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ABSTRACT

In this work, we consider the higher-order reaction-diffusion
parabolic problem with time dependent coefficient. We prove
the blow-up of solutions and obtain a lower and an upper
bound for the blow-up time. Finally, we investigate the ex-
istence of a global weak solution to the problem.

RESUMEN

En este trabajo, consideramos un problema parabólico de
reacción-difusión de alto orden con coeficiente dependiente
del tiempo. Demostramos la explosión de soluciones y
obtenemos cotas inferior y superior para el tiempo de ex-
plosión. Finalmente, investigamos la existencia de una solu-
ción débil global del problema.
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1 Introduction

In this work, we investigate the following reaction-diffusion parabolic problem with singular po-

tential: 

zt

|x|2m
+Az = α (t) |z|r−1

z, (x, t) ∈ Ω× (0, T ) ,

∂iz (x, t)

∂νi
= 0, i = 0, 1, . . . ,m− 1, (x, t) ∈ ∂Ω× (0, T ) ,

z (x, 0) = z0 (x) ∈ Hm
0 (Ω) ∩ Lr+1 (Ω) , x ∈ Ω,

(1.1)

here n ≥ 1 and Ω ⊂ Rn is open and bounded with Lipschitz boundary, where T > 0, r > 1,

A =(−∆)
m
, m > 1 is an integer constant and a unit outer normal ν, x = (x1, x2, . . . , xn) ,

|x| =
√
x21 + x22 + · · ·+ x2n. The coefficient α (t) is chosen such that

α ∈ C1 [0,∞) , α (0) > 0 and α′ (t) ≥ 0 for all t ∈ [0,∞) . (1.2)

Explosive phenomena commonly arise in solutions to reaction-diffusion partial differential equations

of various types (see e.g. [4, 6, 15] and references therein). Understanding the conditions under

which such phenomena occur is of practical interest. However, accurately computing the precise

blow-up time is often challenging. Despite this challenge, it is still possible to estimate the blow-

up time using various methods. Notable approaches for investigation include the first eigenvalue

method proposed by Kaplan in 1963, the potential well method developed by Levine and Payne in

1970, the comparison method, and other techniques involving integration. A recent comprehensive

overview of these methods can be found in the monograph by Hu [11], Al’shin et al. [2] and Pişkin

[17]. Additionally, readers may refer to the survey articles by Galaktionov [8] and Levine [13] for

insights into the blow-up properties of more general evolution problems. Specifically, sufficient

conditions for blow-up estimates are discussed in works of Philippin [16] and Han [9] provided

insights for the equation of the form:

zt +∆2z = k (t) f (z) .

In another study, Han [10] investigated the equation of the form

zt

|x|2
−∆z = k (t) |z|p−1

z,

in which the author derived the lower and upper bounds on the blow-up time of weak solutions.

In [23], Thanh et al. considered the reaction-diffusion parabolic problem with time dependent

coefficients
zt

|x|4
+∆2z = k (t) |z|p−1

z.
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They proved an upper and lower bound for blow-up time. Do et al. [5] investigated the existence

of a global weak solution to the problem together with the decaying and blow-up properties using

the potential well method.

Recently, Thanh et al. [24] proved the higher-order version ∆
(
|∆|m−2

∆
)

of the p−Laplacian

and the function k (t) non-Newtonian filtration equation and obtained the blow-up result with

lower and upper bounds. The reader is directed to [19–21] for a detailed discussion of higher-order

hyperbolic equations.

In our research, we employed various types of Dirichlet-Neumann boundary conditions in conjunc-

tion with a general nonlinear term. Additionally, we derived the primary outcomes of this paper

using a methodology distinct from those discussed in prior works. While some of the literature

has addressed blow-up solutions for higher-order parabolic equation, to the best of our knowledge,

there is currently no article available that specifically explores the finite-time blow-up solutions for

a higher-order parabolic equation with a variable coefficient term α (t). Consequently, we endeav-

ored to investigate and present new and noteworthy findings in this regard. For a more in-depth

exploration of blow-up phenomena in higher-order parabolic equation, readers are encouraged to

consult the book by Galaktionov [7].

