C b CUBO, A Mathematical Journal
u 0 Vol. 28, no. 1, pp. 53—78, January 2026

A Mathematical Journal DOL: 10.56754/0719-0646.2801.053

Normalized solutions for coupled Kirchhoff
equations with critical and subcritical nonlinearities
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multipliers. The existence of normalized solutions for p; and
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(r = 2%) by the Minimax principle and variational methods.
This paper provides a refinement and extension of the results

for the normalized solutions to Kirchhoff equations.
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RESUMEN

En este articulo, estudiamos ecuaciones de Kirchhoff con

condiciones de restricciéon

,(a =+ b/ |Vu1|2 dZE) Aul =S )\1'LL1
R3

+ g fun [P 2 4 Brfun | P [ue|™ en R,

_(a+b/ |Vu2|2 dx) Aus = \aus
RS P)

+ p2lua[P?"Pug + Brafua | uz| 2uz  en R,

/ |u1|2d9c:cl, / |uz|2dx:02,
R3 R3

up € H' (R?), w2 € H' (R?).

donde a, b, B, pi,ci >0,r; > 1,2 < p; < % <r:=rit+re <
2% parai = 1,2,y A1, A2 € R aparecen como multiplicadores
de Lagrange. La existencia de soluciones normalizadas para
p1 Yy p2 en un rango especifico de (2, %) ha sido considerado
tanto el caso Sobolev subcritico (r < 2¥) y el caso critico (r =
2*) a través del principio Minimax y métodos variacionales.
Este articulo entrega un refinamiento y una extension de
los resultados para soluciones normalizadas de ecuaciones de
Kirchhoff.
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1 Introduction and main results

In this paper, we are concerned with the existence of normalized solutions to following Kirchhoff
equations in H' (R?) x H! (R?),

T b/ [Vur|? dz ) Aug = Mg + pa Jun [P 72wy + Bry Jua |2 g Jus|™,
RS

(L.1)
_ a—l—b/ |Vu2|2 dr ) Aug = Aoug + pio ‘u2‘p272 g + Brs |u1|rl |u2|T272 .
R3

under mass constraints,

/ lu|* dz = e, / us|* dz = ¢, (1.2)
R3 R3

where ¢y, co are prescribed positive constants.

The Kirchhoff-type problems, initially proposed by Kirchhoff in 1883 [18], extend the classical
d’Alembert wave equations. Following the foundational work by Lions [22], Kirchhoff-type equa-
tions have attracted significant interest, leading to extensive exploration of their steady-state mod-
els. Early classical studies on Kirchhoff equations can be found in [1,12,13,19,23] and the references

therein.

Currently, physicists are particularly interested in solutions that satisfy normalized conditions:
ng |ui|?dz = ¢;, for i = 1,2, due to their clear physical significance, particularly regarding mass.
For example, from a physical perspective, the normalized condition can represent the number of
particles in each component of Bose-Einstein condensates or the power supply in nonlinear optics.
In this context, \; appears as an unknown quantity in the Kirchhoff equations (1.1). It is therefore
natural to prescribe the value of the mass so that A; can be interpreted as Lagrange multipliers.
From this perspective, problem (P) can be addressed by studying certain constrained variational
problems, obtaining normalized solutions by identifying critical points of the energy functional
J:H' (R?) x H' (R*) — R defined by

2 2 2
a b i ; r T
T ) = § oIVl + 3 19wl = 3l = 8 [l ol
i=1 i=1 i=1
constrained on 8 := S (c1) x S (c2), where | - ||, denotes the standard norm in L? (R?) for p €
[1,400) and S(c) := {u € H' (R?) : ||lul|3 = ¢} for any ¢ > 0.

When b = 0, the Kirchhoff equations (1.1) reduce to a nonlinear Schrédinger equations. In this
case, we note that the mass critical exponent %. If the problem (P) is purely mass subcritical, i.e.,
2<p1,pa, < %0, Gou and Jeanjean [10] searched for a critical point of J as a global minimizer
of J on §. In the purely mass supercritical case, i.e., 1—30 < p, q, r < 2% Bartsch et al. [3] first
considered the case of p = ¢ = r = 4. They obtained the existence of positive solutions to problem

(P) provided 0 < 8 < B1(e1,¢2) or B > Ba(cy, c2). Bartsch and Jeanjean [2] extended these results
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of [3] to % < p1, p2, r < 2*. Recently, Jeanjean et al. [17] focused on the coupled purely mass

supercritical case and proved the existence of solutions for all ¢, ¢, and without restrictions on
(. For the mixed cases such as 2 < p1, ps < % <r<22for2<r< % < p1, p2 < 2%, Gou and
Jeanjean [11] explored the multiplicity of solutions to problem (P). Later, Bartsch and Jeanjean
[2] used the mountain pass lemma and a compactness argument to show that problem (P) has a
positive solution for suitable ¢, co > 0 when 2 < p; < % < pg and 7 < 2*. In the Sobolev critical
case, Li and Zou [21] investigated the condition that 2 < py, r < 2%, py < 2*. Bartsch et al. [4]
also considered the Sobolev critical case with 2 < r < 2* = p; = po. When %0 < p1, p2 < 1T = 2%,
Liu and Fang [24] demonstrated that problem (P) has a mountain pass solution. Zhang and Han

[34] obtained a positive ground state solution of problem (P) with 2 < py, p; < 3 and r = 2*.

When b > 0, there are several results in the literature dealing with normalized solutions to problem

(P). Ye [32,33] considered this constrained problem for a single Kirchhoff equation

— (a +b |Vu2da:> Au = du+ plulP~2u  in R3,
R3

/ lu|?dz = c.
R3

Ye proved that p = % is a mass critical exponent for Kirchhoff equation. To be more precise, the

(1.3)

functional corresponding to problem (1.3) is
I(MIZQNVM@+QHVM6—£%MV
" 2 4 p P’

which is bounded from below on manifold S(¢) when 2 < p < %. However, when %4 < p <6, the
functional is not bounded from below on S(¢). By Ekeland’s variational principle and the strict
monotonicity of a energy function, Cao et al. [5] considered the existence of positive solutions to
problem (P) with the purely mass subcritical case 2 < py, pa, r < %. Recently, Yang [31] showed
the existence of positive solutions to problem (P) in the purely mass supercritical case % < p1,
P2, r < 2* and in the mixed case 2 < r < 13—4 < p1, p2 < 2*. Hu and Mao [15] further obtained the
existence of two solution (local minimizer and Mountain-Pass type) for the mixed cases 2 < py,
p2 < % and 1,—34 < r < 2*. More results about the normalized solutions, we refer the readers to

[8,14,29,30].

