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ABSTRACT

The concept of metric dimension in graphs has the aim of
finding a set of vertices in a graph with the smallest size
that can be used as a reference to identify all vertices in the
graph uniquely. Formally, let G be a connected graph, and
let S = {s1, . . . , sk} ⊆ V (G) be an ordered set. For every
v ∈ V (G), we define r(v|S) = (d(v, s1), . . . , d(v, sk)) where
d is the distance function of G. We call S a resolving set if
r(u|S) ̸= r(v|S) for every u, v ∈ V (G), u ̸= v. The metric
dimension of G, denoted by dim(G), is the smallest inte-
ger k such that G has a resolving set of size k. Recently,
the authors have initiated research on the relation between
the metric dimension of a graph and its nullity (that is, the
multiplicity of 0 in its adjacency spectrum), and we have ob-
tained several results. In this paper, we present some new
relationships between the metric dimension and the spec-
trum of graphs. In detail, we present an inequality involving
the metric dimension and nullity of any bipartite or singu-
lar graph. Then, we give an infinite class of graphs having
equal metric dimension and nullity using the rooted product
of graphs. Finally, for any connected graph G other than
a path, we show that a submatrix of the distance matrix
of G, associated with a minimal resolving set of G, has the
full-rank property.
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RESUMEN

El concepto de dimensión métrica en grafos tiene como
propósito encontrar un conjunto de vértices en un grafo con
el menor tamaño que puede usarse como referencia para iden-
tificar únicamente todos los vértices del grafo. Formalmente,
sea G un grafo conexo, y sea S = {s1, . . . , sk} ⊆ V (G)

un conjunto ordenado. Para todo v ∈ V (G), definimos
r(v|S) = (d(v, s1), . . . , d(v, sk)) donde d es la función de
distancia de G. Llamamos a S un conjunto resolvente si
r(u|S) ̸= r(v|S) para todo u, v ∈ V (G), u ̸= v. La dimen-
sión métrica de G, denotada por dim(G), es el entero más
pequeño k tal que G tiene un conjunto resolvente de tamaño
k. Recientemente, los autores han comenzado a investigar
sobre la relación entre la dimensión métrica de un grafo y
su nulidad (es decir, la multiplicidad de 0 en su espectro de
adyacencia), y hemos obtenido diversos resultados. En este
artículo, presentamos algunas relaciones nuevas entre la di-
mensión métrica y el espectro de grafos. En detalle, presen-
tamos una desigualdad que involucra la dimensión métrica
y la nulidad de cualquier grafo bipartito o singular. Luego,
entregamos una clase infinita de grafos con igual dimensión
métrica y nulidad usando el producto enraizado de grafos.
Finalmente, para todo grafo conexo G distinto de un camino,
mostramos que una submatriz de la matriz de distancia de
G, asociada a un conjunto resolvente mínimo de G, tiene la
propiedad de rango completo.
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1 Introduction

In the 1960s, Slater [14] and Harary and Melter [10] independently introduced the concept of metric

dimension of graphs. They introduced the term locating set or resolving set which refers to a set

of vertices used to identify each vertex in a graph uniquely. A resolving set with the smallest size

is called a basis, and its cardinality is referred to as the metric dimension of the graph. Since the

metric dimension of graphs and its variations have direct applicability to several real-world issues

like robot navigation [12] and chemistry [3], research on them has grown rapidly in the recent few

decades. See, for example, [15] and [13] for surveys on this topic. On the other hand, in 1972,

Cvetković, Gutman, and Trinajstić [5], and then Cvetković and Gutman [4], introduced the nullity

of a graph as a new invariant; it is the multiplicity of 0 as an eigenvalue of the graph’s adjacency

matrix. They further investigated the connection between graph nullity and chemical structures.

Excellent overviews of graph nullity can be found in [1] and [9].