Motivated by above-mentioned papers, in this paper, we investigate to prove the upper and lower

bounds for the blow-up time of solutions for problem (1.1), which was not previously studied, where

we study higher-order parabolic equation with time dependent coefficient source terms α (t) |z|r−1
z.

The rest of the work is as follows: In Section 2, we give some assumptions needed in this work. In

Section 3, under suitable conditions, we obtain an upper bound for the blow-up time. In Section

4, we obtain a lower bound for the blow-up time. In Section 5, under suitable conditions, we

investigate the existence of a global weak solution to the problem.

2 Preliminaries

In this part, we present certain lemmas and assumptions required for the formulation and proof of

our results. Let ∥.∥, ∥.∥r and ∥.∥Wm,r(Ω) indicate the typical L2 (Ω) , Lr (Ω) and Wm,r (Ω) norms

(see [1, 18]).

Now, we consider some energy estimates: Let n ≥ 1 and Ω ⊂ Rn be open bounded with Lipschitz

boundary. For each z ∈ Hm
0 (Ω) ∩ Lr+1 (Ω) and t ∈ [0,∞) define the following functionals of the

problem (1.1):

• Energy functional is as follows:

J (z, t) =
1

2

∥∥∥A 1
2 z
∥∥∥2 − α (t)

r + 1
∥z∥r+1

,
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• and Nehari functional is as follows:

I (z, t) =
∥∥∥A 1

2 z
∥∥∥2 − α (t) ∥z∥r+1

.

We strive to establish both upper and lower bounds for the blow-up time of a weak solution to

equation (1.1), the precise definitions of which are provided in the following.

Definition 2.1. A function z is termed a weak solution to equation (1.1) if z ∈
L2
(
0, T ;Hm

0 (Ω) ∩ Lr+1 (Ω)
)

and zt
|x|2m ∈ L2

(
0, T ;L2 (Ω)

)
where z satisfies the following equation:

(
zt

|x|2m
, φ

)
+
(
A 1

2 z,A 1
2φ
)
= α(t)

(
|z|r−1z, φ

)
, (2.1)

for all φ ∈ Hm
0 (Ω) ∩ Lr+1 (Ω) and t ∈ [0,∞) .

When Ω ⊂ Rn is an open and bounded set with a Lipschitz boundary, the existence of a local weak

solution can be established using standard Ordinary Differential Equation (ODE) theory, coupled

with the Faedo-Galerkin approximation technique, as is well-known in the literature.

Definition 2.2. Assume that z(t) is a weak solution to (1.1). If z(t) exists for all t in the interval

[0, T ∗), and the limit as to blow up at a finite time T ∗ if z(t) exists for all t ∈ [0, T ∗) and

lim
t→T∗

∥∥∥∥ zt
|x|m

∥∥∥∥2 = ∞. (2.2)

Such a T ∗ is called the maximal existence time as well as the blow up time for z(t). If (2.2) does

not happen for any finite time T ∗, then z(t) is called a global solution and the maximal existence

time of z(t) is ∞.

We are able to define the stable and unstable sets as follows for each t ≥ 0:

• Stable set:

Σ1 (t) = {z ∈ Hm
0 (Ω) : J (z, t) < n∞ and I (z, t) > 0} .

• Unstable set:

Σ2 (t) = {z ∈ Hm
0 (Ω) : J (z, t) < n∞ and I (z, t) < 0} .

Σ1 (t) and Σ2 (t) are crucial to our paper. Where

n∞ = lim
t→∞

n (t) .

Note that J, I, C0, n,Σ1 and Σ2 are all time-dependent, as indicated by the presence of α (t) in
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(1.1). The introduction of this time-dependent factor introduces additional technical complexity

into our analysis.

Because of the presence of the inverse coefficient 1/ |x|2m, it is important to highlight the distinction

between the two cases when 0 ∈ Ω and 0 /∈ Ω. If 0 ∈ Ω then 1/ |x|2m develops a singularity. This

requires the application of Rellich’s inequality, which is valid for n ≥ 2m+ 1, in the proofs of our

main results. However, if 0 /∈ Ω then there is no singularity and (1.1) can be considered as a slight

extension of the model in [10]. In this case our results are valid for all n ≥ 1. To deal with these

two cases at the same time, we use the notation

nΩ =

 2m+ 1, if 0 ∈ Ω

1, if 0 /∈ Ω
and 2∗ =

 ∞, if n ≤ 2m,

2n
n−2m = 2 + 2m

n−2m , if n ≥ 2m+ 1.

