
CUBO, A Mathematical Journal

Vol. 28, no. 1, pp. 53–78, January 2026
DOI: 10.56754/0719-0646.2801.053

Normalized solutions for coupled Kirchhoff
equations with critical and subcritical nonlinearities

Qilin Xie1,B

Lin Xu2

1 School of Mathematics and Statistics,

Guangdong University of Technology,

Guangzhou 510520, Guangdong, People’s

Republic of China.

xieql@gdut.edu.cnB

2 School of Mathematics and Statistics,

Southwest University, Chongqing 400715,

People’s Republic of China.

327570172@qq.com

ABSTRACT

In this paper, we study Kirchhoff equations with constraint
conditions

−
(
a+ b

∫
R3

|∇u1|2 dx
)
∆u1 = λ1u1

+ µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 in R3,

−
(
a+ b

∫
R3

|∇u2|2 dx
)
∆u2 = λ2u2

+ µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2 in R3,∫
R3

|u1|2 dx = c1,

∫
R3

|u2|2 dx = c2,

u1 ∈ H1 (R3) , u2 ∈ H1 (R3) .

(P)

where a, b, β, µi, ci > 0, ri > 1, 2 < pi < 14
3

< r :=

r1 + r2 ≤ 2∗ for i = 1, 2, and λ1, λ2 ∈ R appear as Lagrange
multipliers. The existence of normalized solutions for p1 and
p2 within a specific range of (2, 14

3
) has been considered both

the Sobolev subcritical case (r < 2∗) and the critical case
(r = 2∗) by the Minimax principle and variational methods.
This paper provides a refinement and extension of the results
for the normalized solutions to Kirchhoff equations.
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RESUMEN

En este artículo, estudiamos ecuaciones de Kirchhoff con
condiciones de restricción

−
(
a+ b

∫
R3

|∇u1|2 dx
)
∆u1 = λ1u1

+ µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 en R3,

−
(
a+ b

∫
R3

|∇u2|2 dx
)
∆u2 = λ2u2

+ µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2 en R3,∫
R3

|u1|2 dx = c1,

∫
R3

|u2|2 dx = c2,

u1 ∈ H1 (R3) , u2 ∈ H1 (R3) .

(P)

donde a, b, β, µi, ci > 0, ri > 1, 2 < pi <
14
3

< r := r1+r2 ≤
2∗ para i = 1, 2, y λ1, λ2 ∈ R aparecen como multiplicadores
de Lagrange. La existencia de soluciones normalizadas para
p1 y p2 en un rango específico de (2, 14

3
) ha sido considerado

tanto el caso Sobolev subcrítico (r < 2∗) y el caso crítico (r =

2∗) a través del principio Minimax y métodos variacionales.
Este artículo entrega un refinamiento y una extensión de
los resultados para soluciones normalizadas de ecuaciones de
Kirchhoff.

Keywords and Phrases: Normalized solution, Kirchhoff equations, variational methods.
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1 Introduction and main results

In this paper, we are concerned with the existence of normalized solutions to following Kirchhoff

equations in H1
(
R3
)
×H1

(
R3
)
,

−
(
a+ b

∫
R3

|∇u1|2 dx
)
∆u1 = λ1u1 + µ1 |u1|p1−2

u1 + βr1 |u1|r1−2
u1 |u2|r2 ,

−
(
a+ b

∫
R3

|∇u2|2 dx
)
∆u2 = λ2u2 + µ2 |u2|p2−2

u2 + βr2 |u1|r1 |u2|r2−2
u2,

(1.1)

under mass constraints, ∫
R3

|u1|2 dx = c1,

∫
R3

|u2|2 dx = c2, (1.2)

where c1, c2 are prescribed positive constants.

The Kirchhoff-type problems, initially proposed by Kirchhoff in 1883 [18], extend the classical

d’Alembert wave equations. Following the foundational work by Lions [22], Kirchhoff-type equa-

tions have attracted significant interest, leading to extensive exploration of their steady-state mod-

els. Early classical studies on Kirchhoff equations can be found in [1,12,13,19,23] and the references

therein.

Currently, physicists are particularly interested in solutions that satisfy normalized conditions:∫
R3 |ui|2dx = ci, for i = 1, 2, due to their clear physical significance, particularly regarding mass.

For example, from a physical perspective, the normalized condition can represent the number of

particles in each component of Bose-Einstein condensates or the power supply in nonlinear optics.

In this context, λi appears as an unknown quantity in the Kirchhoff equations (1.1). It is therefore

natural to prescribe the value of the mass so that λi can be interpreted as Lagrange multipliers.

From this perspective, problem (P) can be addressed by studying certain constrained variational

problems, obtaining normalized solutions by identifying critical points of the energy functional

J : H1
(
R3
)
×H1

(
R3
)
→ R defined by

J (u1, u2) =
a

2

2∑
i=1

∥∇ui∥22 +
b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

pi
∥ui∥pi

pi
− β

∫
R3

|u1|r1 |u2|r2dx,

constrained on S := S (c1) × S (c2), where ∥ · ∥p denotes the standard norm in Lp
(
R3
)

for p ∈
[1,+∞) and S(c) :=

{
u ∈ H1

(
R3
)
: ∥u∥22 = c

}
for any c > 0.

When b = 0, the Kirchhoff equations (1.1) reduce to a nonlinear Schrödinger equations. In this

case, we note that the mass critical exponent 10
3 . If the problem (P) is purely mass subcritical, i.e.,

2 < p1, p2, r < 10
3 , Gou and Jeanjean [10] searched for a critical point of J as a global minimizer

of J on S. In the purely mass supercritical case, i.e., 10
3 < p, q, r < 2∗, Bartsch et al. [3] first

considered the case of p = q = r = 4. They obtained the existence of positive solutions to problem

(P) provided 0 < β < β1(c1, c2) or β > β2(c1, c2). Bartsch and Jeanjean [2] extended these results
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of [3] to 10
3 < p1, p2, r < 2∗. Recently, Jeanjean et al. [17] focused on the coupled purely mass

supercritical case and proved the existence of solutions for all c1, c2, and without restrictions on

β. For the mixed cases such as 2 < p1, p2 < 10
3 < r < 2∗ or 2 < r < 10

3 < p1, p2 < 2∗, Gou and

Jeanjean [11] explored the multiplicity of solutions to problem (P). Later, Bartsch and Jeanjean

[2] used the mountain pass lemma and a compactness argument to show that problem (P) has a

positive solution for suitable c1, c2 > 0 when 2 < p1 <
10
3 < p2 and r < 2∗. In the Sobolev critical

case, Li and Zou [21] investigated the condition that 2 < p1, r < 2∗, p2 ≤ 2∗. Bartsch et al. [4]

also considered the Sobolev critical case with 2 < r < 2∗ = p1 = p2. When 10
3 < p1, p2 < r = 2∗,

Liu and Fang [24] demonstrated that problem (P) has a mountain pass solution. Zhang and Han

[34] obtained a positive ground state solution of problem (P) with 2 < p1, p2 < 10
3 and r = 2∗.

When b > 0, there are several results in the literature dealing with normalized solutions to problem

(P). Ye [32,33] considered this constrained problem for a single Kirchhoff equation
−
(
a+ b

∫
R3

|∇u|2dx
)
∆u = λu+ µ|u|p−2u in R3,∫

R3

|u|2dx = c.
(1.3)

Ye proved that p = 14
3 is a mass critical exponent for Kirchhoff equation. To be more precise, the

functional corresponding to problem (1.3) is

Iµ(u) :=
a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

µ

p
∥u∥pp,

which is bounded from below on manifold S(c) when 2 < p < 14
3 . However, when 14

3 < p < 6, the

functional is not bounded from below on S(c). By Ekeland’s variational principle and the strict

monotonicity of a energy function, Cao et al. [5] considered the existence of positive solutions to

problem (P) with the purely mass subcritical case 2 < p1, p2, r < 14
3 . Recently, Yang [31] showed

the existence of positive solutions to problem (P) in the purely mass supercritical case 14
3 < p1,

p2, r < 2∗ and in the mixed case 2 < r < 14
3 < p1, p2 < 2∗. Hu and Mao [15] further obtained the

existence of two solution (local minimizer and Mountain-Pass type) for the mixed cases 2 < p1,

p2 ≤ 10
3 and 14

3 < r < 2∗. More results about the normalized solutions, we refer the readers to

[8, 14,29,30].