To provide clarity in the discussion, we summarize some of the results on normalized solutions to

problem (P) in Table 1.

Motivated by the aforementioned works, we study normalized solutions to problem (P) in three

distinct cases: (Hip): 1—30 < p1, p2 < % <r < 2% (Ha): 2<p < % < pg, T < 2% and

(H3): 2 < p1, p2 < 1,—30, r = 2*. To address compactness issues, we work within the radial space

S, =5, (c1) X Sy (c2), where S, (c) := {u € H} (R?) : |[ul3 = ¢}, and H} (R?) denotes the space of
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Table 1

b P1,D2, T Types of solutions References
b=0 2 < p1,pa2, T < % a global minimizer (2,10]
b=0 % < p1,p2,7 <6 Mountain Pass solution [2,3]
b= 2<p1 < % <pa,r <6 Mountain Pass solution 2]
b=0 2<r< % <p1,p2 <6 Mountain Pass solution, a local minimizer [11]
b=0 r=6orp,py =06 Mountain Pass solution, ground state solution [4,21,24, 34|
b>0 2 < pr,pa,r < i a global minimizer [5]
b>0 %4 < p1,p2,r<6; 2<r< 13—4 < p1,p2 <6 Mountain Pass solution, a local minimizer [31]
b>0 2<p1,p2 < %, % <r<6 Mountain Pass solution, a local minimizer [15]
b>0 1—30 < p1,p2 < 1—34, % <r<6 open problem
b>0 2<p1<%<p2,7“<6 open problem
b>0 2<p1,p2<%,7":6 open problem

radial functions on R3. By the principle of symmetric criticality, the critical points of J constrained

on S, are also critical points of J constrained on S.

It is known that critical points of J|g stay in
P = {(ur,uz) €Sy : P(u1,u2) =0},

as a consequence of Pohozaev identity, where

2 2 2
P (ug,ug) i=a y_||Vull3 + b 1Vulls = piyp, |5 = Broe /3 ur | [ug| " dz.
i=1 i=1 i=1 R

Moreover, we define for u € S(c) the map

3s
2

(sxu)(z):=ezu(e’x), seR,

which preserves the L? norm and plays a special role in the study of structures of J(uy,uz) and

P(uy,uz) on the constraint S,.. We introduce the fiber mapping for J(uy,us),

(I)ul,uz(s) c=J(s*ui, sxug) (1.4)
ae?® & bets & 2 puePivmis ,
=5 > IVl + - STIvVulls =" /“THM P Bemne /R | ug|"2d,
i=1 i=1 i=1 v

for any (u1,us) € S,. It is easy to verify that (s*wu,s*v) € P if and ouly if s is a critical point of

Dy, 0y (8). In particular, (u,v) € P if only if s =0 is a critical point of @y, 4, (s).

We will require some preliminary results regarding problem (1.3). Let m(c, ) denote the ground

state level, defined as

m(c, ) := inf {Iu(u) :u € S(c) such that (IM|S(C))/ (u) = O} ,
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and introduce the Pohozaev set for the single Kirchhoff equation:
V(e) = {u€ S(c): 0= al|Vull3 +b]|Vullz — pyp b} -

Now, we state the first result about the mass sub-critical case as follows.

Theorem 1.1. Assume the following assumptions (Hy) holds,

10 14
(Hy) : §<p1, p2<§<7“<2*.

There exists By := Bolc1,c2) > 0, such that for 0 < 8 < By and ¢1,¢0 < ¢*, problem (P) has a

positive normalized solution.

Inspired by [2], Bartsch and Jeanjean constructed a minimax level and proved the existence of a
positive normalized solution for Schrodinger equations with 2 < p; < % < pa, r < 2*. Our second

result deals with the case

14 10
(H2) : 2<p1<§<p2,7“<2*; 2<r2<§.

which we call it mix mass sup-critical case.

Theorem 1.2. Assume that (Hs) holds. For

(p) 2<p < 1—30 and c¢1 > 0, or % <p1 < 1—34 and c1 > ¢y, where c, is positive constant only

depend on a,b, uy,
if m(cy, 1) +m(ce, p2) <0, problem (P) has a positive normalized solution.

As a corollary of Theorem 1.2, we obtain the following results.

Corollary 1.3. Assume that (Hs) holds.

(i) For any cy > 0, there exists €1, such that for ¢y > €1, problem (P) has a positive normalized

solution.

(i) For any c1 > cx, there exists Ca, such that for co > €, problem (P) has a positive normalized

solution.
Last, we consider the mass sub-critical and Sobolev critical case,

10 .
(H3): 2 <pu, pQSE, r=2"
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Theorem 1.4. Assume that (Hs) holds. There exist By := Bx(c1,¢2) and p., such that for 0 <
B < B and py, p2 < pii, problem (P) has a ground state solution.

Remark 1.5. (i) Theorem 1.1 serves as a complement to the work of Hu and Mao [15], specif-
ically addressing the case of problem (P) with 2 < p1,pa < % and 1?4 <r < 2* Compared
with a single equation, the main difficulty for systems is how to exclude the semi-trivial so-
lutions. In [15], the authors heavily rely on p < 1—30 since that m(c,u) < 0 to excluding
sema-trivial solutions. However, we partially extend to the case that % < p1,p2 < 13—4 with

the mass constrained suitable small to overcome this difficulty.

(i4) Theorems 1.2 and 1.4 complement the results of Zhang and Han [34] and Bartsch and Jean-
jean [2], which extended the study from Schrodinger equations to Kirchhoff equations.