Despite the growth of interest in the metric dimension of graphs, its connection to the graph’s

spectrum has not been studied further. Recently, the authors [7] have initiated research on the

relation between the metric dimension of a graph and its spectrum, and we have obtained several

results. This research was motivated by the observation that the equality dim(G) = η(G), where

dim(G) and η(G) respectively denote the metric dimension and nullity of the graph G, holds

for complete bipartite graphs Kr,s where r ̸= s, paths Pn where n is odd, and cycles Cn where

n ≡ 0 (mod 4). This paper aims to provide further connections between the two concepts. In

detail, we first give an inequality involving dim(G) and η(G) for any bipartite or singular graphs

G, generalizing our previous result for trees. Then, we give an infinite class of graphs G where

dim(G) = η(G) using the rooted product of graphs. Finally, we give another relation between the

metric dimension of a graph and its distance matrix. We show that for any connected graph G, a

submatrix of its distance matrix, associated with a minimal resolving set of G, has the full-rank

property.

All the graphs considered in this study are finite, simple, and undirected. We refer to Diestel [6]

for the basic definitions related to graphs. An empty graph ∅ is the graph without any vertices

and edges. Let G = (V (G), E(G)) be a graph. We simply write V = V (G) and E = E(G) if the

graph is clear from context. Two vertices u, v ∈ V are said to be adjacent if uv ∈ E. The open

neighborhood of a vertex u ∈ V is the set NG(u) := {v ∈ V : uv ∈ E}, and the closed neighborhood

of u is NG[u] := {u}∪NG(u). The degree of a vertex u ∈ V , denoted by deg(u), is the size of NG(u).

A vertex is called pendant if it has degree one, and let p(G) denote the number of pendant vertices

of G. For two distinct vertices u, v in a graph G, the distance d(u, v) of u and v is the length of a

shortest path connecting u and v. We denote by Pn, Cn, Km,n, and Kn for paths, cycles, complete

bipartite, and complete graphs. For two integers a ≤ b, we define [a, b] := {x ∈ Z : a ≤ x ≤ b}.

Let u, v ∈ V , u ̸= v. We say that a vertex s ∈ V resolves u and v if d(u, s) ̸= d(v, s). Let
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S = {s1, s2, . . . , sk} ⊆ V be an ordered subset of V . The representation of v ∈ V with respect to

S, denoted by r(v|S), is the vector r(v|S) = (d(v, s1), d(v, s2), d(v, s3), . . . , d(v, sk)). We call S a

resolving set of G if r(u|S) ̸= r(v|S) for every distinct pair u, v ∈ V , that is, if each vertex of G

has a unique representation with respect to S. In other words, S is a resolving set if and only if

every pair of distinct vertices u, v ∈ V is resolved by an element of S. A resolving set of G with

minimum size is called a basis of G. The cardinality of a basis of G is called the metric dimension

of G which is denoted by dim(G). A resolving set of G is called minimal if for every S0 ⊂ S, S0 is

not a resolving set of G, that is, S does not contain a smaller resolving set of G.

Let G = (V,E) be a graph of order n with V = {v1, v2, . . . , vn}. The adjacency matrix of G

is the n × n matrix A = A(G) = (aij) whose entry aij is equal to 1 if vi and vj are adjacent,

and 0 otherwise. The distance matrix of G is the matrix D = D(G) = (dij), where dij =

d(vi, vj). For M ∈ {A,D}, the M-spectrum of G, denoted by specM(G), is the set of eigenvalues

of M(G) together with their multiplicities. If the distinct eigenvalues of M(G) are λ1 > λ2 >

· · · > λs, and their multiplicities are m1,m2, . . . ,ms, respectively, then we write specM(G) =

{λm1
1 , λm2

2 , . . . , λms
s }. For an eigenvalue λ, we may write mM(λ) to denote the multiplicity of λ

in specM(G). The nullity of G, denoted by η(G), is the multiplicity of eigenvalue 0 in specA(G),

that is, η(G) = mA(0). We call a graph G singular if η(G) > 0. For the trivial case, we define

η(∅) = 0.