Let us start with the following Rellich inequality Lemma.

Lemma 2.3. Assume that n ≥ 2m + 1 and Ω ⊂ Rn be open bounded. Let z ∈ Hm
0 (Ω) . Then

z
|x|2m ∈ L2 (Ω) and

∫
Ω

|z|2

|x|2m
dx ≤

(
m2

n (m− 1) (n− 2m)

)2 ∫
Ω

∣∣∣A 1
2 z
∣∣∣2 dx = C

∫
Ω

∣∣∣A 1
2 z
∣∣∣2 dx.

Proof. Let z ∈ Hm
0 (Ω) and ž be its zero extension to Rn. Then ž ∈ Hm (Rn) by [1, Lemma 3.27],

and ∫
Ω

|z|2

|x|2m
dx ≤

∫
Rn

|ž|2

|x|2m
dx ≤

(
m2

n (m− 1) (n− 2m)

)2 ∫
Rn

∣∣∣A 1
2 ž
∣∣∣2 dx

≤
(

m2

n (m− 1) (n− 2m)

)2 ∫
Rn

∣∣∣A 1
2 z
∣∣∣2 dx, (2.3)

here we used [3, Corollary 6.3.5], in the second step of the argument. This provides the justification

for the claim.

The next result below is the Gagliardo-Nirenberg inequality.

Lemma 2.4. Let n ≥ 2m+ 1 and Ω be open and bounded subset of Rn, 1 < r < 1 + 4m
n−2m . Then

there exists C0 = C0 (Ω, n, r) > 0 so that

∥z∥r+1
Lr+1(Ω) ≤ C0

∥∥∥A 1
2 z
∥∥∥β(r+1)

∥z∥(1−β)(r+1)
, ∀z ∈ Hm

0 (Ω) ,

where

β =
n (r − 1)

4 (r + 1)
∈ (0, 1) . (2.4)
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Proof. Let z ∈ Hm
0 (Ω) . It follows from Gagliardo-Nirenberg inequality that

∥z∥r+1
Lr+1(Ω) ≤ C (Ω, n, r)

∥∥∥A 1
2 z
∥∥∥β(r+1)

∥z∥(1−β)(r+1)
,

where used ∥∥∇2z
∥∥ ≤ C (Ω, n)

∥∥∥A 1
2 z
∥∥∥ ,

by [22, Chapter 3, Proposition 3].

Lemma 2.5. Assume that n ≥ 1 and Ω ⊂ Rn be open and bounded with Lipschitz boundary.

Suppose α is defined by (1.2). Let z be a weak solution to equation (1.1) with T > 0. Then the

following identities hold:

(H1)

J (z(h), h) +

∫ h

0

(∥∥∥∥zt (s)|x|m
∥∥∥∥2 − α′ (s)

r + 1
∥z∥r+1

Lr+1(Ω)

)
ds = J (z0, 0) ,

and

(H2)
d

dt

(
1

2

∥∥∥∥z(h)|x|m
∥∥∥∥2
)

=

(
z (h)

|x|2m
, zt (h)

)
= −I (z(h), h) ,

for a.e. h ∈ [0, T ).

Proof. For (H1), first assume that zt ∈ L2
(
0, T ;Hm

0 (Ω) ∩ Lr+1 (Ω)
)
. Then, utilizing zt as a test

function in (2.1) we have

∥∥∥∥ zt
|x|m

∥∥∥∥2 + (A 1
2 z,A 1

2 zt

)
= α (t)

(
|z|r−1

z, zt

)
.

Moreover, direct calculations provide

d

dt
J (z(t), t) =

(
A 1

2 z,A 1
2 zt

)
− α (t)

(
|z|r−1

z, zt

)
− α′ (t)

r + 1
∥z∥r+1

Lr+1(Ω) ,

as a function of t in the interval [0, T ). Combining these two identities together results in

d

dt
J (z(t), t) = −

∥∥∥∥ zt
|x|m

∥∥∥∥2 − α′ (t)

r + 1
∥z∥r+1

Lr+1(Ω) , (2.5)

as a function of t in the interval [0, T ).