(#3i) Compared Kirchhoff equations with single Kirchhoff equation, the existence and types of so-

lutions to problem (P) are similar to the result of single equation,

- (a + b/ |Vu|2dx) Au = Au+ plul?%u + |[u|P~u,  in R3,
R? (1.5)
/ lu|?dz = c,
R3

where a, b, ¢ are positive constants and 2 < q < p < 2*. Feng et al. in [7] have proven
that under condition 2 < q < 1?70 < p = 2%, problem (1.5) has a second solution. It is an

interesting question whether problem (P) also has a second solution under condition (Hs)?

The rest of this paper is organized as follows. In Section 2, we present some preliminary results.

Sections 3-5 are devoted to the proofs of Theorems 1.1-1.4.

Notation: In this paper, we denote H := H! (Rs) x H! (RS) and H, := H} (R3) x H} (R3).
— and — denote the strong and weak convergence in the related function space, respectively.
H~1(R3) is the dual space of H!(R3). C, C(-),... denote positive constants. o,(1) represents
a real sequence with 0,(1) — 0 as n — +oo. D'?(R?) denotes the closure of the function
space C2° (R?) with the norm |u| p1.2gs)y = ||[Vull2. The best Sobolev constant S is given by

2
S = infuepl,z(Ra)\{o} %

2 Preliminary results

Before we proceed further, let us first revisit the Gagliardo-Nirenberg inequality in [27,28|. For
2 < p < 2%, there exists a constant Cj, > 0 such that for any u € H*(R3?),

1—
lully < CpllVull3 [[ull,™ ™,
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3(p—2)
2p

where v, = . For 2 < ry + ry < 2% there exists ¢ > 1 such that

2 2 < ¢ <mi 2 2 (2.1)
max<{ —, <g<mmn{—,—— . .
T1 2% — ) q T1 (2 — T2)+

Set ¢’ := -4, 2 < riq, roq¢' < 2%, by the Holder inequality, we have
q—1

[t e do < ez, < oo,

which implies that the functional J is well defined. For % <r =ry+ry < 2% by the Holder

inequality and the Gagliardo-Nirenberg inequality, we know

/ " fua|™ da < Jlua |7 uzl[7? < Ol Vua 37 | Vuelly™™
R3

2
<c (Z ||wi|3>
=1

rayr
2

2 TYr
(Z ||Vui||§> < C(IVurl3 + [Vuall3) = . (2.2)
=1

1T
2

Specifically, for r = 2*, rv, = 2%, then C' = S—%. Next, we need a splitting lemma similar to

Brézis-Lieb Lemma as follows.

Lemma 2.1 ([11, Lemma 2.4], [6, Lemma 2.3]). Assume that ri, ro > 1, 2 <71y +19 <2*. If
(uf, uy) — (u1,ug) in H,

then up to a subsequence

[t s e = [l sl de+ [ =™ g = el e+ on(1)

Moreover, a description of the PPS sequence is also needed as follows.

Lemma 2.2 ([15, Lemma 2.5, 2.6]). Assume that 2 < p1,ps < 2%, 2 <r < 2*. If {(u},ul)} is a
bounded Palais-Smale sequence for J on Sy, there exist (u1,u2) € Hy and a sequence {(AT,\5)} C

R?, such that up to a subsequence
(i) (up,uf) = (u1,u2) in Hy, (uf,uf) — (u1,u2) in LP (R?) x LP (R3) for p € (2,2%).
(i) (A, A) = (A1, A2) in R2.

(iii) J' (ul,uf) — AT (uf,0) — A5 (0,u3) — 0 in H ' (R?) x H' (R?).

ull — up in HY (R?) if \y < 0. Similarly, u§ — us in H' (R3) if Ay < 0.
1 r 2 T

(iv) (u1,u2) is a solution of equations (1.1) for Ay, Ay < 0 if P (u},uy) — 0. In addition,
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Lemma 2.3 ([16]). Let p € (1,3]. Ifu € LP (R3) NC? (R?) is non-negative and satisfies —Au > 0
in R3, then u = 0.

Lemma 2.4. Let p; € (2,2%), i = 1,2. If (u1,u2) € H, is a solution of Kirchhoff equations (1.1)
with uy > 0, uy # 0, and ug > 0, then Ay < 0. Similarly, if u; > 0, ug > 0, and uy # 0, then
Aoy < 0.

Proof. Similar proofs can be referenced in [5, Lemma 2.4]. O

The following existing results concerning the single Kirchhoff equation is rather significant to the

main proof of Theorems.

Proposition 2.5. Assume that p € (2,2*) and p > 0. Then

(7) [5, Lemma 2.2/, [26, Theorem 1.1, 1.4]: Assume that 2 < p < ?, the problem (1.3) has a

unique positive ground state solution for any ¢ > 0. If p = %, there exists ¢’ such that the
problem (1.3) has a unique positive ground state solution for ¢ > ¢’. Moreover, m(c,u) < 0,

m(ec, 1) = —00 as ¢ — 0.

(ii) [5, Lemma 2.2], [26, Theorem 1.1], [25, Theorem 1.1]: Assume that p € (32, 1!), there exists
0 < ¢* < ¢y, such that the problem (1.3) admits exactly two positive normalized solutions w1,
wy if ¢ > ¢* and no solution if ¢ < c*. If ¢ > c., one of the above positive solutions is the
unique normalized ground state solution. Without loss of generality, let wy be the normalized
ground state and wo be the high-energy, then there holds that I,,(w1) = m(c, p) <0 < I,(w2),

and m(c, p) — —00 as ¢ — oo.

(i) [33], [31, Lemma 3.1]: If p € (},2%) and problem (1.3) admits a unique solution u. for any

c>0, m(c,p) = I, (ue) = maxser Po, (5) = mingey (o) Iu(u) > 0, where

ae

2s be4s Iuep'y
Va3 + ~- 1 Vull -

S
Ml

D, (s) :==Iu(s*u) =

Moreover, m(c, ) is strictly decreasing with respect to c.