To provide clarity in the discussion, we summarize some of the results on normalized solutions to

problem (P) in Table 1.

Motivated by the aforementioned works, we study normalized solutions to problem (P) in three

distinct cases: (H1): 10
3 < p1, p2 < 14

3 < r < 2∗; (H2): 2 < p1 < 14
3 < p2, r < 2∗ and

(H3): 2 < p1, p2 < 10
3 , r = 2∗. To address compactness issues, we work within the radial space

Sr := Sr (c1)×Sr (c2), where Sr(c) :=
{
u ∈ H1

r

(
R3
)
: ∥u∥22 = c

}
, and H1

r

(
R3
)

denotes the space of
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Table 1

b p1, p2, r Types of solutions References
b = 0 2 < p1, p2, r <

10
3 a global minimizer [2, 10]

b = 0 10
3 < p1, p2, r < 6 Mountain Pass solution [2, 3]

b = 0 2 < p1 <
10
3 < p2, r < 6 Mountain Pass solution [2]

b = 0 2 < r < 10
3 < p1, p2 < 6 Mountain Pass solution, a local minimizer [11]

b = 0 r = 6 or p1, p2 = 6 Mountain Pass solution, ground state solution [4, 21,24,34]
b > 0 2 < p1, p2, r <

14
3 a global minimizer [5]

b > 0 14
3 < p1, p2, r < 6; 2 < r < 14

3 < p1, p2 < 6 Mountain Pass solution, a local minimizer [31]
b > 0 2 < p1, p2 ≤ 10

3 ,
14
3 < r < 6 Mountain Pass solution, a local minimizer [15]

b > 0 10
3 < p1, p2 <

14
3 ,

14
3 < r < 6 open problem

b > 0 2 < p1 <
14
3 < p2, r < 6 open problem

b > 0 2 < p1, p2 <
14
3 , r = 6 open problem

radial functions on R3. By the principle of symmetric criticality, the critical points of J constrained

on Sr are also critical points of J constrained on S.

It is known that critical points of J |Sr
stay in

P := {(u1, u2) ∈ Sr : P (u1, u2) = 0} ,

as a consequence of Pohozaev identity, where

P (u1, u2) := a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µiγpi∥ui∥pi
pi

− βrγr

∫
R3

|u1|r1 |u2|r2dx.

Moreover, we define for u ∈ S(c) the map

(s ⋆ u)(x) := e
3s
2 u (esx) , s ∈ R,

which preserves the L2 norm and plays a special role in the study of structures of J(u1, u2) and

P (u1, u2) on the constraint Sr. We introduce the fiber mapping for J(u1, u2),

Φu1,u2(s) : = J(s ⋆ u1, s ⋆ u2) (1.4)

=
ae2s

2

2∑
i=1

∥∇ui∥22 +
be4s

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µie
piγpi

s

pi
∥ui∥pi

pi
− βerγrs

∫
R3

|u1|r1 |u2|r2dx,

for any (u1, u2) ∈ Sr. It is easy to verify that (s ⋆ u, s ⋆ v) ∈ P if and only if s is a critical point of

Φu1,u2
(s). In particular, (u, v) ∈ P if only if s = 0 is a critical point of Φu1,u2

(s).

We will require some preliminary results regarding problem (1.3). Let m(c, µ) denote the ground

state level, defined as

m(c, µ) := inf

{
Iµ(u) : u ∈ S(c) such that

(
Iµ
∣∣
S(c)

)′
(u) = 0

}
,
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and introduce the Pohozaev set for the single Kirchhoff equation:

V (c) :=
{
u ∈ S(c) : 0 = a∥∇u∥22 + b∥∇u∥42 − µγp∥u∥pp

}
.

Now, we state the first result about the mass sub-critical case as follows.

Theorem 1.1. Assume the following assumptions (H1) holds,

(H1) :
10

3
< p1, p2 <

14

3
< r < 2∗.

There exists β0 := β0(c1, c2) > 0, such that for 0 < β ≤ β0 and c1, c2 < c∗, problem (P) has a

positive normalized solution.

Inspired by [2], Bartsch and Jeanjean constructed a minimax level and proved the existence of a

positive normalized solution for Schrödinger equations with 2 < p1 <
10
3 < p2, r < 2∗. Our second

result deals with the case

(H2) : 2 < p1 <
14

3
< p2, r < 2∗; 2 < r2 <

10

3
.

which we call it mix mass sup-critical case.

Theorem 1.2. Assume that (H2) holds. For

(p1) 2 < p1 ≤ 10
3 and c1 > 0, or 10

3 < p1 <
14
3 and c1 > c∗, where c∗ is positive constant only

depend on a, b, µ1,

if m(c1, µ1) +m(c2, µ2) < 0, problem (P) has a positive normalized solution.

As a corollary of Theorem 1.2, we obtain the following results.

Corollary 1.3. Assume that (H2) holds.

(i) For any c2 > 0, there exists c̄1, such that for c1 ≥ c̄1, problem (P) has a positive normalized

solution.

(ii) For any c1 > c∗, there exists c̄2, such that for c2 ≥ c̄2, problem (P) has a positive normalized

solution.

Last, we consider the mass sub-critical and Sobolev critical case,

(H3) : 2 < p1, p2 ≤ 10

3
, r = 2∗.
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Theorem 1.4. Assume that (H3) holds. There exist β∗ := β∗(c1, c2) and µ∗, such that for 0 <

β < β∗ and µ1, µ2 < µ∗, problem (P) has a ground state solution.

Remark 1.5. (i) Theorem 1.1 serves as a complement to the work of Hu and Mao [15], specif-

ically addressing the case of problem (P) with 2 < p1, p2 ≤ 10
3 and 14

3 < r < 2∗. Compared

with a single equation, the main difficulty for systems is how to exclude the semi-trivial so-

lutions. In [15], the authors heavily rely on p < 10
3 since that m(c, µ) < 0 to excluding

semi-trivial solutions. However, we partially extend to the case that 10
3 < p1, p2 <

14
3 with

the mass constrained suitable small to overcome this difficulty.

(ii) Theorems 1.2 and 1.4 complement the results of Zhang and Han [34] and Bartsch and Jean-

jean [2], which extended the study from Schrödinger equations to Kirchhoff equations.

(iii) Compared Kirchhoff equations with single Kirchhoff equation, the existence and types of so-

lutions to problem (P) are similar to the result of single equation,
−
(
a+ b

∫
R3

|∇u|2dx
)
∆u = λu+ µ|u|q−2u+ |u|p−2u, in R3,∫

R3

|u|2dx = c,
(1.5)

where a, b, c are positive constants and 2 < q < p ≤ 2∗. Feng et al. in [7] have proven

that under condition 2 < q < 10
3 < p = 2∗, problem (1.5) has a second solution. It is an

interesting question whether problem (P) also has a second solution under condition (H3)?

The rest of this paper is organized as follows. In Section 2, we present some preliminary results.

Sections 3-5 are devoted to the proofs of Theorems 1.1-1.4.

Notation: In this paper, we denote H := H1
(
R3
)
× H1

(
R3
)

and Hr := H1
r

(
R3
)
× H1

r

(
R3
)
.