Now (H1) follows by integrating both sides of (2.5) with respect to t over (0, h), where h ∈ (0, T ).

To conclude, with an approximation argument we examine that (2.5) holds without the assumption

that zt ∈ L2
(
0, T ;Hm

0 (Ω) ∩ Lr+1 (Ω)
)
.
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The proof of (H2) is the same way and is omitted.

The result we give below is obtained directly from Lemma 2.4 and the Friedrichs inequality (cf.

[14, Theorem 1.10]).

Lemma 2.6. Let n ≥ 1, z ∈ Hm
0 (Ω) and 2 < r + 1 < 2∗. Then there exists a constant Sr =

Sr (n, r) > 0 so that

∥z∥Lr+1(Ω) ≤ Sr ∥∆z∥ .

In addition, we note that the constant Sr may be made explicit and sharp when n ≥ 2m+ 1.

Our next result is known as the concavity argument, which is widely used in the literature and is

used for the sufficient condition of blow-up.

Lemma 2.7 ([12,13]). Suppose that a positive, twice-differentiable on (0,∞) function ψ (t) satisfies

the inequality

ψ′′ (t)ψ (t)− (1 + θ) (ψ′ (t))
2 ≥ 0,

where θ > 0. If ψ (0) > 0 and ψ′ (0) > 0 for all t ∈ (0,∞) . Then there exists T > 0 such that

lim
t→T−

ψ (t) = ∞, and T ≤ ψ (0)

θψ′ (0)
.

3 Upper bound for blow-up time

In this part, we are going to obtain the upper bounds for the finite time blow-up results. For

simplicity, we shall write

L (t) =
1

2

∥∥∥∥ z (t)|x|m
∥∥∥∥2 ,

for each t ∈ [0, T ) .

We start with the proof of Theorem 3.1. This is related to the upper limit on the explosion time

of the weak solution when the initial energy functional is negative (1.1) .

Theorem 3.1. Assume that n ≥ 2m+1 and Ω ⊂ Rn be open and bounded with Lipschitz boundary.

Let r > 1 and α be given by (1.2). Such that 0 ̸= z0 ∈ Hm
0 (Ω) ∩ Lr+1 (Ω) and

J (z0, 0) =
1

2

∥∥∥A 1
2 z0

∥∥∥2 − α (0)

r + 1
∥z0∥r+1

Lr+1(Ω) < 0.

Suppose that z (t) is a weak solution to (1.1) with T > 0. Then z blows up at a finite time T ∗ which

satisfies

T ∗ ≤

∥∥∥ z0
|x|m

∥∥∥2
(1− r2) J (z0, 0)

.
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Proof. Here we set T ∗ < ∞, where T ∗ ≥ 0 is the maximum existence time of z, and then we aim

to provide an upper bound for T ∗.

Set for this purpose

K (t) = −J (z (t) , t) ,

for every t ∈ [0, T ∗) . According to the hypothesis L (0) > 0 and K (0) > 0.

We can also write from Lemma 2.5:

K′ (t) = − d

dt
J (z (t) , t) =

∥∥∥∥ zt
|x|m

∥∥∥∥2 + α′ (s)

r + 1
∥z∥r+1

Lr+1(Ω) ≥ 0, (3.1)

for each t ∈ [0, T ∗) , so K increases over [0, T ∗) . Consequently, K (t) ≥ K (0) > 0 for all t ∈ [0, T ∗) .

Assume that t ∈ [0, T ∗) . Same way,

L′ (t) =

(
z

|x|2m
, zt

)
= −I (z (t) , t) = r − 1

2

∥∥∥A 1
2 z
∥∥∥2 − (r + 1) J (z (t) , t) ≥ (r + 1)K (t) . (3.2)

Thus,

L (t)K′ (t) ≥ 1

2

∥∥∥∥ z

|x|m
∥∥∥∥2 ∥∥∥∥ zt

|x|m
∥∥∥∥2 ≥ 1

2

(
z

|x|2m
, zt

)2

=
1

2
(L′ (t))

2 ≥ r + 1

2
L′ (t)K (t) . (3.3)

From (3.1), (3.2) and (3.3), we get

(
K (t)L−(r+1)/2 (t)

)′
= L−(r+3)/2 (t)

(
K′ (t)L (t)− r + 1

2
K (t)L′ (t)

)
≥ 0.