3 The proof of Theorem 1.1

We shall investigate the mountain pass geometry of J (u1,ug) on S,.

Lemma 3.1. Assume that (Hi) holds.

(i) There exist pg = po (c1,¢2) and By = Bo (c1,c2) > 0, such that for 0 < 8 < By,

inf J (u1,uz) >0,
A(2p0)\A(po)
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where A(po) := {(u1,u2) € Sy ¢ [|[Vur||3 + |Vusl3 < po} for po > 0.

(17) There exists (u1,uz) € Sp\A (2po), such that J (ui,us) < 0.

Proof. (i) Let p := ||[Vui||3 + ||[Vuz||3. By (2.2) and the Gagliardo-Nirenberg inequality, for

(u1,usz) € Sy, we have:

2
a b i
J(Ul,’UQ = 5 Z E |VUZ||2 E

b .
57~ 2 CClITul ™~ 50sp™
Z

ajwwwwm

8"

=1

z Z“—

i=1

- /BC3P )

where C; := C(c1,¢2) for (i = 1,2,3). If (Hy) holds, then 2 < p;7y,, < 4 and 4 < rvy, < 2*.
Let pp > 0 be large enough such that

S o0 < o (3.1)

and then choose 5y > 0 small enough such that

Tyr—

BoCs (2p0) 2 <

o
32°

Hence, for any 0 < 8 < By and (ug,us) € A (2p0) \A (po), i-€., po < p < 2pg, we have

z z’YP7 T"YT b Pivp; — ryr—4
J (ug,ug) > Zu —BCsp2 =p <—ZCp 2 —BCBp 3 )

=1

(ii) Let u'(z) := t3u(tz). Then,
[ull3 = llull3, V'3 = Vul3, [u'l} =t ulb, forallpe (2,27).

Fix (u1,us) € Sy, (ul,ub) € S;\A(2py) when ¢ is sufficiently large. Since

I
J(uy,uy) = t2Z||Vul||2 7542”V ills — Z lfp”“”“

1017 tT’Yr/ |U1|T1|u2|r2d£€

it is straightforward to check that 1y, ,)(t) := J (uf,ub) < 0 for ¢ large enough. O
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Thanks to Lemma 3.1, we introduce a minimax structure of the mountain pass type. Specifically,
there exists,

= inf
7 (c1,¢2) ;grtgl[gﬁ]J(g(t))v

where T' := {g € C(0,1],S;) : g(0) € 0A(po), 9(1) ¢ A(2pg), J(g(1)) < O}. This framework al-
lows us to search for a critical point of the mountain pass type at the level v (c1,¢2). It is clear

that v (c1,c2) = infuepa(py) J (u1,u2) > 0.

Lemma 3.2. Assume that (Hy) holds. There exists a Palais-Smale sequence {(uf,u3)} for J|s
at the level vy (c1, c2), which satisfies {uy}~ — 0, {ul}~ — 0, and P (u},ul) — 0.

Proof. The proof of the theorem is standard, and we omit the detailed steps here. For a compre-
hensive explanation, refer to [15, Lemma 3.1], [2, Lemma 5.5], and [9, Theorem 4.1]. O
Lemma 3.3. Assume that (Hy) holds. There exists a pair of positive solution (u1,us) to equations

(1.1) for some (A1, \2), and J (u1,u2) = v (c1,c2) > 0.

Proof. By Lemma 3.2, there exists a Palais-Smale sequence {(u7,u5)} for J|s, at the level v (c1, ¢2).

We first prove that {(u},u%)} is bounded in H,. Since P (u},u}) — 0, we have

2 2 2
0 Y IE B+ 03 IVl =3 el + 6o [ I 41 do0,1). (32
i=1 i—1 i—1 R

Thus,

2
v(e1,e2) + 0n(1)
1

2 2

a b Hi

DA R DO N FED sl T
i=1 i=1 v

<1
=al|l — —
2

2 1 1 2
ni|2 n|4
) Ivaig e (§- ) Y ivas
=1 1=1
- ; iy, S—
. T 1Pi Yy 7

PiVp;

2
11 b(1 1 1 1\ v,
>afz- p+< >p2 Cmm( )f“ )
<2 r%) 2\4 ; "\ pip

where p = [|[Vup||3 + [|[Vub |3, 4 < ry. < 2%, 2 < pyp, < 4. Hence, {(u},u%)} is bounded in H,.

= [l sl do

1
™

Di
Di

Then, for p, ¢ € (2,2*), we may assume that
(ul, ul) = (up,up) in He,  (uf,uf) — (u1,up) in LP(R3?) x LI(R3). (3.3)

By Lemmas 2.2, 3.2, there exists a sequence {(A},A%)} C R? such that (A7,\3) — (A1, A2),

A1, A2 < 0. Consequently, (u1,uq) is a solution to equations (1.1) and satisfies P (uy,us) = 0.
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Since (u})” — 0, (uf)” — 0, it follows that uy, ug > 0.

Now, we prove J (u1,us) = 7y (c1,¢2). By (3.3) and Lemma 2.1, the right hand side of (3.2)

converges to

2
=1

Combining this with P (uj,us) = 0, we have

ot B [ ol el e,

2 2 2 2
i3IV + 0 DIVl = a IVl + 0 3 Il
1= 1= i= i=

Therefore, J (u},uy) — J (u1,us), and hence, J (u1,uz) = v (c1, c2). O

Proof of Theorem 1.1. As known from Lemma 3.3, it is sufficient to prove that (u;,u2) € S,. Using

the fact that (u1,us2) is a solution to equations (1.1), we deduce that

2 2 2
Alluall3 + Nalluzll3 = @Y [IVuill3 + 0> IVuills = > pualluil 5 — 57’/3 [ur | Jug|"™ da.
i=1 i=1 i=1 R

Combining Pohozaev identity and the fact that v,,,v. <1, we get

2
Alluall3 + Xelluzlld = pi (v, — 1) [Jus
=1

bet Br(y —1) /RS lug|™ Jug|™ dx < 0.