→ and ⇀ denote the strong and weak convergence in the related function space, respectively.

H−1(R3) is the dual space of H1(R3). C, C(·), . . . denote positive constants. on(1) represents

a real sequence with on(1) → 0 as n → +∞. D1,2
(
R3
)

denotes the closure of the function

space C∞
c

(
R3
)

with the norm ∥u∥D1,2(R3) = ∥∇u∥2. The best Sobolev constant S is given by

S = infu∈D1,2(R3)\{0}
∥∇u∥2

2

∥u∥2
2∗

.

2 Preliminary results

Before we proceed further, let us first revisit the Gagliardo-Nirenberg inequality in [27, 28]. For

2 ≤ p ≤ 2∗, there exists a constant Cp > 0 such that for any u ∈ H1(R3),

∥u∥p ≤ Cp∥∇u∥
γp

2 ∥u∥1−γp

2 ,
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where γp = 3(p−2)
2p . For 2 ≤ r1 + r2 ≤ 2∗, there exists q > 1 such that

max

{
2

r1
,

2∗

2∗ − r2

}
≤ q ≤ min

{
2∗

r1
,

2

(2− r2)+

}
. (2.1)

Set q′ := q
q−1 , 2 ≤ r1q, r2q′ ≤ 2∗, by the Hölder inequality, we have

∫
R3

|u1|r1 |u2|r2 dx ≤ ∥u1∥r1r1q∥u2∥
r2
r2q′

<∞,

which implies that the functional J is well defined. For 14
3 < r = r1 + r2 < 2∗, by the Hölder

inequality and the Gagliardo-Nirenberg inequality, we know

∫
R3

|u1|r1 |u2|r2 dx ≤ ∥u1∥r1r ∥u2∥r2r ≤ C∥∇u1∥r1γr

2 ∥∇u2∥r2γr

2

≤ C

(
2∑

i=1

∥∇ui∥22

) r1γr
2
(

2∑
i=1

∥∇ui∥22

) r2γr
2

≤ C
(
∥∇u1∥22 + ∥∇u2∥22

) rγr
2 . (2.2)

Specifically, for r = 2∗, rγr = 2∗, then C = S− 2∗
2 . Next, we need a splitting lemma similar to

Brézis-Lieb Lemma as follows.

Lemma 2.1 ([11, Lemma 2.4], [6, Lemma 2.3]). Assume that r1, r2 > 1, 2 < r1 + r2 ≤ 2∗. If

(un1 , u
n
2 )⇀ (u1, u2) in H,

then up to a subsequence∫
R3

|un1 |
r1 |un2 |

r2 dx =

∫
R3

|u1|r1 |u2|r2 dx+

∫
R3

|un1 − u1|r1 |un2 − u2|r2 dx+ on(1).

Moreover, a description of the PPS sequence is also needed as follows.

Lemma 2.2 ([15, Lemma 2.5, 2.6]). Assume that 2 < p1, p2 < 2∗, 2 < r < 2∗. If {(un1 , un2 )} is a

bounded Palais-Smale sequence for J on Sr, there exist (u1, u2) ∈ Hr and a sequence {(λn1 , λn2 )} ⊂
R2, such that up to a subsequence

(i) (un1 , u
n
2 )⇀ (u1, u2) in Hr, (un1 , un2 ) → (u1, u2) in Lp

(
R3
)
× Lp

(
R3
)

for p ∈ (2, 2∗).

(ii) (λn1 , λ
n
2 ) → (λ1, λ2) in R2.

(iii) J ′ (un1 , u
n
2 )− λn1 (u

n
1 , 0)− λn2 (0, u

n
2 ) → 0 in H−1

r

(
R3
)
×H−1

r

(
R3
)
.

(iv) (u1, u2) is a solution of equations (1.1) for λ1, λ2 ≤ 0 if P (un1 , u
n
2 ) → 0. In addition,

un1 → u1 in H1
r

(
R3
)

if λ1 < 0. Similarly, un2 → u2 in H1
r

(
R3
)

if λ2 < 0.
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Lemma 2.3 ([16]). Let p ∈ (1, 3]. If u ∈ Lp
(
R3
)
∩C2

(
R3
)

is non-negative and satisfies −∆u ≥ 0

in R3, then u = 0.

Lemma 2.4. Let pi ∈ (2, 2∗), i = 1, 2. If (u1, u2) ∈ Hr is a solution of Kirchhoff equations (1.1)

with u1 ≥ 0, u1 ̸= 0, and u2 ≥ 0, then λ1 < 0. Similarly, if u1 ≥ 0, u2 ≥ 0, and u2 ̸= 0, then

λ2 < 0.

Proof. Similar proofs can be referenced in [5, Lemma 2.4].

The following existing results concerning the single Kirchhoff equation is rather significant to the

main proof of Theorems.

Proposition 2.5. Assume that p ∈ (2, 2∗) and µ > 0. Then

(i) [5, Lemma 2.2], [26, Theorem 1.1, 1.4]: Assume that 2 < p < 10
3 , the problem (1.3) has a

unique positive ground state solution for any c > 0. If p = 10
3 , there exists c′ such that the

problem (1.3) has a unique positive ground state solution for c > c′. Moreover, m(c, µ) < 0,

m(c, µ) → −∞ as c→ ∞.

(ii) [5, Lemma 2.2], [26, Theorem 1.1], [25, Theorem 1.1]: Assume that p ∈ ( 103 ,
14
3 ), there exists

0 < c∗ < c∗, such that the problem (1.3) admits exactly two positive normalized solutions w1,

w2 if c > c∗ and no solution if c < c∗. If c ≥ c∗, one of the above positive solutions is the

unique normalized ground state solution. Without loss of generality, let w1 be the normalized

ground state and w2 be the high-energy, then there holds that Iµ(w1) = m(c, µ) ≤ 0 < Iµ(w2),

and m(c, µ) → −∞ as c→ ∞.

(iii) [33], [31, Lemma 3.1]: If p ∈ ( 143 , 2
∗) and problem (1.3) admits a unique solution uc for any

c > 0, m(c, µ) = Iµ (uc) = maxs∈R Φuc(s) = minu∈V (c) Iµ(u) > 0, where

Φu(s) := Iµ(s ⋆ u) =
ae2s

2
∥∇u∥22 +

be4s

4
∥∇u∥42 −

µepγps

p
∥u∥pp.

Moreover, m(c, µ) is strictly decreasing with respect to c.

3 The proof of Theorem 1.1

We shall investigate the mountain pass geometry of J (u1, u2) on Sr.

Lemma 3.1. Assume that (H1) holds.

(i) There exist ρ0 = ρ0 (c1, c2) and β0 = β0 (c1, c2) > 0, such that for 0 < β ≤ β0,

inf
A(2ρ0)\A(ρ0)

J (u1, u2) > 0,
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where A(ρ0) :=
{
(u1, u2) ∈ Sr : ∥∇u1∥22 + ∥∇u2∥22 < ρ0

}
for ρ0 > 0.

(ii) There exists (u1, u2) ∈ Sr\A (2ρ0), such that J (u1, u2) < 0.

Proof. (i) Let ρ := ∥∇u1∥22 + ∥∇u2∥22. By (2.2) and the Gagliardo-Nirenberg inequality, for

(u1, u2) ∈ Sr, we have:

J (u1, u2) =
a

2
ρ+

b

4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

pi
∥ui∥pi

pi
− β

∫
R3

|u1|r1 |u2|r2 dx

≥ b

8
ρ2 −

2∑
i=1

µi

pi
Ci∥∇ui∥

piγpi
2 − βC3ρ

rγr
2

≥ b

8
ρ2 −

2∑
i=1

µi

pi
Ciρ

piγpi
2 − βC3ρ

rγr
2 ,

where Ci := C(c1, c2) for (i = 1, 2, 3). If (H1) holds, then 2 < piγpi < 4 and 4 < rγr < 2∗.