2 Preliminary Results

In this section, we provide some known results that are useful in our discussions.

Theorem 2.1 ([3, 12]). A graph G has dim(G) = 1 if and only if G is a path.

Theorem 2.2 ([15]). For every integer n ≥ 3, dim(Cn) = 2.

Let G and H be two graphs. The union G∪H is the graph where V (G∪H) = V (G)∪ V (H) and

E(G ∪H) = E(G) ∪ E(H). The join G ∨H is the graph obtained by taking the two graphs and

connecting, by an edge, each vertex in G to each vertex in H. Furthermore, the complement G of

G has V (G) = V (G) and E(G) = {uv : uv /∈ E(G), u, v ∈ V (G)}.

Theorem 2.3 ([3]). Let G be a graph of order n ≥ 4. Then, dim(G) = n − 2 if and only if

G = Kr,s (r, s ≥ 1), G = Ks ∨Kt (s ≥ 1, t ≥ 2), or G = Ks ∨ (K1 ∪Kt) (s, t ≥ 1).

For the case of trees, we need the following definitions. A vertex of degree at least 3 in a graph G is

called a major vertex of G. A pendant vertex u of G is called a terminal vertex of a major vertex v

of G if d(u, v) < d(u,w) for every other major vertex w of G. In other words, a pendant vertex u is

a terminal vertex of v if v is the closest major vertex from u. The terminal degree ter(v) of a major



CUBO
28, 1 (2026)

Further results on the metric dimension and spectrum of graphs 31

vertex v is the number of terminal vertices of v. A major vertex v of G is called an exterior major

vertex of G if ter(v) > 0. Let σ(G) denote the sum of the terminal degrees of all major vertices

of G, and let ex(G) denote the number of exterior major vertices of G. With these definitions, we

may calculate the metric dimension of trees other than a path by the following formula.

Theorem 2.4 ([3, 12,14]). If T is a tree other than a path, then

dim(T ) = σ(T )− ex(T ) =
∑
v∈V

ter(v)>1

(ter(v)− 1).

The proof of Theorem 2.4 utilizes the following general bound for any connected graphs.

Lemma 2.5 ([3]). If G is a connected graph, then dim(G) ≥ σ(G)− ex(G).

For an exterior major vertex v in G, a tail of v is a path connecting v to one of its terminal vertex,

excluding v. Thus, an exterior major vertex v has ter(v) tails. We call a tail odd or even if it has

an odd or even number of vertices, respectively. A branch B is a subgraph of G induced by an

exterior major vertex v in G and all its tails. In this case, we call v the stem vertex of B. Thus,

a branch with n tails is a subdivision of the star graph K1,n. We say a branch B is of Type I if it

has at least one odd tail and Type II otherwise. In Figure 1b, the branches of T in Figure 1a are

the blocked subgraphs B1, B2, B3, and B4. The vertex c is the stem of B2. The branches B2, B3,

and B4 are of Type I, while the branch B1 is of Type II. With these additional definitions, observe

that the second equality in Theorem 2.4 indicates that the metric dimension of a tree depends only

on the structure of its branches.

We now discuss the rooted and corona product of graphs. Let G be a graph where V (G) =

{v1, v2, . . . , vn}. Let H be a set of n graphs H1, H2, . . . ,Hn where a vertex in Hi is chosen as the

root of Hi, i ∈ [1, n]. The rooted product of G by H, denoted by G(H), is the graph obtained by

identifying the root of Hi and vi for every i ∈ [1, n] [8]. A special case of rooted product of graphs

is the caterpillar graph. A caterpillar is a tree such that the removal of its pendants produces

a path. For positive integers k and n1, n2, . . . , nk, a caterpillar CP (n1, n2, . . . , nk) is the graph

Pk({K1,n1 , . . . ,K1,nk
}) by taking the center vertex of each K1,ni as its root.