Hence, at least one of A\; and A5 is negative. Without loss of generality, we may assume A; < 0.
By Lemma 2.2, we have u} — uy in H} (R?), and then u; € S, (¢1). For the sake of contradiction,

suppose that Ao > 0, then
- (a + b/ Vg dm) Aug = Aaug + po [uz P> 2 ug + Bro [ua ™ Juz| > ug > 0.
R3

It follows from Lemma 2.3 that ug = 0. Thus, J (u1,u2) = J (u1,0), and u; € S, (c1) satisfies the
equation
- (a + b/ [Vu|” dx) Au = A+ py Ju” 2w (3.4)
Rfﬁ

However, this equation contradicts Proposition 2.5 (i4) that equation (3.4) admits no solution if
¢ < ¢*. Therefore, Aa < 0, and then, us € S, (¢c2). Finally, by the maximum principle, we deduce
that ui,us > 0 in R3. O
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4 The proof of Theorem 1.2
Inspired by [2], let p; and ps be in different ranges i.e., (Hs). For any K > 0, set
Ty = {uz € S (e): ||Vu2\|§ < K} and By = {ug € S(e): HVUQH% = ZK}.
Rewriting that Jy, (ug) := J (u1, us) for u; € S(c1) and
T (1) = 1y 0) + 51Vl + 31Vl = 2l =5 [ ™ ol

Lemma 4.1. Assume that (Hz) holds. There exists a continuous function K from S (c1) to R,

uy — K (u1), such that

sup Jy, (u2) < inf Jy, (u2), for all uy € S(cy).

Tr(uy) Bk (uy)

The function K is bounded, and it is bounded away from 0 on bounded subsets of S (c1).

Proof. Fixing uy € S (c1), for ug € Tk, we have that,

n aKéul) bK(ul)Q.

a b
Tur (1) < 1y (0) + 2V} + 7| Fus [ < o, (0 28
For us € Bk, := w, where ¢’ is defined in (2.1). Using the Gagliardo-Nirenberg inequality

and (2.2), we obtain,

Juy (U2) > Ju, (0) + aK (ug) + bK (ug)? — %C”V“?Hgﬂm gl 520772 — CBlu |72, ua 72

r1q 2q’

P27Ypg

> Jul(0)+CLK(U1)+bK(U1)2—ClK(ul) 2 —CQHU1H

K(up)*

1
14

P27po

2 < 2K (w) if K(uy) > 0 is sufficiently small for 23?2 > 1. Similarly,

Observe that C1 K (uy

)
C’QHulHEqK(ul)% < K (up) if K (up) > 0is sufficiently small for 77/ > 1, provided that ¢ < ﬁ.

We can choose ¢ satisfying this inequality and (2.1) because

6 S 2 2%
- - max<{d — ———
10—37“2 & 7‘1,2*—7’2 ’

which is a consequence of 71 + ro > 1—; and 2 < ry < 1?0. More precisely, let K : S (a;) — RT

a e a e
K (u1) <minq ( =5 N 7 . 4.1
() = {(8@) C } 1

satisfy
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For ug € B (y,), we have
Juy (u2) 2 Ty, (0) + ak (wr) +bK? (w)) = TK (w) = TK (w)
b
> Ju, (0) + gK (un) + 7K (1) = sup i, (u2). (4.2)

Tk (uy)

Clearly, we define a continuous function K : S (¢;) — RT that satisfies (4.1) and is bounded away
from 0 on bounded subsets of S (¢1). In fact, the right-hand side of (4.1) can serve as a definition.

By (4.1), K is also bounded from above. O

Now, we denote

T(ul) = TK(ul)a B (ul) = BK(ul)a

and

B = {(u1,u2) :u1 € S(c1),u2 € B(u1)}.

It follows from the assumption (p;) in Theorem 1.2 and Proposition 2.5 that there exists a ground

state solution u € S (¢;) for problem (1.3) satisfying

J(Ma 0) = m(clalu/l) = IM1 (@) = min J(U,O) < 0.
u€eS(c1)

Lemma 4.2. Assume that (Hz) holds. There exist v € T'(u) and w € S (c2) \Tox () such that

max{J(u, ), J(u, @)} < “ iilf)EBJ(ul,uQ).

Proof. Since J (u,uz) — J(u,0) as ||Vuz|l2 — 0, to obtain o € T'(u), we claim that J(u,0) <
inf J. The functional J(-,0) : S(c1) — R is coercive because 2 < p; < . Choose R > 0 such
that J(u1,0) > J(u,0)+11if |[Vuq||2 > R. It follows from (4.2) and (u1,us) € B with ||[Vuy|l2 > R
that

T(ur, us) > J(ur, 0) + gK(ul) > J(u,0) + 1. (4.3)

For (u1,us) € B with ||Vuy||2 < R, there holds,
3 3
J(u,u2) > J(ug,0) + ZK(UI) > J(u,0) + 1 (4.4)

where ¢ := inf}jyy, ||,<r K (u1) > 0 from Lemma 4.1. By (4.3) and (4.4), the claim holds.

To find w € S(c2)\Tok(u) as required, consider any u € S(cz). Clearly, t xu € S(cz) for every
t >0, and [|[V(t xu)||2 — oo as t — oco. Since py > 4!, fixing an arbitrary u € S(cz), we see that

J(u, (t*xu)) = —o0 as t — oo. O



CUBO

Normalized solutions for coupled Kirchhoff equations... 67

28, 1 (2026)

As a result of Lemma 4.2, the set

ry:= {9’ € C([0,1],8;) : ¢'(0) = (v1,v2), ¢'(1) = (w1, wa), v2 € T (v1), wa & Tag(w,),

max {J (v1,v2),J (w1, w2)} < i%f J},

is nonempty.

Lemma 4.3. 7 (c1,c2) := infyer, maxcpo,q) J(g'(t)) > infp J.