Let ρ0 > 0 be large enough such that

2∑
i=1

µi

pi
Ci (ρ0)

piγpi
−4

2 ≤ b

32
, (3.1)

and then choose β0 > 0 small enough such that

β0C3 (2ρ0)
rγr−4

2 ≤ b

32
.

Hence, for any 0 < β ≤ β0 and (u1, u2) ∈ A (2ρ0) \A (ρ0), i.e., ρ0 ≤ ρ < 2ρ0, we have

J (u1, u2) ≥
b

8
ρ2 −

2∑
i=1

µi

pi
Ciρ

piγpi
2 − βC3ρ

rγr
2 = ρ2

(
b

8
−

2∑
i=1

Ciρ
piγpi

−4

2 − βC3ρ
rγr−4

2

)

≥ bρ20

(
1

8
− 1

32
− 1

32

)
=

b

16
ρ20.

(ii) Let ut(x) := t
3
2u(tx). Then,

∥ut∥22 = ∥u∥22, ∥∇ut∥22 = t2∥∇u∥22, ∥ut∥pp = tpγp∥u∥pp, for all p ∈ (2, 2∗) .

Fix (u1, u2) ∈ Sr, (ut1, ut2) ∈ Sr\A (2ρ0) when t is sufficiently large. Since

J(ut1, u
t
2) =

a

2
t2

2∑
i=1

∥∇ui∥22 +
b

4
t4

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi

pi
tpiγpi∥ui∥pi

pi
− βtrγr

∫
R3

|u1|r1 |u2|r2dx,

it is straightforward to check that ψ(u1,u2)(t) := J (ut1, u
t
2) < 0 for t large enough.
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Thanks to Lemma 3.1, we introduce a minimax structure of the mountain pass type. Specifically,

there exists,

γ (c1, c2) := inf
g∈Γ

max
t∈[0,1]

J(g(t)),

where Γ :=
{
g ∈ C ([0, 1],Sr) : g(0) ∈ ∂A(ρ0), g(1) /∈ A (2ρ0), J(g(1)) < 0

}
. This framework al-

lows us to search for a critical point of the mountain pass type at the level γ (c1, c2). It is clear

that γ (c1, c2) ≥ infu∈∂A(ρ0) J (u1, u2) > 0.

Lemma 3.2. Assume that (H1) holds. There exists a Palais-Smale sequence {(un1 , un2 )} for J |Sr

at the level γ (c1, c2), which satisfies {un1}− → 0, {un2}− → 0, and P (un1 , u
n
2 ) → 0.

Proof. The proof of the theorem is standard, and we omit the detailed steps here. For a compre-

hensive explanation, refer to [15, Lemma 3.1], [2, Lemma 5.5], and [9, Theorem 4.1].

Lemma 3.3. Assume that (H1) holds. There exists a pair of positive solution (u1, u2) to equations

(1.1) for some (λ1, λ2), and J (u1, u2) = γ (c1, c2) > 0.

Proof. By Lemma 3.2, there exists a Palais-Smale sequence {(un1 , un2 )} for J |Sr at the level γ (c1, c2).

We first prove that {(un1 , un2 )} is bounded in Hr. Since P (un1 , u
n
2 ) → 0, we have

a

2∑
i=1

∥∇uni ∥22 + b

2∑
i=1

∥∇uni ∥42 =

2∑
i=1

µiγpi
∥uni ∥pi

pi
+ βrγr

∫
R3

|un1 |
r1 |un2 |

r2 dx+ on(1). (3.2)

Thus,

γ(c1, c2) + on(1) =
a

2

2∑
i=1

∥∇uni ∥22 +
b

4

2∑
i=1

∥∇uni ∥42 −
2∑

i=1

µi

pi
∥uni ∥pi

pi
− β

∫
R3

|un1 |
r1 |un2 |

r2 dx

= a

(
1

2
− 1

rγr

) 2∑
i=1

∥∇uni ∥22 + b

(
1

4
− 1

rγr

) 2∑
i=1

∥∇uni ∥42

−
2∑

i=1

µiγpi

(
1

piγpi

− 1

rγr

)
∥uni ∥pi

pi

≥ a

(
1

2
− 1

rγr

)
ρ+

b

2

(
1

4
− 1

rγr

)
ρ2 −

2∑
i=1

Ciµiγpi

(
1

piγpi

− 1

rγr

)
ρ

piγpi
2 ,

where ρ = ∥∇un1∥22 + ∥∇un2∥22, 4 < rγr < 2∗, 2 < piγpi < 4. Hence, {(un1 , un2 )} is bounded in Hr.

Then, for p, q ∈ (2, 2∗), we may assume that

(un1 , u
n
2 )⇀ (u1, u2) in Hr, (un1 , u

n
2 ) → (u1, u2) in Lp(R3)× Lq(R3). (3.3)

By Lemmas 2.2, 3.2, there exists a sequence {(λn1 , λn2 )} ⊂ R2, such that (λn1 , λ
n
2 ) → (λ1, λ2),

λ1, λ2 ≤ 0. Consequently, (u1, u2) is a solution to equations (1.1) and satisfies P (u1, u2) = 0.
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Since (un1 )
− → 0, (un2 )

− → 0, it follows that u1, u2 ≥ 0.

Now, we prove J (u1, u2) = γ (c1, c2). By (3.3) and Lemma 2.1, the right hand side of (3.2)

converges to
2∑

i=1

µiγpi
∥ui∥pi

pi
+ βrγr

∫
R3

|u1|r1 |u2|r2dx.

Combining this with P (u1, u2) = 0, we have

lim
n→+∞

a

2∑
i=1

∥∇uni ∥22 + b

2∑
i=1

∥∇uni ∥42 = a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42.

Therefore, J (un1 , u
n
2 ) → J (u1, u2), and hence, J (u1, u2) = γ (c1, c2).

Proof of Theorem 1.1. As known from Lemma 3.3, it is sufficient to prove that (u1, u2) ∈ Sr. Using

the fact that (u1, u2) is a solution to equations (1.1), we deduce that

λ1∥u1∥22 + λ2∥u2∥22 = a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

∥∇ui∥42 −
2∑

i=1

µi∥ui∥pi
pi

− βr

∫
R3

|u1|r1 |u2|r2 dx.

Combining Pohozaev identity and the fact that γpi
, γr < 1, we get

λ1∥u1∥22 + λ2∥u2∥22 =

2∑
i=1

µi (γpi − 1) ∥ui∥pi
pi

+ βr (γr − 1)

∫
R3

|u1|r1 |u2|r2 dx < 0.

Hence, at least one of λ1 and λ2 is negative. Without loss of generality, we may assume λ1 < 0.

By Lemma 2.2, we have un1 → u1 in H1
r

(
R3
)
, and then u1 ∈ Sr (c1). For the sake of contradiction,

suppose that λ2 ≥ 0, then

−
(
a+ b

∫
R3

|∇u2|2 dx
)
∆u2 = λ2u2 + µ2 |u2|p2−2

u2 + βr2 |u1|r1 |u2|r2−2
u2 ≥ 0.

It follows from Lemma 2.3 that u2 = 0. Thus, J (u1, u2) = J (u1, 0), and u1 ∈ Sr (c1) satisfies the

equation

−
(
a+ b

∫
R3

|∇u|2 dx
)
∆u = λ1u+ µ1 |u|p1−2

u. (3.4)

However, this equation contradicts Proposition 2.5 (ii) that equation (3.4) admits no solution if

c < c∗. Therefore, λ2 < 0, and then, u2 ∈ Sr (c2). Finally, by the maximum principle, we deduce

that u1, u2 > 0 in R3.
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4 The proof of Theorem 1.2

Inspired by [2], let p1 and p2 be in different ranges i.e., (H2). For any K > 0, set

TK :=
{
u2 ∈ S (c2) : ∥∇u2∥22 ≤ K

}
and BK :=

{
u2 ∈ S (c2) : ∥∇u2∥22 = 2K

}
.