Let G and H be two graphs with |G| = n. The corona product G ⊙ H is defined as the graph

obtained by taking one copy of G and n copies of H, and we connect (by an edge) every vertex

in the ith copy of H with the ith vertex of G [16]. For the case where H = Km for some positive

integer m, we have G⊙Km = G(H) where H = {H1, H2, . . . ,Hn}, Hi = K1,m for every i ∈ [1, n].

Theorem 2.6 ([11]). If G is a connected graph of order n, and t ∈ N, t ≥ 2, then dim(G⊙Kt) =

n(t− 1)

Theorem 2.7 ([11]). If G is a connected graph of order n, and H = {K1,m1
,K1,m2

, . . . ,K1,mn
}

where mi ≥ 2 for every i ∈ [1, n], then dim(G(H)) =
∑n

i=1(mi − 1).
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(a) The tree T

c

B1

B2

B3

B4

(b) The branches of T

Figure 1: A tree and its branches

We now discuss the results related to the spectrum and nullity of graphs.

Theorem 2.8 ([2]).

(1) For every positive integers r, s, specA(Kr,s) = {±
√
rs, 0r+s−2}.

(2) For every integer n ≥ 2, specA(Cn) = {2 cos(2πk/n) : k ∈ [1, n]}.

(3) For every integer n ≥ 1, specA(Pn) = {2 cos(πk/(n+ 1)) : k ∈ [1, n]}.

We can see from Theorem 2.8 that η(Kr,s) = r + s − 2; η(Cn) = 2 if n ≡ 0 (mod 4), and 0 if

otherwise; and η(Pn) = 1 if n is odd, and 0 if n is even. The following observation is immediate

from Theorems 2.8, 2.1, 2.2, and 2.3.

Observation 2.9. The condition dim(G) = η(G) holds if G is one of the following graphs:

(1) Kr,s where r ̸= s, or

(2) Cn where n ≡ 0 (mod 4), or

(3) Pn where n is odd.

Lemma 2.10 ([9]). Let G be a graph order n. Then, η(G) = n if and only if G = Kn.

The following lemmas are very useful in many parts of our discussion.
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Lemma 2.11 ([4]). Let G be a bipartite graph containing a pendant vertex, say v, and H be the

graph obtained from G by deleting v and its neighbor. Then, η(G) = η(H).

Lemma 2.12 ([9]). Let G =
⋃t

i=1 Gi, where G1, . . . , Gt are connected components of G. Then,

η(G) =
∑t

i=1 η(Gi).

We now mention our previous result.

Theorem 2.13 ([7]). Let T be a tree other than a path. Let BI and BII be the sets of Type I and

Type II branches in T , respectively. Let e2 be the number of even tails in T . If T has an odd tail,

then

dim(T ) = η(T )− η(T − BI)− |BII|+ e2,

where T − BI is the graph obtained from T by deleting all Type I branches in T .

3 Main results

3.1 The metric dimension and nullity of bipartite or singular graphs

We first present an inequality involving dim(G) and η(G) for any connected bipartite/singular

graph having an odd tail. The proof of this theorem is similar to the proof of Theorem 2.13.

However, for completeness, we present the proof.

Theorem 3.1. Let G be a connected bipartite or singular graph other than a path. Let BI and BII

be the sets of Type I and Type II branches in G, respectively. Let e2 be the number of even tails in

G. If G has an odd tail, then

dim(G) ≥ η(G)− η(G− BI)− |BII|+ e2

where G− BI is the graph obtained from G by deleting all Type I branches in G.

Proof. Let B1, . . . , Bk be the branches in G. Since G has at least one odd tail, there exists a Type I

branch in G. Suppose that |BI| = p ≥ 1. Without loss of generality, let BI = {B1, B2, . . . , Bp} and

BII = {Bp+1, Bp+2, . . . , Bk}. Observe that we may construct a sequence of graphs G0, G1, . . . , Gp

where G0 := G, Gp = G−BI, and Gj = Gj−1 −Bj = G−
⋃j

i=1 Bi for j ∈ [1, p]. So, the graph Gj

is obtained from G by deleting the branches B1, B2, . . . , Bj of G.