Proof. Tt is sufficient to show that for each ¢'(t) := (g1 (t), g5(t)) € T'1, there exists ¢t € [0,1] such
that ¢/(t) € B. Consider the map « : [0,1] — R defined by t — [|Vgi(t)||3 — 2K (g;(t)). This map
satisfies

a(0) = || V|3 — 2K (v1) < K (v1) — 2K (v1) <0,

and a(1) = ||[Vws||3 — 2K (w1) > 0. Thus, there exists ¢ € [0, 1] such that a(t) = 0, which implies
that ¢'(t) € B. O

Lemma 4.4. Assume that the conditions of Theorem 1.2 hold. Then, we have
7 (e1,¢2) < mer, pa) + mocz, pa).
Proof. By Proposition 2.5 (i), there exists @ € V' (c2) such that
uen{l/i(rig) I, (u) = max I, (t*a) =m(co, p2) = 1, (0x @) = I,,(a) = J(0,a). (4.5)
Next, we consider the path h: [0,1] — S, defined by h(t) = (u, hs(t)), where
he(t)(z) = 27 g (e5<2t*1>x) .
Here, s > 0 is chosen sufficiently large so that

—3s 3s

hs(0)(-)=e2 a (efs~) €T(u), hs(1)(-)=czu(e’) ¢ Tor(w),

and

max {J (u, hs(0)) , J (u, s (1))} < inf .

Therefore, h belongs to I';. Utilizing (4.5) and 8 > 0, we get

max_J(h(t)) < J(u,0) + max J (0, hs(t)) = m(cq, p1) + m(ce, p2).
te[0,1] te[0,1]

This completes the proof. O
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Lemma 4.5. Assume that (Hz) holds. There exists a Palais-Smale sequence {(uy,u})} C S, for
J at the level 7 (c1,¢2) that satisfies {u?}~ — 0, {u}~ — 0 in H,, and the additional property

that P (u},uy) — 0. Moreover, the sequence {(u},u)} is bounded.

Proof. The existence of the sequence {(uf,u%)} can be referenced in Lemma 3.2. Here, we only

provide the proof of boundedness. Given that P (u},u%) = 0, for any € > 0, we have:

J (uy', uy) Z”V n||2 ZHV n||2 Z |

iy / | 2|72 dae

1+e€)a n €b " n n
_ Ut 1 ZHV 15+ ZHVU I3 + du(e)ut D} + da(e)||us |2
i=1 i=1
n|ri|, n|re (1_6) n o,n
+ Bd3(e€) . W | uz|™ dz + ——P(uf, uz),

where

5“@:%_&’ (5“@;%_@7 53(6):m

—1.
4 P 4 D2 4

Note that the coefficients satisfy d1(¢) < 0 and da(€), I3(e) > 0 for sufficiently small e > 0. Although
d1(e) < 0, the term |[uf|[}? is controlled by Z?:l [Vu?||3 because p; < 4. Hence, we conclude
that J is coercive. Consequently, the sequence {(u},u%)} C S, is bounded. O

Proof of Theorem 1.2. By Lemmas 2.2 and 4.5, we can assume that (u],u8) — (u1,us) in Hy,
where u; > 0 and us > 0. As shown in Lemma 3.3, we have J(u1,us) = 7 (c1,c2). To establish

strong convergence, it suffices to show, according to Lemmas 2.4 and 2.2 (iv), that u; # 0 and
U2 75 0.
We first claim that: if 7 (c1,c2) < 0, then u; # 0 and ug # 0.

For contradiction, that at least one of u; or us is zero. Then, by Lemma 2.1,
(uf,uf) = (u1,ug) in LP (R*) x L (R*) for p,q € (2,2*) and ,6’/ Juft "™ |uy|™ do — 0.
R3

For the sequence {(u},u%)} satisfying P (ul,u3) — 0, we deduce that

= o, (1).

az Vi3 + bz Vi llz - Z,Uﬁzn

Pi
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By the weak lower semi-continuity, we have

2 2 2

n .n a n b n i n

J (uf,uz) = 5 Z IVup|l5 + 1 Z V|3 - Z p—||u7
i=1 i=1 ¢

i=1

2 2

a 1 1

ES IVl =S (- 1)
=1 1=1

PiVp;

% - B/RS Ju " [uf |72 da

P40, (1) (4.6)

v

2
a
1 Z Vi[5 = CrllualB + Coluzl[22,
1=1

where C7 > 0 and C5 > 0. We now distinguish three cases.

Case 1. (u3 =wuz =0): From (4.6), we obtain J (u},u}) > 0. Since we have assumed that

~ (e1,c2) < 0, this case cannot occur.

Case 2. (u; =0 and us # 0): By Lemmas 2.2, 2.4, we have Ay < 0, and hence 1§ — ug € S, (c2).

From (4.6), we get
a
0> 9(c1,¢c2) = J (ul,uly) > ZHVUQH% + Cs|uz] br>0, as n—oo. (4.7)

This results in a contradiction.

Case 3. (u; # 0 and uy = 0): Since ug = 0 and J(u1,uz) =7 (¢1,¢2), we have

’7(61,62) = J(ul,u2) = J(ul,()) = Iﬂl (’U,l) .

We know u; satisfies
- (a + b/ |Vu|2da:) Au = Au+ g [ulP 2.
R3

For2 < p; < 1—30, uq is a positive ground state solution by Propsition 2.5 (i). Then m(cy, 1) =

I, (u1). From Lemmas 4.1, 4.3 and the definitions of B, I';, we know that
¥ (c1,c2) 2 i%fJ > J(u1,0) = I, (ur) = m(cy, pa), (4.8)
which contradicts 7 (¢1,c2) = m(cr, p1). When 13—0 <p < %4, u; can be characterized as

either a high energy solution or a ground state solution. If u; is ground state solution, we
can get a contradiction similar to (4.8). If uy is high energy solution, we have a contradiction

as 0 < I,(u1) = J(c1,c2) < 0. Thus, the claim holds.

In view of Lemmas 2.2, 4.4 and 4.5, to establish the theorem, it is enough to prove that m(cy, u1)+
m(ca, p2) < 0. Note also that u; > 0 and us > 0 follow directly from the strong maximum

principle. O
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Proof of Corollary 1.3. The Corollary is a straightforward consequence of Theorem 1.2 and Propo-

sition 2.5. O

5 The proof of Theorem 1.4

In this section, we first consider the case that (Hjz). Recalling Proposition 2.5 (i), for 2 < py,

p2 < %, there exist u! and w2 such that
m(cr, ) = I, (u') and  m(eq, p2) = I, (u?).