This means that KL−(r+1)/2 strictly increases over [0, T ∗), which follows:

0 < ξ0 = K (0)L−(r+1)/2 (0) < K (t)L−(r+1)/2 (t)

≤ 1

r + 1
L′ (t)L−(r+1)/2 (t) =

2

1− r2

(
L(1−r)/2 (t)

)′
,

here we used (3.2).

Integrating this last representation with respect to t over (0, τ), where τ ∈ (0, T ∗), we obtain:

ξ0τ ≤ 2

1− r2

(
L(1−r)/2 (τ)− L(1−r)/2 (0)

)
.

Since this inequality only holds for a finite period of time, we deduce T ∗ <∞. Moreover,

0 ≤ L(1−r)/2 (τ) ≤ L(1−r)/2 (0)−
(
r2 − 1

)
ξ0

2
τ,
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for all τ ∈ [0, T ∗) . This reveals that

T ∗ ≤ 2

(r2 − 1) ξ0
L(1−r)/2 (0) =

2L (0)

(1− r2) J (z0, 0)
.

The proof is complete.

Next we state and prove Theorem 3.2. Here it provides an upper bound on the explosion time for

a weak solution to (1.1) when the initial energy functional is positive.

Theorem 3.2. Suppose that n ≥ 2m+1 and Ω ⊂ Rn be open and bounded with Lipschitz boundary.

Let r > 1 and α be given by (1.2). Assume that 0 ̸= z0 ∈ Hm
0 (Ω) ∩ Lr+1 (Ω) and

0 ≤ C1J (z0, 0) <
1

2

∥∥∥∥ z0
|x|m

∥∥∥∥2 = L (0) ,

where

C1 =
(r + 1) C
r − 1

and C =

(
m2

n (m− 1) (n− 2m)

)2

.

Suppose that z (t) be a weak solution to (1.1) with T > 0. Then z blows up at a finite time T ∗

which satisfies

T ∗ ≤ 4rC1L (0)

(r − 1)
2
(r + 1) (L (0)− C1J (z0, 0))

.

Proof. Here we set T ∗ <∞ , where T ∗ ≥ 0 is the maximum existence time of z, and then we aim

to provide an upper bound for T ∗.

From (3.2)

L′ (t) ≥ r − 1

2

∥∥∥A 1
2 z
∥∥∥2 − (r + 1) J (z (t) , t) ≥ r − 1

2C

∥∥∥∥ z (t)|x|m
∥∥∥∥2 − (r + 1) J (z (t) , t)

=
r − 1

C
[L (t)− C1J (z (t) , t)] =

r − 1

C
M (t) ,

for each t ∈ (0, T ∗) , where in the second step we used Lemma 2.3.

Observe from the inequality above:

M′ (t) = L′ (t)− C1
d

dt
J (z (t) , t) ≥ L′ (t) ≥ r − 1

C
M (t) ,

for each t ∈ (0, T ∗) , here we used (3.1) in the second step.

Moreover,

M (0) = L (0)− C1J (z0, 0) > 0,
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by assumption. Consequently, an application of Gronwall’s inequality gives

M (t) ≥ M (0) exp

(
r − 1

C
t

)
> 0.

This means that L′ (t) > 0 for every t ∈ (0, T ∗). That is, L increases strictly over [0, T ∗) and hence

L (t) > L (0) , (3.4)

for every t ∈ [0, T ∗) .