Rewriting that Ju1
(u2) := J (u1, u2) for u1 ∈ S (c1) and

Ju1
(u2) = Ju1

(0) +
a

2
∥∇u2∥22 +

b

4
∥∇u2∥42 −

µ2

p2
∥u2∥p2

p2
− β

∫
R3

|u1|r1 |u2|r2 dx.

Lemma 4.1. Assume that (H2) holds. There exists a continuous function K from S (c1) to R,

u1 7→ K (u1), such that

sup
TK(u1)

Ju1(u2) < inf
BK(u1)

Ju1(u2), for all u1 ∈ S(c1).

The function K is bounded, and it is bounded away from 0 on bounded subsets of S (c1).

Proof. Fixing u1 ∈ S (c1), for u2 ∈ TK , we have that,

Ju1
(u2) ≤ Ju1

(0) +
a

2
∥∇u2∥22 +

b

4
∥∇u2∥42 ≤ Ju1

(0) +
aK(u1)

2
+
bK(u1)

2

4
.

For u2 ∈ BK , γ′ :=
3(r2q′−2)

2q′ , where q′ is defined in (2.1). Using the Gagliardo-Nirenberg inequality

and (2.2), we obtain,

Ju1 (u2) ≥ Ju1(0) + aK(u1) + bK(u1)
2 − µ2

p2
C∥∇u2∥

p2γp2
2 ∥u2∥

p2(1−γp2
)

2 − Cβ∥u1∥r1r1q∥u2∥
r2
r2q′

≥ Ju1
(0) + aK(u1) + bK(u1)

2 − C1K(u1)
p2γp2

2 − C2∥u1∥r1r1qK(u1)
γ′
2 .

Observe that C1K(u1)
p2γp2

2 ≤ a
8K(u1) if K(u1) > 0 is sufficiently small for p2γp2

2 > 1. Similarly,

C2∥u1∥r1r1qK(u1)
γ′
2 ≤ a

8K(u1) ifK(u1) > 0 is sufficiently small for γ′

2 > 1, provided that q < 6
10−3r2

.

We can choose q satisfying this inequality and (2.1) because

6

10− 3r2
> max

{
2

r1
,

2∗

2∗ − r2

}
,

which is a consequence of r1 + r2 >
14
3 and 2 < r2 <

10
3 . More precisely, let K : S (a1) → R+

satisfy

K (u1) ≤ min

{(
a

8C1

) 2
p2γp2

−2

,

(
a

8C2∥u1∥r1r1q

) 2
γ′−2

}
. (4.1)
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For u2 ∈ BK(u1), we have

Ju1 (u2) ≥ Ju1(0) + aK (u1) + bK2 (u1)−
a

8
K (u1)−

a

8
K (u1)

> Ju1(0) +
a

2
K (u1) +

b

4
K2 (u1)≥ sup

TK(u1)

Ju1
(u2). (4.2)

Clearly, we define a continuous function K : S (c1) → R+ that satisfies (4.1) and is bounded away

from 0 on bounded subsets of S (c1). In fact, the right-hand side of (4.1) can serve as a definition.

By (4.1), K is also bounded from above.

Now, we denote

T (u1) := TK(u1), B (u1) := BK(u1),

and

B := {(u1, u2) : u1 ∈ S (c1) , u2 ∈ B (u1)} .

It follows from the assumption (p1) in Theorem 1.2 and Proposition 2.5 that there exists a ground

state solution u ∈ S (c1) for problem (1.3) satisfying

J(u, 0) = m(c1, µ1) = Iµ1(u) = min
u∈S(c1)

J(u, 0) < 0.

Lemma 4.2. Assume that (H2) holds. There exist v̄ ∈ T (u) and w̄ ∈ S (c2) \T2K(u) such that

max{J(u, v̄), J(u, w̄)} < inf
(u1,u2)∈B

J (u1, u2) .

Proof. Since J (u, u2) → J(u, 0) as ∥∇u2∥2 → 0, to obtain v̄ ∈ T (u), we claim that J(u, 0) <

infB J . The functional J(·, 0) : S(c1) → R is coercive because 2 < p1 <
14
3 . Choose R > 0 such

that J(u1, 0) ≥ J(u, 0)+1 if ∥∇u1∥2 ≥ R. It follows from (4.2) and (u1, u2) ∈ B with ∥∇u1∥2 ≥ R

that

J(u1, u2) ≥ J(u1, 0) +
3

4
K(u1) > J(u, 0) + 1. (4.3)

For (u1, u2) ∈ B with ∥∇u1∥2 ≤ R, there holds,

J(u1, u2) ≥ J(u1, 0) +
3

4
K(u1) ≥ J(u, 0) +

3

4
ε, (4.4)

where ε := inf∥∇u1∥2≤RK(u1) > 0 from Lemma 4.1. By (4.3) and (4.4), the claim holds.

To find w̄ ∈ S(c2)\T2K(u) as required, consider any u ∈ S(c2). Clearly, t ⋆ u ∈ S(c2) for every

t > 0, and ∥∇(t ⋆ u)∥2 → ∞ as t → ∞. Since p2 > 14
3 , fixing an arbitrary u ∈ S(c2), we see that

J(u, (t ⋆ u)) → −∞ as t→ ∞.
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As a result of Lemma 4.2, the set

Γ1 :=
{
g′ ∈ C([0, 1],Sr) : g

′(0) = (v1, v2) , g
′(1) = (w1, w2) , v2 ∈ T (v1) , w2 /∈ T2K(w1),

max {J (v1, v2) , J (w1, w2)} < inf
B
J
}
,

is nonempty.

Lemma 4.3. γ̄ (c1, c2) := infg′∈Γ1
maxt∈[0,1] J(g

′(t)) ≥ infB J.

Proof. It is sufficient to show that for each g′(t) := (g′1(t), g
′
2(t)) ∈ Γ1, there exists t ∈ [0, 1] such

that g′(t) ∈ B. Consider the map α : [0, 1] → R defined by t→ ∥∇g′2(t)∥22 − 2K (g′1(t)). This map

satisfies

α(0) = ∥∇v2∥22 − 2K (v1) ≤ K (v1)− 2K (v1) < 0,

and α(1) = ∥∇w2∥22 − 2K (w1) > 0. Thus, there exists t ∈ [0, 1] such that α(t) = 0, which implies

that g′(t) ∈ B.

Lemma 4.4. Assume that the conditions of Theorem 1.2 hold. Then, we have

γ̄ (c1, c2) ≤ m(c1, µ1) +m(c2, µ2).

Proof. By Proposition 2.5 (iii), there exists ū ∈ V (c2) such that

min
u∈V (c2)

Iµ2
(u) = max

t∈R
Iµ2

(t ⋆ ū) = m(c2, µ2) = Iµ2
(0 ⋆ ū) = Iµ2

(ū) = J(0, ū). (4.5)

Next, we consider the path h : [0, 1] → Sr defined by h(t) = (u, hs(t)), where

hs(t)(x) = e
s(2t−1)3

2 ū
(
es(2t−1)x

)
.

Here, s > 0 is chosen sufficiently large so that

hs(0)(·) = e
−3s
2 ū

(
e−s·

)
∈ T (u), hs(1)(·) = e

3s
2 ū (es·) /∈ T2K(u),

and

max {J (u, hs(0)) , J (u, hs(1))} < inf
B
J.