Lemma 5.1. Assume that (H3) holds. There exist B1 := [1(c1,c2) and p. := p«(c1,c2) > [|[Vul||3+
|Vu?||3 such that
J(ui,uz) >0 on A(2p)\A(ps) for0<p <y,

where A(p.) = {(u1,u2) € S, : |Vur |3 + |[Vuall3 < ps} for ps > 0.
Proof. Recalling the proof of Lemma 3.1, we can take a sufficiently large p, such that

ps > || Vulll3 + [IVu?|3,

and )
; %ci (p) " < 3% (5.1)
Next, we choose ;1 > 0 to be sufficiently small, such that
24 b
B1C5 (2p.) 2 < 32" (5.2)
The lemma follows directly from (5.1) and (5.2). O

Now we can set
! = inf J .
7' (e1, ¢2) RoR (u1,u2)
The following lemma plays a crucial role in overcoming compactness.
Lemma 5.2. Assume that (Hs) holds. Then, for any 0 < 8 < [, the following statements are
true:

(i) '(c1,e2) <mler, pr) +mlez, p2) < 0.

(13) +'(c1,e2) <A}, ch), for all0 < ) < e, 0 <) < eo.
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Proof. (i) From Lemma 5.1, we know that (ul,uz) € A(p.). Furthermore, using Proposition

2.5 (7) and the fact that 8 > 0, we deduce that
v (c1,e0) < J(ut,u?) = Im(ul)—i-lw(uQ)—B/S |u1‘r1 ’uﬂm dx < mf(eq, p1)+m(ce, u2) < 0.
R

(#i) To prove this, we need to show that for any e > 0, v'(c1, c2) < v'(c}, ) +e, forall0 < ¢ < ¢
and 0 < ¢} < ¢z. Let p(z) € C° (RY) be a cut-off function such that

L Jaf <1,

N T
, x| = 2.

By the definition of v/(c}, ¢5) and Lemma (5.1), there exists (u1,u2) € A (ps) such that

3
Tunyu) <7/ (chyh) + 5. (53)

For any ¢ > 0, we define (ug, (z), us,(x)) := (u1¢(dz), uz¢(dx)). Since (us,,us,) — (u1,uz)

in H, as § — 0T, there exists a sufficiently small § such that

€ 3
T (us, us,) < Junup) + 5 and - [|[Vug, |3 + [ Vs, |3 < Spe. (5.4)

Let o(z) € C° (R?) such that supp(p) C {z € R3: 3 < |z| <1+ 3} and set

2 2
Ver—lus 2 yJer — lus,
®

llell2 ’ loll2

(@1, U2) =

Noting that, for any s <0,
supp (ug, ) Nsupp(sx 1) =0 and supp (us,) Nsupp(s * az) = 0.

As s — —o0, we have

I3

J(sxty,s*az) — 0 and ||Vs*ﬂ1||§+||Vs*ﬂ2||§§m.
Pr

It follows that
(ug, + 8% 11, us, +sxUz) € A(2p4),
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and by (5.3)-(5.5), for s < 0 large enough, we have

v (e1,c2) < J (us, + 8* 1, us, + 8 * Ua)

2
- . b -
= J (usy, us,) + J(s %y, 5% U2) + 5 D IVus, 15 1Vs %l
i=1
< J(ul,uz)—&—f—f— . <~(c},ch) +e.
4 8 8
The proof is completed. O

Lemma 5.3. Assume that (H3z) holds. For any 0 < 8 < (1, there exists

Ly 1= M*(a7b, 81,02’p1ap275ap)

such that for pi,pa < ps and (u1,uz) € Sy, the function Oy, 4, (s), defined in (1.4) has two
critical points ty, u, < Tuyus 0N TWO 2708 Cyy iy < Quyuy WK Ty s < Cuyus < Tugyus < Quyus -

Moreover, for s € R,

(1) If (sxuy,s*ug) € P, then either s =ty, uy 0T S = Tuy us-
(ii)  |[|Vsxui|3+ || Vs*uzl|3 < p« for every s < cy, u, and

T (b ug * U1, by uy *u2) = min {J(s*ur, s xug) @ [Vsxui]|3 4+ Vs xuz|l3 < pu} <0.

(i7)  We have J (Tuy us * Uls Tuyup * U2) = max{J(s xu1,sxug) : s € R}.

Proof. (i) Since p;yp, < 2 for i = 1, 2, and r = 2%, it is evident that ®,,, ,,(—00) = 0~ and
Dy, uy(+00) = —o0. By Lemma 5.1, we know that @, .,(s) has at least two critical points
tuy s < Tuy,ugs Where ty, 4, is a local minimum point of @, ,,(s) at negative level and 7, 4, is a
global maximum point at positive level. On the other hand, it is standard to prove that @, ., (s)
has at most two critical points as in [20, Lemma 4.5]. The (i7) and (¢i¢) follow from Lemma 5.1

and (7). O

Proof of Theorem 1.4. Consider a minimizing sequence {(uy,u3)} C S, for J|,,, ). By Lemma
5.3, we have ||[Viyr up x ul||3 + || Vtun up * u3]|3 < ps, and the sequence {tur up * U, ty, up * uj }

remains a minimizing sequence for J| A(2p.)" According to [9, Theorem 4.1], there exists a new

minimizing sequence, still denoted by {(uf,u5)} C A (2p4), such that

J(uy,uy) = (c1,c2), P(uy,uy) =0, J|g (ui,uy) =0, asn— oo. (5.6)
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Given that J'|g (uf,uy) — 0, there exist sequences {\]} C R and {\3} C R such that

pi—2,n .
u; pidx

2 2 2
o [ Vurvede by IVl [ VurVods =Y [ Jut
i=1/R® i=1 R3 i=1 /R
=By [ eade — Bra [ g pado
R R

= [ Otuter+ oo+ 0,(1), (57)
R3
for any (y1,p2) € H,. Taking (u},0) and (0,u%) as test functions, we have

e+ on(1) = af Vui |3 + bl Vul 5 — mlluf |5,

Asea +on(1) = al Vug |3 + bl[Vug |3 — pafug ||}z

Since the sequence {uf',uy} C A (2p,) is bounded, we suppose that lim, s [zs |Vur|® de = A; >
0. Without loss of generality, let us assume that, up to a subsequence, (A7, A%) — (A1, A2) € R,
(ul,ud) — (u1,u2) € Hy and (u},ul) — (u1,us) in LP (R3) x L4 (R3) for any p, ¢ € (2,2*). Then,

we know that,

—(a+bA1)Auy = Myuy + g Jun [P~ 2y + Brfun [P uug| 2,
—(a +bA2)Aug = Agug + pzlug|[P*?ug + Brofus [ [ug |2 us.

