


T

p−
2p

++1

(
T

p−−1

p−

)p+

p+Kp+

2

λε2−r−T
p−−r−

p− r−Kr−
1


1

r−−p+

.
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Let

κ∗2 =


r−

p−

(
T

p−
2p

++1

(
T

p−−1

p−

)p+

sp
+

Kp+

2 − λε2−r−T
p−−r−

p− sr
−
Kr−

1 +
2T

p−
+ λTCη

)
r−

p+
− 1


1/p−

.

Thus, by the definition of σ, one has

σmax(s) ≥
2T

p−
+ λTCη,

which is equivalent to saying

r−σmax(s) ≥
r−

p−
2T + r−λTCη >

r−

p−
2T >

r−

p−
≥ r−

p+
>
r−

p+
− 1.

Since r− > p+ and 2 < p− ≤ p(·) < p+ < ∞, we infer that κ∗2 > 1 and by (2.2), there exist

some constants κ1 = K1κ
∗
1, κ2 = K2κ

∗
2 such that κ1 ≤ ∥u∥ ≤ κ2.

The proof of Lemma 3.5 is then complete.

Next, we examine conditions under which our problem (1.1) has a unique non trivial solution.

Lemma 3.6. There exists a constant c > 0 such that for all k ∈ Z [1, T ] and s > 0,

min

{(
1 + ϕp(k)(s)

)
sp(k)−2, sp(k)−1 ∂ϕp(k)

∂s
(s)+(p(k)− 1)

(
1 + ϕp(k)(s)

)
sp(k)−2

}
≥ csp(k)−2,

where c = min{1, p− − 1}.

Proof. For all s > 0, we observe that

(
1 + ϕp(k)(s)

)
sp(k)−2 ≥ sp(k)−2 = 1× sp(k)−2.

One also has
∂ϕp(k)

∂s
(s) =

p(k)sp(k)−1(
1 + s2p(k)

)3/2 .
At more, one has

sp(k)−1 ∂ϕp(k)

∂s
(s) + (p(k)− 1)

(
1 + ϕp(k)(s)

)
sp(k)−2

= (p(k)− 1) sp(k)−2 +
(2p(k)− 1) s2p(k)−2 + (p(k)− 1) s4p(k)−2(

1 + s2p(k)
)3/2 ≥

(
p− − 1

)
sp(k)−2.
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Hence, for all s > 0,

min{
(
1 + ϕp(k)(s)

)
sp(k)−2, sp(k)−1 ∂ϕp(k)

∂s
(s) + (p(k)− 1)

(
1 + ϕp(k)(s)

)
sp(k)−2} ≥

min{1, p− − 1}sp(k)−2.

As in [27], one has the following result.

Lemma 3.7. There exists a positive constant c such that

((
1 + ϕp(k)(ξ)

)
|ξ|p(k)−2ξ −

(
1 + ϕp(k)(η)

)
|η|p(k)−2η

)
(ξ − η) ≥ c42−p(k)|ξ − η|p(k),

for all ξ, η ∈ R with (ξ, η) ̸= (0, 0).

Let us now introduce the following hypothesis.

(H6) There exist a constant 0 < δ <
p−c42−p+

λ

(
T

p−−1

p−

)p+

TKp+

2 (2κ∗2)
p+−p−

such that

|f(k, ξ)− f(k, η)| ≤ δ|ξ − η|p
+−1 for all k ∈ Z [1, T ] and ξ, η ∈ R with ξ ̸= η.

One has the following result.

Theorem 3.8. Under assumptions (H1)-(H5) and (H6), there exists a unique nontrivial solution

of problem (1.1).

Proof. Let u and v be two non-trivial solutions to problem (1.1). Then, by (2.7), we have

T∑
k=1

(
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)−2△u(k)△(u− v)(k) = λ

T∑
k=1

f(k, u(k))(u− v)(k) (3.9)

and

T∑
k=1

(
1 + ϕp(k)(△v(k))

)
|△v(k)|p(k)−2△v(k)△(u− v)(k) = λ

T∑
k=1

f(k, v(k))(u− v)(k). (3.10)

Subtracting (3.9) and (3.10), we obtain

T∑
k=1

[ (
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)−2△u(k)−

(
1 + ϕp(k)(△v(k))

)
|△v(k)|p(k)−2△v(k)

]
△(u− v)(k)

= λ

T∑
k=1

[f(k, u(k))− f(k, v(k))] (u− v)(k). (3.11)
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If ∥u− v∥p(·) ≤ 1, then using (2.4), Lemma 3.6, (3.11), (H6) and Lemma 2.3 (c), we deduce from

(2.2) that

c42−p+

∥u− v∥p
+

p(·) ≤ c42−p+

ρp(·)(u− v) ≤ 1

p−

T∑
k=1

c42−p(k)|△u(k)−△v(k)|p(k)

≤ 1

p−

T∑
k=1

((
1 + ϕp(k)(△u(k))

)
|△u(k)|p(k)−2△u(k)

−
(
1 + ϕp(k)(△v(k))

)
|△v(k)|p(k)−2△v(k)

)
(△u(k)−△v(k))

=
λ

p−

T∑
k=1

[f(k, u(k))− f(k, v(k))] (u− v)(k)

≤ λδ

p−

T∑
k=1

|u(k)− v(k)|p
+

≤ λδ

p−

(
T

p−−1

p−

)p+

T∥u− v∥p
+

≤ λδ

p−

(
T

p−−1

p−

)p+

TKp+

2 ∥u− v∥p
+

p(·).

Therefore, [
c42−p+

− λδ

p−

(
T

p−−1

p−

)p+

TKp+

2

]
∥u− v∥p

+

p(·) ≤ 0.

Recall that the constant δ is such that δ <
p−c42−p+

λ

(
T

p−−1

p−

)p+

TKp+

2

.

Hence, ∥u− v∥p
+

p(·) = 0, which implies that u = v.

Now, let ∥u− v∥p(·) ≥ 1. Similarly, we can deduce that

c42−p+

∥u− v∥p
−

p(·) ≤ c42−p+

ρp(·)(u− v) ≤ λδ

p−

(
T

p−−1

p−

)p+

TKp+

2 ∥u− v∥p
+

p(·).

Consequently,

∥u− v∥p
+−p−

p(·) ≥ p−c42−p+

λδ

(
T

p−−1

p−

)p+

TKp+

2

.

Which is equivalent to say

∥u− v∥p(·) ≥

 p−c42−p+

λδ

(
T

p−−1

p−

)p+

TKp+

2


1

p+−p−

.
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It is then clear that if u, v are solutions to problem (1.1) and δ <
p−c42−p+

λ

(
T

p−−1

p−

)p+

TKp+

2 (2κ∗2)
p+−p−

,

then

2κ∗2 < ∥u− v∥p(·) ≤ ∥u∥p(·) + ∥v∥p(·) ≤ 2κ∗2.

This contradicts the assumption that ∥u− v∥p(·) ≥ 1. Consequently, it follows that u = v.
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