Therefore, h belongs to Γ1. Utilizing (4.5) and β ≥ 0, we get

max
t∈[0,1]

J(h(t)) ≤ J(u, 0) + max
t∈[0,1]

J (0, hs(t)) = m(c1, µ1) +m(c2, µ2).

This completes the proof.
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Lemma 4.5. Assume that (H2) holds. There exists a Palais-Smale sequence {(un1 , un2 )} ⊂ Sr for

J at the level γ̄ (c1, c2) that satisfies {un1}− → 0, {un2}− → 0 in Hr, and the additional property

that P (un1 , u
n
2 ) → 0. Moreover, the sequence {(un1 , un2 )} is bounded.

Proof. The existence of the sequence {(un1 , un2 )} can be referenced in Lemma 3.2. Here, we only

provide the proof of boundedness. Given that P (un1 , u
n
2 ) = 0, for any ε > 0, we have:

J (un1 , u
n
2 ) =

a

2

2∑
i=1

∥∇uni ∥22 +
b

4

2∑
i=1

∥∇uni ∥42 −
2∑

i=1

µi

pi
∥uni ∥pi

pi
− β

∫
R3

|un1 |r1 |un2 |r2 dx

=
(1 + ϵ)a

4

2∑
i=1

∥∇uni ∥22 +
ϵb

4

2∑
i=1

∥∇uni ∥42 + δ1(ϵ)∥un1∥p1
p1

+ δ2(ϵ)∥un2∥p2
p2

+ βδ3(ϵ)

∫
R3

|un1 |r1 |un2 |r2 dx+
(1− ϵ)

4
P (un1 , u

n
2 ),

where

δ1(ϵ) =
(1− ϵ)µ1γp1

4
− µ1

p1
, δ2(ϵ) =

(1− ϵ)µ2γp2

4
− µ2

p2
, δ3(ϵ) =

(1− ϵ)rγr
4

− 1.

Note that the coefficients satisfy δ1(ϵ) < 0 and δ2(ϵ), δ3(ϵ) > 0 for sufficiently small ε > 0. Although

δ1(ϵ) < 0, the term ∥un1∥p1
p1

is controlled by
∑2

i=1 ∥∇uni ∥42 because p1 < 14
3 . Hence, we conclude

that J is coercive. Consequently, the sequence {(un1 , un2 )} ⊂ Sr is bounded.

Proof of Theorem 1.2. By Lemmas 2.2 and 4.5, we can assume that (un1 , u
n
2 ) ⇀ (u1, u2) in Hr,

where u1 ≥ 0 and u2 ≥ 0. As shown in Lemma 3.3, we have J(u1, u2) = γ̄ (c1, c2). To establish

strong convergence, it suffices to show, according to Lemmas 2.4 and 2.2 (iv), that u1 ̸= 0 and

u2 ̸= 0.

We first claim that: if γ̄ (c1, c2) < 0, then u1 ̸= 0 and u2 ̸= 0.

For contradiction, that at least one of u1 or u2 is zero. Then, by Lemma 2.1,

(un1 , u
n
2 ) → (u1, u2) in Lp

(
R3
)
× Lq

(
R3
)

for p, q ∈ (2, 2∗) and β
∫
R3

|un1 |
r1 |un2 |

r2 dx→ 0.

For the sequence {(un1 , un2 )} satisfying P (un1 , u
n
2 ) → 0, we deduce that

a

2∑
i=1

∥∇uni ∥22 + b

2∑
i=1

∥∇uni ∥42 −
2∑

i=1

µiγpi
∥uni ∥pi

pi
= on(1).
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By the weak lower semi-continuity, we have

J (un1 , u
n
2 ) =

a

2

2∑
i=1

∥∇uni ∥22 +
b

4

2∑
i=1

∥∇uni ∥42 −
2∑

i=1

µi

pi
∥uni ∥pi

pi
− β

∫
R3

|un1 |r1 |un2 |r2dx

=
a

4

2∑
i=1

∥∇uni ∥22 −
2∑

i=1

µiγpi

(
1

piγpi

− 1

4

)
∥uni ∥pi

pi
+ on(1) (4.6)

≥ a

4

2∑
i=1

∥∇ui∥22 − C1∥u1∥p1
p1

+ C2∥u2∥p2
p2
,

where C1 > 0 and C2 > 0. We now distinguish three cases.

Case 1. (u1 = u2 = 0): From (4.6), we obtain J (un1 , u
n
2 ) ≥ 0. Since we have assumed that

γ (c1, c2) < 0, this case cannot occur.

Case 2. (u1 = 0 and u2 ̸= 0): By Lemmas 2.2, 2.4, we have λ2 < 0, and hence un2 → u2 ∈ Sr (c2).

From (4.6), we get

0 > γ̄(c1, c2) = J (un1 , u
n
2 ) ≥

a

4
∥∇u2∥22 + C2∥u2∥p2

p2
> 0, as n→ ∞. (4.7)

This results in a contradiction.

Case 3. (u1 ̸= 0 and u2 = 0): Since u2 = 0 and J(u1, u2) = γ̄ (c1, c2), we have

γ̄(c1, c2) = J (u1, u2) = J (u1, 0) = Iµ1
(u1) .

We know u1 satisfies

−
(
a+ b

∫
R3

|∇u|2dx
)
∆u = λ1u+ µ1|u|p1−2u.

For 2 < p1 ≤ 10
3 , u1 is a positive ground state solution by Propsition 2.5 (i). Thenm(c1, µ1) =

Iµ1
(u1). From Lemmas 4.1, 4.3 and the definitions of B, Γ1, we know that

γ̄ (c1, c2) ≥ inf
B
J > J(u1, 0) = Iµ1

(u1) = m(c1, µ1), (4.8)

which contradicts γ̄ (c1, c2) = m(c1, µ1). When 10
3 < p1 <

14
3 , u1 can be characterized as

either a high energy solution or a ground state solution. If u1 is ground state solution, we

can get a contradiction similar to (4.8). If u1 is high energy solution, we have a contradiction

as 0 < Iµ(u1) = γ̄(c1, c2) < 0. Thus, the claim holds.

In view of Lemmas 2.2, 4.4 and 4.5, to establish the theorem, it is enough to prove that m(c1, µ1)+

m(c2, µ2) < 0. Note also that u1 > 0 and u2 > 0 follow directly from the strong maximum

principle.
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Proof of Corollary 1.3. The Corollary is a straightforward consequence of Theorem 1.2 and Propo-

sition 2.5.

5 The proof of Theorem 1.4

In this section, we first consider the case that (H3). Recalling Proposition 2.5 (i), for 2 < p1,

p2 ≤ 10
3 , there exist u1 and u2 such that

m(c1, µ1) = Iµ1
(u1) and m(c2, µ2) = Iµ2

(u2).

Lemma 5.1. Assume that (H3) holds. There exist β1 := β1(c1, c2) and ρ∗ := ρ∗(c1, c2) > ∥∇u1∥22+
∥∇u2∥22 such that

J(u1, u2) > 0 on A (2ρ∗) \A (ρ∗) for 0 < β < β1,

where A(ρ∗) =
{
(u1, u2) ∈ Sr : ∥∇u1∥22 + ∥∇u2∥22 < ρ∗

}
for ρ∗ > 0.

Proof. Recalling the proof of Lemma 3.1, we can take a sufficiently large ρ∗ such that

ρ∗ > ∥∇u1∥22 + ∥∇u2∥22,

and
2∑

i=1

µi

pi
Ci (ρ∗)

piγpi
−4

2 ≤ b

32
. (5.1)

Next, we choose β1 > 0 to be sufficiently small, such that

β1C3 (2ρ∗)
2∗−4

2 ≤ b

32
. (5.2)

The lemma follows directly from (5.1) and (5.2).

Now we can set

γ′(c1, c2) := inf
A(2ρ∗)

J(u1, u2).