And by C1 and C given in the statement of this theorem. Fix τ ∈ [0, T ∗) and

β ∈
(
0,
r + 1

rC1

)
M (0) and σ ∈

(
L (0)

(r − 1)β
,∞
)
. (3.5)

The choices of β and σ are justified below with (3.8) and (3.9) respectively. Define non-negative

functional

Ψ(h) =

∫ h

0

L (s) ds+ (τ − h)L (0) + β (h+ σ)
2
,

where h ∈ [0, τ ] . Then

Ψ′ (h) = L (h)− L (0) + 2β (h+ σ) = 2

∫ h

0

(
z (s)

|x|m
, zt (s)

)
ds+ 2β (h+ σ) ,

and

Ψ′′ (h) = 2

(
z (h)

|x|m
, zt (h)

)
+ 2β = −2I (z (h) , h) + 2β

≥ −2 (r + 1)J (z (h) , h) + (r − 1)
∥∥∥A 1

2 z
∥∥∥2 + 2β

≥ −2 (r + 1)

[
J (z0, 0)−

∫ h

0

(∥∥∥∥zt (s)|x|m
∥∥∥∥2 + α′ (s)

r + 1
∥z∥r+1

Lr+1(Ω)

)
ds

]
+ (r − 1)

∥∥∥A 1
2 z
∥∥∥2 + 2β

≥ −2 (r + 1)

[
J (z0, 0)−

∫ h

0

(∥∥∥∥zt (s)|x|m
∥∥∥∥2 + α′ (s)

r + 1
∥z∥r+1

Lr+1(Ω)

)
ds

]
+

2 (r − 1)

C
L (h) + 2β,

(3.6)

for each h ∈ [0, τ) , where we used Lemmas 2.5 and 2.3 in the third and fourth lines, respectively.

In what follows it is convenient to denote

θ (h) =

(
2

∫ h

0

L (s) ds+ β (h+ σ)
2

)(∫ h

0

∥∥∥∥zt (s)|x|m
∥∥∥∥2
L2(Ω)

ds+ β

)

−

(∫ h

0

(
z (s)

|x|m
, zt (s)

)
ds+ β (h+ σ)

)2

≥ 0, (3.7)
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for every h ∈ [0, τ ] , where in the last step of (3.7) we used the Cauchy-Schwarz inequality.

From Lemma 2.7, (3.6) and (3.4), we obtain

Ψ(h)Ψ′′ (h)− r + 1

2
(Ψ′ (h))

2
= Ψ(h)Ψ′′ (h)− 2 (r + 1)

[∫ h

0

(
z (s)

|x|m
, zt (s)

)
ds+ β (h+ σ)

]2

= Ψ(h)Ψ′′ (h) + 2 (r + 1)

[
θ (h)− (Ψ (h)− (τ − h)L (0))

(∫ h

0

∥∥∥∥zt (s)|x|m
∥∥∥∥2 ds+ β

)]

≥ Ψ(h)Ψ′′ (h)− 2 (r + 1)Ψ (h)

(∫ h

0

∥∥∥∥zt (s)|x|m
∥∥∥∥2 ds+ β

)

≥ Ψ(h)

[
Ψ′′ (h)− 2 (r + 1)

(∫ h

0

∥∥∥∥zt (s)|x|m
∥∥∥∥2 ds+ β

)]

≥ Ψ(h)

[
−2 (r + 1)J (z0, 0) +

2 (r − 1)

C
L (h)− 2rβ

]
≥ Ψ(h)

[
−2 (r + 1)J (z0, 0) +

2 (r − 1)

C
L (0)− 2rβ

]
= 2 (r + 1)Ψ (h)

[
−J (z0, 0) +

1

C1
L (0)− rβ

r + 1

]
≥ 0, (3.8)

for all h ∈ [0, τ ] .

Then observe this

Ψ(0) = τL (0) + βσ2 > 0, and Ψ′ (0) = 2βσ > 0.

Consequently, from Lemma 2.7:

τ ≤ 2Ψ (0)

(r − 1)Ψ′ (0)
=

2
(
τL (0) + βσ2

)
2 (r − 1)βσ

=
L (0)

(r − 1)βσ
τ +

σ

r − 1
.