From (5.8), we have

2 2 2
0= Pa (u1,u2) = a Yy [Vull3+ 5> Ail|Vuills =Y iy,

i=1 i=1 =1

b —52*/ g™ Jug| ™ da.
; s

U
Let (uf,uy) := (u} — u1,uf —uz). Then 4} — 0 in LP* (R?), a4 — 0 in LP? (R3) and we have

2 2
P (uf,u) = Pa(ur,ug) +a)_ |Vaf|3+b)_ Aillvay|l; — p2° /]Rs |ay | [ug | de
=1 i=1

2 2
=a)_ [IVap|3+b) Aillvap|; - 2* /W |y | uz [ dz + on(1). (5.9)
i=1 i=1

From (2.2), (5.9) and Lemma 2.1, we obtain

2 2 2
a |IVap|3 <a) |Vap(s+b>  Aillvay|; = 52*/ [at|™ Jay|™ dx + on(1)
i=1 i=1 i=1 R3

o*

2 2
< B8 F (Z ||Vu?|§> + on(1). (5.10)

i=1



74 Q. Xie & L. Xu CUBO

28, 1 (2026)

Up to a subsequence, we assume that Z?zl Va3 — 1 > 0. According to (5.10), we have [ = 0
1 1
orl > (ﬁz*) 2581t > (ﬁz*) 2 S%, then from (5.6), (5.10), and Lemma 2.1, we conclude

n—o0

2
b
vl e2) = lim J(uf,ug) = J(ur,ug) + lim J (@, @3) + 5 Y| Vup |31 Va3
n—00 2 —

> J(ug,uz) + hm J (at,uy)

Mm

a
> (B JuB) + Tim (S

2
i b ~ IR
IVarg+ 3 SoIvarls—s [ 1l zdm>
=1

|var|2 - B/I " 3|”da:>

2
: a n — = n
> (Jurl, Neal) + lim | 55wy (1~ 2ps (Z |va; ||2>
i=1 i=1

Il
-

3

M

a
2

> (a2 ual2) +hm<

1

-
Il

no

Nl=

By ZZ LIVar||3 < p., there exists 3. < 1 such that (2 S%) > p«. Then

B
2 : ’
1-~ps~ (; ||Vm||%> >0,
when 3 < ., which contradicts with (ii) of Lemma 5.2. Thus, 32_ [|[Va?||3 — 0, as n — oco.
Then (u},uf) — (u1,us) in DV2(R3) x DV2(R3) and (uy,us) is a solution to equations (1.1).

Finally, we will prove that (u},uy) — (u1,u2) in H,. Taking (u,u%) as the test function in (5.7),
we obtain

(J' (uf,up), (uf, uy)) = Aer + Ajea + on(1).

Given that P (uf,u}) — 0, (AT, \5) = (A1, A2), we have

Arer + Aaca = Afer + Njes + oa(1 Zuz Voi — i <0

Since A\ic; + A2ce < 0, at least one of A\; and Ag is negative. Next, we consider three possible

conditions.

Case 1. (A <0 and Ay < 0): Using the fact that
<JI (u?7ug) - >‘7ll (’U’Tllﬂ O) ) (u?70)> - <Jl (u17u2) - A\ (uh 0) ) (uh 0)> =0,

we have

Ml |3 + on(1) = al Vi 3 + bl Vui |3 — mllufllB:,
Mllurll3 = al Vel + bl Vu |3 — g [ [}
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Since Lemma 2.1, A} — X\ < 0, [luf|5! — |lug |3}, and u} — w; in DV2(R?), we get

luf||3 — ||u1]|3, leading to strong convergence. The case where Ay < 0 is treated similarly.

Case 2. (A <0 and Xy > 0): Using the method of Case 1, it can be concluded that u} — u; in
H} (R?) and uy € S, (c1). Assume, by contradiction, that Ay > 0, then

— <a + b/ |VU2|2 daz) Aug = Aoug + fio \ug\pz_Q ug + fBra Jug|™ |u2|7'2_2 ug > 0.
RS

By Lemma 2.3, we deduce that us = 0. Thus, J (u1,us) = J (u1,0), u — wuy, and u; €

Sy (c1) satisfies the equation

— (a + b/ Vul? dx) Au = M+ py |ul” 2w
R3

Therefore, I,,, (u1) > m(cy, p1). On the other hand, by Hélder inequality,

T2
2% -

1 n
2+ (It

0 [l a3l do < up
R-?)
Using the fact uf — 0 in D12 (R?), we have

V(e e2) = lim J(uf, uy) = Iy, (ur)+ lim 1, (ug)—4 lim / up ] Juz | do > m(er, ),
n— 00 n— 00 n—o0 Jp3

which contradicts Lemma 5.2 (%)
Case 3. (M2 <0 and )\, > 0): By similar arguments as in Case 2, we obtain a contradiction
v'(e1,¢2) = m(ca, p2). Therefore, we conclude that (uf, ul) — (uy,us) in H,.

By Lemma 5.3 and 7/(¢1, ¢c2) < 0, we have

"(e1,c2) = J(u1,us) =inf J = inf J < 0.
7' (a1 2) (1 2) n Al

This implies that (u;,us) is a ground state solution. The proof of Theorem 1.4 is completed. [
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