The following lemma plays a crucial role in overcoming compactness.

Lemma 5.2. Assume that (H3) holds. Then, for any 0 < β < β1, the following statements are

true:

(i) γ′(c1, c2) < m(c1, µ1) +m(c2, µ2) < 0.

(ii) γ′(c1, c2) ≤ γ′(c′1, c
′
2), for all 0 < c′1 ≤ c1, 0 < c′2 ≤ c2.
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Proof. (i) From Lemma 5.1, we know that
(
u1, u2

)
∈ A(ρ∗). Furthermore, using Proposition

2.5 (i) and the fact that β > 0, we deduce that

γ′(c1, c2) ≤ J(u1, u2) = Iµ1(u
1)+Iµ2(u

2)−β
∫
R3

∣∣u1∣∣r1 ∣∣u2∣∣r2 dx < m(c1, µ1)+m(c2, µ2) < 0.

(ii) To prove this, we need to show that for any ε > 0, γ′(c1, c2) ≤ γ′(c′1, c
′
2)+ε, for all 0 < c′1 ≤ c1

and 0 < c′2 ≤ c2. Let φ(x) ∈ C∞
c

(
RN ) be a cut-off function such that

0 ≤ ϕ(x) ≤ 1 and ϕ(x) =

 1, |x| ≤ 1,

0, |x| ≥ 2.

By the definition of γ′(c′1, c′2) and Lemma (5.1), there exists (u1, u2) ∈ A (ρ∗) such that

J(u1, u2) ≤ γ′(c′1, c
′
2) +

ε

2
. (5.3)

For any δ > 0, we define (uδ1(x), uδ2(x)) := (u1ϕ(δx), u2ϕ(δx)). Since (uδ1 , uδ2) → (u1, u2)

in Hr as δ → 0+, there exists a sufficiently small δ such that

J (uδ1 , uδ2) ≤ J(u1, u2) +
ε

4
and ∥∇uδ1∥

2
2 + ∥∇uδ2∥

2
2 ≤ 3

2
ρ∗. (5.4)

Let φ(x) ∈ C∞
c

(
R3
)

such that supp(φ) ⊂
{
x ∈ R3 : 4

δ ≤ |x| ≤ 1 + 4
δ

}
and set

(ũ1, ũ2) =


√
c1 − ∥uδ1∥

2
2

∥φ∥2
φ,

√
c2 − ∥uδ2∥

2
2

∥φ∥2
φ

 .

Noting that, for any s ≤ 0,

supp (uδ1) ∩ supp(s ⋆ ũ1) = ∅ and supp (uδ2) ∩ supp(s ⋆ ũ2) = ∅.

As s→ −∞, we have

J(s ⋆ ũ1, s ⋆ ũ2) → 0 and ∥∇s ⋆ ũ1∥22 + ∥∇s ⋆ ũ2∥22 ≤ ε

12ρ∗b
. (5.5)

It follows that

(uδ1 + s ⋆ ũ1, uδ2 + s ⋆ ũ2) ∈ A (2ρ∗) ,
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and by (5.3)-(5.5), for s < 0 large enough, we have

γ′(c1, c2) ≤ J (uδ1 + s ⋆ ũ1, uδ2 + s ⋆ ũ2)

= J (uδ1 , uδ2) + J(s ⋆ ũ1, s ⋆ ũ2) +
b

2

2∑
i=1

∥∇uδi∥22 ∥∇s ⋆ ũi∥22

≤ J(u1, u2) +
ε

4
+
ε

8
+
ε

8
≤ γ′(c′1, c

′
2) + ε.

The proof is completed.

Lemma 5.3. Assume that (H3) holds. For any 0 < β < β1, there exists

µ∗ := µ∗(a, b, c1, c2, p1, p2, β, ρ)

such that for µ1, µ2 < µ∗ and (u1, u2) ∈ Sr, the function Φu1,u2(s), defined in (1.4) has two

critical points tu1,u2
< τu1,u2

and two zeros cu1,u2
< du1,u2

with tu1,u2
< cu1,u2

< τu1,u2
< du1,u2

.

Moreover, for s ∈ R,

(i) If (s ⋆ u1, s ⋆ u2) ∈ P, then either s = tu1,u2 or s = τu1,u2 .

(ii) ∥∇s ⋆ u1∥22 + ∥∇s ⋆ u2∥22 ≤ ρ∗ for every s ≤ cu1,u2
and

J(tu1,u2
⋆ u1, tu1,u2

⋆ u2) = min
{
J(s ⋆ u1, s ⋆ u2) : ∥∇s ⋆ u1∥22 + ∥∇s ⋆ u2∥22 ≤ ρ∗

}
< 0.

(iii) We have J (τu1,u2
⋆ u1, τu1,u2

⋆ u2) = max{J(s ⋆ u1, s ⋆ u2) : s ∈ R}.

Proof. (i) Since piγp1
< 2 for i = 1, 2, and r = 2∗, it is evident that Φu1,u2

(−∞) = 0− and

Φu1,u2
(+∞) = −∞. By Lemma 5.1, we know that Φu1,u2

(s) has at least two critical points

tu1,u2 < τu1,u2 , where tu1,u2 is a local minimum point of Φu1,u2(s) at negative level and τu1,u2 is a

global maximum point at positive level. On the other hand, it is standard to prove that Φu1,u2(s)

has at most two critical points as in [20, Lemma 4.5]. The (ii) and (iii) follow from Lemma 5.1

and (i).

Proof of Theorem 1.4. Consider a minimizing sequence {(un1 , un2 )} ⊂ Sr for J |A(2ρ∗)
. By Lemma

5.3, we have ∥∇tun
1 ,u

n
2
⋆ un1∥22 + ∥∇tun

1 ,u
n
2
⋆ un2∥22 ≤ ρ∗, and the sequence

{
tun

1 ,u
n
2
⋆ un1 , tun,un

2
⋆ un2

}
remains a minimizing sequence for J |A(2ρ∗)

. According to [9, Theorem 4.1], there exists a new

minimizing sequence, still denoted by {(un1 , un2 )} ⊂ A (2ρ∗), such that

J (un1 , u
n
2 ) → γ′(c1, c2), P (un1 , u

n
2 ) → 0, J ′|Sr

(un1 , u
n
2 ) → 0, as n→ ∞. (5.6)
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Given that J ′|Sr
(un1 , u

n
2 ) → 0, there exist sequences {λn1} ⊂ R and {λn2} ⊂ R such that

a

2∑
i=1

∫
R3

∇uni ∇φidx+ b

2∑
i=1

∥∇uni ∥22
∫
R3

∇uni ∇φidx−
2∑

i=1

µi

∫
R3

|uni |pi−2uni φidx

− βr1

∫
R3

|un1 |r1−2|un2 |r2un1φ1dx− βr2

∫
R3

|un1 |r1 |un2 |r2−2un2φ2dx

=

∫
R3

(λn1u
n
1φ1 + λn2u

n
2φ2)dx+ on(1), (5.7)

for any (φ1, φ2) ∈ Hr. Taking (un1 , 0) and (0, un2 ) as test functions, we have λn1 c1 + on(1) = a∥∇un1∥22 + b∥∇un1∥42 − µ1∥un1∥p1
p1
,

λn2 c2 + on(1) = a∥∇un2∥22 + b∥∇un2∥42 − µ2∥un2∥p2
p2
.

Since the sequence {un1 , un2} ⊂ A (2ρ∗) is bounded, we suppose that limn→∞
∫
R3 |∇uni |

2
dx = Ai ≥

0. Without loss of generality, let us assume that, up to a subsequence, (λn1 , λn2 ) → (λ1, λ2) ∈ R2,

(un1 , u
n
2 )⇀ (u1, u2) ∈ Hr and (un1 , u

n
2 ) → (u1, u2) in Lp

(
R3
)
×Lq

(
R3
)

for any p, q ∈ (2, 2∗). Then,

we know that,  −(a+ bA1)∆u1 = λ1u1 + µ1|u1|p1−2u1 + βr1|u1|r1−2u1|u2|r2 ,
−(a+ bA2)∆u2 = λ2u2 + µ2|u2|p2−2u2 + βr2|u1|r1 |u2|r2−2u2.