This is as a result

τ

(
1− L (0)

(r − 1)βσ

)
≤ σ

r − 1
,

or equivalently, we can write

τ ≤ σ

r − 1

(
1− L (0)

(r − 1)βσ

)−1

=
βσ2

(r − 1)βσ − L (0)
. (3.9)

Reducing the expression mentioned in (3.5) across the range of σ results in

τ ≤ 4L (0)

(r − 1)
2
β
. (3.10)

Next, we aim to minimize the expression referenced by (3.10) within the specified range of β as
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outlined in (3.5). This leads to the following inequality:

τ ≤ 4rC1L (0)

(r − 1)
2
(r + 1)M (0)

. (3.11)

Finally, the inequality stated in reference (3.11) remains valid for all τ ∈ (0, T ∗). From this, we

can conclude that

T ∗ ≤ 4rC1L (0)

(r − 1)
2
(r + 1)M (0)

,

as needed.

4 Lower bound for blow-up time

In this section we consider with the lower bound for the finite time blow-up results. This is the

content of Theorem 4.1. For simplicity, we shall write

L (t) =
1

2

∥∥∥∥ z (t)|x|m
∥∥∥∥2 ,

for each t ∈ [0, T ) .

We start with the proof of Theorem 4.1. This is related to the lower limit on the explosion time

of the weak solution when the initial energy functional is negative (1.1) .

Theorem 4.1. Assume that n ≥ 2m + 1 and Ω ⊂ Rn be open bounded with Lipschitz boundary.

Let α is given by (1.2) which enjoys a further property that

α∞ = lim
t→∞

α (t) <∞.

Suppose that 1 < r < 1+ 4m
n . Let z (t) be a weak solution to (1.1) with T > 0 and 0 ̸= z0 ∈ Hm

0 (Ω) .

Assume that z (t) blows up at T ∗. Then

T ∗ ≥ L1−γ (0)

C∗ (γ − 1)
,

where

β =
n (r − 1)

4 (r + 1)
∈ (0, 1) , γ =

(1− β) (r + 1)

2− β (r + 1)
> 1,

and

C∗ =
2− β (r + 1)

2

(
2

α∞C0β (r + 1)

)−β(r+1)/(2−β(r+1))(
sup
x∈Ω

|x|
)4γ

,

with C0 = C0 (Ω, n, r) > 0.
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Proof. By assumption 1 < r < 1 + 4m
n this leads to

0 < β (r + 1) =
(r − 1)n

4
< m.

This allows us to apply Young’s inequality below.

Based on the constants defined in the expression of this theorem and utilizing the Lemma 2.4 and

Young’s inequality. We get

L′ (h) =

(
z (h)

|x|m
, zt (h)

)
= −I (z (h) , h) = α (h) ∥z∥r+1

Lr+1(Ω) −
∥∥∥A 1

2 z
∥∥∥2

≤ C0α∞

∥∥∥A 1
2 z
∥∥∥β(r+1)

∥z∥(1−β)(r+1) −
∥∥∥A 1

2 z
∥∥∥2

≤
∥∥∥A 1

2 z
∥∥∥2 + 2− β (r + 1)

2

(
2

α∞C0β (r + 1)

)−β(r+1)/(2−β(r+1))

∥z∥2γ −
∥∥∥A 1

2 z
∥∥∥2

=
2− β (r + 1)

2

(
2

α∞C0β (r + 1)

)−β(r+1)/(2−β(r+1))

∥z∥2γ

≤ 2− β (r + 1)

2

(
2

α∞C0β (r + 1)

)−β(r+1)/(2−β(r+1))(
sup
x∈Ω

|z|
)4γ

L (t)
γ

= C∗L (t)
γ
,

for all h ∈ (0, T ∗) . Equivalency one has

L′ (t)

L (t)
γ ≤ C∗,

where do we get it
1

1− γ

(
L1−γ (t)− L1−γ (0)

)
≤ C∗t.

Lastly, since γ > 1 and limt→T∗ L (t) = ∞, allowing t→ T ∗ in the above inequality, we have

T ∗ ≥ L1−γ (0)

C∗ (γ − 1)
,

as required.

5 Global existence

In this Section, we establish the existence of a global weak solution to the equation referenced

as (1.1), which corresponds to Theorem 5.2. While the proof follows the conventional arguments

of Faedo-Galerkin approximation, the presence of the fourth-order operator in (1.1) requires a

thorough justification, particularly when the initial datum z0 belongs to the stable set Σ1. For the

sake of simplicity in notation, we utilize the dot notation in this part
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z′k = (zk)t =
∂

∂t
zk.