For an arbitrary j ∈ [1, p], consider the graph Gj−1 and Type I branch Bj with stem vertex cj .

Suppose that Bj has e(j) tails, e
(j)
1 odd tails, and e

(j)
2 even tails, hence e(j) = e

(j)
1 + e

(j)
2 and

e2 =
∑k

i=1 e
(i)
2 . Let Podd be the set of all odd tails of Bj , and let Peven be the set of all even tails

of Bj . Pick an arbitrary odd tail, say P1, and then delete P1 and cj from Gj−1. Since P1 is an odd
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Podd

PevenLj

Gj

P1

cj

(a) Gj−1

Podd

PevenLj

Gj

(b) Gj−1 − P1 − cj

Figure 2: The grouping of the vertices in Gj−1 and Gj−1 − P1 − cj

tail, we have η(Gj−1) = η(Gj−1−P1− cj) by Lemma 2.11. Observe that the graph Gj−1−P1− cj

has several connected components (see Figure 2): Gj , odd tails of Bj except P1, and even tails of

Bj . By Lemma 2.11, we have

η(P ) =

1, if P ∈ Podd,

0, if P ∈ Peven,

since successively deleting a pendant vertex and its neighbor of a path yields a single vertex if it

has an odd order, and an empty graph if it has an even order.

Consequently, by Lemma 2.12, we have

η(Gj−1) = η(Gj−1 − P1 − cj) = η(Gj) +
∑

P∈Podd

η(P ) +
∑

P∈Peven

η(P ) = η(Gj) +
(
e
(j)
1 − 1

)
.

Therefore, we have the relation η(Gj) = η(Gj−1) −
(
e
(j)
1 − 1

)
for j ∈ [1, p]. By applying this

relation successively, we obtain

η(G− BI) = η(Gp) = η(G0)−
p∑

i=1

(
e
(i)
1 − 1

)
= η(G)−

p∑
i=1

(
e
(i)
1 − 1

)
.

Finally, since dim(G) ≥
∑k

i=1(e
(i) − 1) by Lemma 2.5, we have

η(G− BI) = η(G)−
k∑

i=1

(
e
(i)
1 − 1

)
+

k∑
i=p+1

(
e
(i)
1 − 1

)

= η(G)−
k∑

i=1

(
e(i) − 1− e

(i)
2

)
+

k∑
i=p+1

(0− 1)

= η(G)−
k∑

i=1

(
e(i) − 1

)
+

k∑
i=1

e
(i)
2 − (k − p)

≥ η(G)− dim(G) + e2 − |BII|.
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Example 3.2. Let G be the graph shown in Figure 3a. The graph G − BI is the bold subgraph

shown in Figure 3c. With some calculations, we obtain η(G) = 4 (so G is singular), η(G−BI) = 1,

|BII| = 2, and e2 = 5. Thus, by Theorem 3.1, we obtain dim(G) ≥ η(G)− η(G−BI)− |BII|+ e2 =

4− 1− 2 + 5 = 6.

(a) G (b) T (c) G− BI

Figure 3: The graph G, spanning tree T of G, and G− BI

3.2 The metric dimension and nullity of the rooted product of some

graphs

Next, we discuss some relationships between the metric dimension and nullity of the rooted product

of some graphs. For certain conditions, this product will establish an infinite class of graphs whose

metric dimension and nullity are equal. For that, we need a useful class of graph called branch

graph which is simply a subdivision of K1,n for some positive integer n. The number of subdivision

processes in each “leg” of K1,n is arbitrary. The following proposition gives the metric dimension

of G(H) for any set of branch graphs H (see Figure 4). Observe that this proposition generalizes

Theorems 2.6 and 2.7.

Proposition 3.3. Let H = {B1, B2, . . . , Bn} be a set of n ≥ 1 branch graphs. For every i ∈ [1, n],

the graph Bi has ei ≥ 2 tails, and the center of Bi is chosen as the root of Bi. For every connected

graph G of order n, dim(G(H)) =
∑n

i=1(ei − 1) = p(G(H))− n.