(5.8)

From (5.8), we have

0 = PA (u1, u2) := a

2∑
i=1

∥∇ui∥22 + b

2∑
i=1

Ai∥∇ui∥22 −
2∑

i=1

µiγpi
∥ui∥pi

pi
− β2∗

∫
R3

|u1|r1 |u2|r2dx.

Let (ūn1 , ū
n
2 ) := (un1 − u1, u

n
2 − u2). Then ūn1 → 0 in Lp1

(
R3
)
, ūn2 → 0 in Lp2

(
R3
)

and we have

P (un1 , u
n
2 ) = PA(u1, u2) + a

2∑
i=1

∥∇ūni ∥22 + b

2∑
i=1

Ai∥∇ūni ∥22 − β2∗
∫
R3

|ūn1 |r1 |ūn2 |r2dx

= a

2∑
i=1

∥∇ūni ∥22 + b

2∑
i=1

Ai∥∇ūni ∥22 − β2∗
∫
R3

|ūn1 |r1 |ūn2 |r2dx+ on(1). (5.9)

From (2.2), (5.9) and Lemma 2.1, we obtain

a

2∑
i=1

∥∇ūni ∥22 ≤ a

2∑
i=1

∥∇ūni ∥22 + b

2∑
i=1

Ai∥∇ūni ∥22 = β2∗
∫
R3

|ūn1 |
r1 |ūn2 |

r2 dx+ on(1)

≤ β2∗S− 2∗
2

(
2∑

i=1

∥∇ūni ∥22

) 2∗
2

+ on(1). (5.10)
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Up to a subsequence, we assume that
∑2

i=1 ∥∇ūni ∥22 → l ≥ 0. According to (5.10), we have l = 0

or l ≥
(

a
β2∗

) 1
2

S
3
2 . If l ≥

(
a

β2∗

) 1
2

S
3
2 , then from (5.6), (5.10), and Lemma 2.1, we conclude

γ′(c1, c2) = lim
n→∞

J (un1 , u
n
2 ) = J(u1, u2) + lim

n→∞
J (ūn1 , ū

n
2 ) +

b

2

2∑
i=1

∥∇uni ∥22∥∇ui∥22

≥ J(u1, u2) + lim
n→∞

J (ūn1 , ū
n
2 )

≥ γ′
(
∥u1∥22, ∥u2∥22

)
+ lim

n→∞

(
a

2

2∑
i=1

∥∇ūni ∥22 +
b

4

2∑
i=1

∥∇ūni ∥42 − β

∫
R3

|ūn1 |
r1 |ūn2 |

r2 dx

)

≥ γ′
(
∥u1∥22, ∥u2∥22

)
+ lim

n→∞

(
a

2

2∑
i=1

∥∇ūni ∥22 − β

∫
R3

|ūn1 |
r1 |ūn2 |

r2 dx

)

≥ γ′
(
∥u1∥22, ∥u2∥22

)
+ lim

n→∞

a
2

2∑
i=1

∥∇ūni ∥22

1− 2

a
βS− 2∗

2

(
2∑

i=1

∥∇ūni ∥22

)2
 .

By
∑2

i=1 ∥∇ūni ∥22 ≤ ρ∗, there exists β∗ < β1 such that
(

a
2β∗

S
2∗
2

) 1
2 ≥ ρ∗. Then

1− 2

a
βS− 2∗

2

(
2∑

i=1

∥∇ūi∥22

)2
 ≥ 0,

when β < β∗, which contradicts with (ii) of Lemma 5.2. Thus,
∑2

i=1 ∥∇ūni ∥22 → 0, as n → ∞.

Then (un1 , u
n
2 ) → (u1, u2) in D1,2(R3)×D1,2(R3) and (u1, u2) is a solution to equations (1.1).

Finally, we will prove that (un1 , un2 ) → (u1, u2) in Hr. Taking (un1 , u
n
2 ) as the test function in (5.7),

we obtain

⟨J ′ (un1 , u
n
2 ) , (u

n
1 , u

n
2 )⟩ = λn1 c1 + λn2 c2 + on(1).

Given that P (un1 , u
n
2 ) → 0, (λn1 , λn2 ) → (λ1, λ2), we have

λ1c1 + λ2c2 = λn1 c1 + λn2 c2 + on(1) =

2∑
i=1

µi (γpi
− 1) ∥uni ∥pi

pi
< 0.

Since λ1c1 + λ2c2 < 0, at least one of λ1 and λ2 is negative. Next, we consider three possible

conditions.

Case 1. (λ1 < 0 and λ2 < 0): Using the fact that

⟨J ′ (un1 , u
n
2 )− λn1 (u

n
1 , 0) , (u

n
1 , 0)⟩ → ⟨J ′ (u1, u2)− λ1 (u1, 0) , (u1, 0)⟩ = 0,

we have  λ1∥un1∥22 + on(1) = a∥∇un1∥22 + b∥∇un1∥42 − µ1∥un1∥p1
p1
,

λ1∥u1∥22 = a∥∇u1∥22 + b∥∇u1∥42 − µ1∥u1∥p1
p1
.
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Since Lemma 2.1, λn1 → λ1 < 0, ∥un1∥p1
p1

→ ∥u1∥p1
p1

, and un1 → u1 in D1,2(R3), we get

∥un1∥22 → ∥u1∥22, leading to strong convergence. The case where λ2 < 0 is treated similarly.

Case 2. (λ1 < 0 and λ2 ≥ 0): Using the method of Case 1, it can be concluded that un1 → u1 in

H1
r

(
R3
)

and u1 ∈ Sr (c1). Assume, by contradiction, that λ2 ≥ 0, then

−
(
a+ b

∫
R3

|∇u2|2 dx
)
∆u2 = λ2u2 + µ2 |u2|p2−2

u2 + βr2 |u1|r1 |u2|r2−2
u2 ≥ 0.

By Lemma 2.3, we deduce that u2 = 0. Thus, J (u1, u2) = J (u1, 0), un1 → u1, and u1 ∈
Sr (c1) satisfies the equation

−
(
a+ b

∫
R3

|∇u|2 dx
)
∆u = λ1u+ µ1 |u|p1−2

u.

Therefore, Iµ1(u1) ≥ m(c1, µ1). On the other hand, by Hölder inequality,

0 ≤
∫
R3

|un1 |
r1 |un2 |

r2 dx ≤ ∥un1∥
r1
2∗ ∥u

n
2∥

r2
2∗ .

Using the fact un2 → 0 in D1,2
(
R3
)
, we have

γ′(c1, c2) = lim
n→∞

J (un1 , u
n
2 ) = Iµ1

(u1)+ lim
n→∞

Iµ2
(un2 )−β lim

n→∞

∫
R3

|un1 |
r1 |un2 |

r2 dx ≥ m(c1, µ1),

which contradicts Lemma 5.2 (i)

Case 3. (λ2 < 0 and λ1 ≥ 0): By similar arguments as in Case 2, we obtain a contradiction

γ′(c1, c2) ≥ m(c2, µ2). Therefore, we conclude that (un1 , u
n
2 ) → (u1, u2) in Hr.

By Lemma 5.3 and γ′(c1, c2) < 0, we have

γ′(c1, c2) = J(u1, u2) = inf
P
J = inf

A(ρ∗)
J < 0.

This implies that (u1, u2) is a ground state solution. The proof of Theorem 1.4 is completed.
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