Proof. Let G be a connected graph of order n. First, we show that dim(G(H)) ≥
∑n

i=1(ei − 1).

Let V (G) = {v1, . . . , vn}. The graph G(H) is obtained by identifying vi with the center of Bi.

Consequently, the pendant vertices of all Bi’s become the pendant vertices in G(H), so p(G(H)) =∑n
i=1 ei. Moreover, all vertices in G become the exterior major vertices in G(H), so ex(G(H)) = n.

Thus, by Lemma 2.5, we have

dim(G(H)) ≥ p(G(H))− ex(G(H)) =

n∑
i=1

ei − n =

n∑
i=1

(ei − 1).
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Next, we show that dim(G(H)) ≤
∑n

i=1(ei − 1). For every vi ∈ V (G) ⊂ V (G(H)), let Ti :=

{v1i , v2i , . . . , v
ei
i } be the set of all terminal vertices of vi, where vji is the terminal vertex of vi in the

jth tail, j ∈ [1, ei]. Let S =
⋃n

i=1(Ti \ {veii }). We will show that S is a resolving set of G(H). Let

x, y ∈ V (G(H)) be two distinct vertices. There are some cases for x and y.

(1) Let x, y ∈ V (Bi), i ∈ [1, n], that is, x and y are in the same branch.

(a) If x and y are in the same tail, say the jth tail, j ∈ [1, ei], then d(x, v1i ) ̸= d(y, v1i ).

(b) Suppose that x and y are in different tails, say j1th and j2th tails, respectively. Observe

that at least one of vj1i and vj2i must be in S; say vj1i ∈ S without loss of generality.

Consequently, d(y, vj1i ) = d(y, vi) + d(vi, x) + d(x, vj1i ) > d(x, vj1i ) since d(y, vi) > 0.

(c) Suppose that x = vi and y is in the jth tail. If j ∈ [1, ei − 1], then d(y, vji ) < d(x, vji ).

If j = ei, then d(y, v1i ) = d(y, x) + d(x, v1i ) > d(x, v1i ) since d(y, x) > 0.

(2) Let x ∈ V (Bs) and y ∈ V (Bt), s ̸= t ∈ [1, n], that is, x and y are in different branches.

Consequently, d(vs, vt) > 0.

(a) If x is in the jth tail, j ∈ [1, es − 1], then wherever y may be in Bt, we have d(y, vjs) =

d(y, vt) + d(vt, vs) + d(vs, x) + d(x, vjs) > d(x, vjs). Similar argument also applies if y is

in the jth tail, j ∈ [1, et − 1], that is, d(x, vjt ) > d(y, vjt ) wherever x may be in Bs.

(b) If x = vs and y = vt, then d(y, v1s) = d(y, vt)+d(vt, vs)+d(vs, v
1
s) > d(vs, v

1
s) = d(x, v1s).

(c) For the last case, suppose that x and y are in the esth and etth tails, respectively. If

d(x, v1s) ̸= d(y, v1s), then we are done. Now, let us assume that d(x, v1s) = d(y, v1s).

Observe that since d(vt, vs) > 0, we have

d(x, v1t ) = d(x, vs) + d(vs, vt) + d(vt, v
1
t )

= (d(x, vs) + d(vs, v
1
s)) + d(vs, vt) + d(vt, v

1
t )− d(vs, v

1
s)

= d(x, v1s) + d(vs, vt) + d(vt, v
1
t )− d(vs, v

1
s)

= d(y, v1s) + d(vs, vt) + d(vt, v
1
t )− d(vs, v

1
s)

= (d(y, vt) + d(vt, vs) + d(vs, v
1
s)) + d(vs, vt) + d(vt, v

1
t )− d(vs, v

1
s)

= (d(y, vt) + d(vt, v
1
t )) + 2d(vt, vs)

= d(y, v1t ) + 2d(vt, vs)

> d(y, v1t ).

Thus, for every case of x and y, there is an element of S resolving them. Consequently, S is a

resolving set of G(H), and since |S| =
∑n

i=1(ei−1), we have dim(G(H)) ≤
∑n

i=1(ei−1). Therefore,

dim(G(H)) =
∑n

i=1(ei − 1).
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G

· · ·

...

· · ·

...

Figure 4: The graph G(H)

Theorem 3.4. Let H = {B1, B2, . . . , Bn} be a set of n ≥ 1 branch graphs whose tails are all odd

tails. For every i ∈ [1, n], the graph Bi has ei ≥ 2 tails, and the center of Bi is chosen as the root

of Bi. For every connected bipartite graph G of order n,

dim(G(H)) = η(G(H)) =

n∑
i=1

(ei − 1).

Proof. From Proposition 3.3, dim(G(H)) =
∑n

i=1(ei − 1). We only need to show that η(G(H)) =∑n
i=1(ei − 1). Observe that G is bipartite implies G(H) is also bipartite. Consider an arbitrary

branch Bi in G(H). By applying Lemma 2.11 consecutively, we may delete one tail from Bi

together with the vertex vi without changing the nullity, that is, the nullity of the resulting graph

is the same as of G(H). Moreover, this deletion leaves only ei − 1 tails of Bi. From Lemma 2.11

again, these ei − 1 tails leave ei − 1 isolated vertices (since every tail in Bi is an odd tail) without

changing the nullity. Thus, the deletion process on the branch Bi leaves the graph G(H) − Bi

and ei − 1 isolated vertices with the same nullity as G(H). By applying the same process to the

other branches, we get a graph consisting of
∑n

i=1(ei−1) isolated vertices whose nullity equals the

nullity of G(H). Thus, η(G(H)) =
∑n

i=1(ei − 1). Therefore, dim(G(H)) = η(G(H)).

The following corollary is a consequence of Theorem 3.4 by observing that corona product of graphs

and caterpillar graphs are special cases of rooted product of graphs.
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Corollary 3.5. The condition dim(G) = η(G) holds if G is one of the following graphs:

(1) H ⊙Kp for every connected bipartite graph H and positive integer p ≥ 2, or

(2) CP (n1, n2, . . . , nk) for every positive integers k and ni ≥ 2, i ∈ [1, k].

In contrast to Theorem 3.4, if all branch graphs in H have only even tails, then the metric dimension

of G(H) is strictly greater than its nullity as we show in the following theorem.

Theorem 3.6. Let H be a set of n ≥ 2 branch graphs with at least 2 tails whose tails are all

even tails, and for every B ∈ H, the center of B is chosen as the root of B. For every connected

bipartite graph G of order n, dim(G(H)) > η(G(H)).

Proof. Let H = {B1, . . . , Bn}, where every Bi ∈ H has ei ≥ 2 tails. Assume to the contrary that

there exists a connected bipartite graph G of order n satisfying dim(G(H)) ≤ η(G(H)). Since

G is connected and has an order n ≥ 2, we have G ̸= Kn, so η(G) ≤ n − 1 from Lemma 2.10.

From Proposition 3.3, we have dim(G(H)) =
∑n

i=1 ei − n, and by applying Lemma 2.11 on G(H)

consecutively, we obtain η(G(H)) = η(G). Therefore,

n = 2n− n ≤
n∑

i=1

ei − n = dim(G(H)) ≤ η(G(H)) = η(G) ≤ n− 1,

a contradiction.

3.3 The metric dimension and distance matrix of graphs

Finally, we discuss a relationship between the metric dimension of a graph and its distance matrix.

For that, we need the following notations. For a connected graph G and ∅ ̸= S ⊆ V (G), the

distance matrix D of G can be partitioned into

D =
[
D[S] D[V \S]

]
where D[S] ∈ R|G|×|S| and D[V \S] ∈ R|G|×|V \S| are the submatrices obtained from D by taking

all the columns corresponding to the elements of S and V \S, respectively. Observe that the vth

row of D[S] is r(v|S)⊤. Observation 3.7 is a direct consequence of this definition. Recall that a

resolving set S of G is called minimal if S does not contain a smaller resolving set of G. A basis

is a minimal resolving set, but the converse is not necessarily true.

Observation 3.7. Let G be a connected graph with distance matrix D and ∅ ̸= S ⊆ V (G).

(1) S is a resolving set of G if and only if D[S] has no two identical rows.
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(2) S is a minimal resolving set of G if and only if (1) D[S] has no two identical rows, and (2)

for every s ∈ S, D[S\{s}] has two identical rows.

Theorem 3.8. Let G be a connected graph other than a path with distance matrix D. If S is a

minimal resolving set of G, then rank(D[S]) = |S|. Consequently, dim(G) ≤ rank(D).

Proof. Let S be a minimal resolving set of G with |S| = k. Since G is not a path, we have k ≥ 2

from Theorem 2.1. Let i ∈ [1, k] be arbitrary. According to Observation 3.7, there are two rows

du = (du1, . . . , duk)
⊤ and dv = (dv1, . . . , dvk)

⊤ (u ̸= v) of D[S] such that dus = dvs for every

s ∈ [1, k]\{i}, but dui > dvi, without loss of generality. Define ci := dui − dvi > 0. Observe

that 1
ci
(du − dv) = ei where ei := (0, . . . , 0, 1, 0, . . . , 0)⊤ with entry 1 is in the ith column. This

means that ei is in the row space of D[S]. Since i ∈ [1, k] is arbitrary, the linearly independent set

{e1, e2, . . . , ek} is contained in the row space of D[S], hence rank(D[S]) ≥ |S|. By the property

of rank, we obtain rank(D[S]) ≤ min{|G|, |S|} = |S|. Therefore, rank(D[S]) = |S|. Consequently,

dim(G) ≤ |S| = rank(D[S]) ≤ rank(D).

The contrapositive of Theorem 3.8 and the fact that rank(D[S]) ≤ |S| produce the following

corollary.

Corollary 3.9. Let G be a connected graph other than a path with distance matrix D. If S is a

resolving set of G and rank(D[S]) < |S|, then S contains a smaller resolving set of G.

4 Conclusion and open problems

In this paper, we gave a lower bound of the metric dimension dim(G) of any connected bipar-

tite/singular graph G in terms of its nullity η(G). Then, we gave infinite examples of graphs

having equal metric dimension and nullity using the rooted product of graphs. We found that

dim(G(H)) = η(G(H)) if H is the set of branch graphs having only odd tails and having at least

two tails. It is still an open problem to characterize or list other graphs having equal metric

dimension and nullity.

Problem 4.1. Give other examples of graphs G with dim(G) = η(G).

Another interesting problem is to investigate dim(G(H)) when H is the set of complete graphs of

order at least 3. As a preliminary observation, it is known that for every integer n ≥ 2, dim(Kn) =

n − 1. On the other hand, we also have mA(Kn)(−1) = n − 1, thus dim(Kn) = mA(Kn)(−1).

We conjectured that there is a relationship between the metric dimension of a graph with the

multiplicity of eigenvalue −1 through the existence of a clique.

Problem 4.2. Investigate the relationships between the metric dimension of a graph having cliques

and the multiplicity of −1 in their spectrum. In particular, if F = G(H) where G is any connected
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bipartite graph and H is the set of complete graphs of order at least 3, then compare dim(F ) and

mA(F )(−1).

Lastly, we gave a relationship between the metric dimension of a graph and its distance matrix. We

showed that if S is a minimal resolving set of G having distance matrix D, then D[S] is full-rank.

Since the metric dimension of a graph is closely related to the graph distance, there may be more

relationships between the metric dimension and the distance matrix of a graph.

Problem 4.3. Find other relationships between the metric dimension of a graph and its distance

matrix.
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