Hereafter

a ∧ b = min {a, b} and a ∨ b = max {a, b} .

Remember we set

nΩ =

 2m+ 1, if 0 ∈ Ω

1, if 0 /∈ Ω
and 2∗ =

 ∞, if n ≤ 2m,

2n
n−2m , if n ≥ 2m+ 1,

with

Σ1 (t) = {z ∈ Hm
0 (Ω) : J (z, t) < n∞ and I (z, t) > 0} ,

and

Σ2 (t) = {z ∈ Hm
0 (Ω) : J (z, t) < n∞ and I (z, t) > 0} ,

for every t ≥ 0.

We begin with a problem of approximation.

Lemma 5.1 ([5]). Assume that n ≥ nΩ and 2 < r + 1 < 2∗. Suppose that k ∈ N, T > 0 and

zk0 ∈ C∞
c (Ω) . Then the problem

ρk (x) z
′
k +Azk = βk (zk) , (x, t) ∈ Ω× (0, T ] ,

∂izk (x, t)

∂νi
= 0, i = 0, 1, . . . ,m− 1, (x, t) ∈ Ω× (0, T ] ,

zk (x, 0) = zk0, x ∈ Ω,

(5.1)

accepts a global solution zk ∈ C ([0, T ] ;Hm
0 (Ω)) so that z′k ∈ L2 (0, T ;Hm

0 (Ω)) , where

ρk (x) = |x|−2m ∧ n and βk (zk) = α (t)
[
(−k) ∨

(
|zk|r−1

zk

)
∧ k
]
.

Finally, we present the existence of a global weak solution to (1.1) when the initial datum z0

belongs to the stable set Σ1.

Theorem 5.2. Suppose that n ≥ nΩ and Ω ⊂ Rn be open bounded with Lipschitz boundary.

Assume that 2 < r + 1 < 2∗. Let z0 ∈
∑

1 (0) . Suppose α ∈ C1 [0,∞) satisfies α (0) > 0 and

α′ (t) ≥ 0 for all t ∈ [0,∞). Morever suppose that limt→∞ α (t) = 1. Then there exists a global

weak solution to (1.1).

Proof. Since z0 ∈ Σ1 (0) , there exists a constant ϵ0 > 0 so that

J (u0, 0) + ϵ0 < n∞.
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From Lemma 5.1 for every k ∈ N there exists a weak solution zk ∈ C ([0, T ] ;Hm
0 (Ω)) with

z′k ∈ L2 (0, T ;Hm
0 (Ω)) to the problem (5.1), here zk0 ∈ C∞

c (Ω) is so that

lim
k→∞

zk0 = z0 in Hm
0 (Ω) .

By choosing a sufficiently large k ∈ N , we can also assume that

J (zk0, 0) ≤ J (z0, 0) + ϵ0 < n∞. (5.2)

Using z′k as a test function in (5.1), we get

∫ t

0

∫
Ω

ρ2kz
′
k (s)

2
dx ds+

∫ t

0

∫
Ω

Azk (s) z′k (s) dx ds

=

∫ t

0

∫
Ω

βk (zk) z
′
k (s) dx ds ≤

∫ t

0

∫
Ω

|zk (s)|r−1
zk (s) z

′
k (s) dx ds.

When you realize this ∫
Ω

Azkz′kdx =
d

dt

(
1

2

∫
Ω

∥∥∥A1/2zk

∥∥∥2 dx) ,
and ∫

Ω

|zk|r−1
zkz

′
kdx =

d

dt

(
1

r + 1

∫
Ω

∥zk∥r+1
Lr+1(Ω) dx

)
.

We can rewrite the above inequality as follows:

∫ t

0

∫
Ω

ρkz
′
k (s)

2
dx ds+ J (zk (t) , t) ≤ J (zk0, 0) < n∞, (5.3)

here we used (5.2) in the last step. This implies zk (t) ∈ Σ1 for every t ∈ [0, T ] . Indeed, let us

express the opposite statement by way of contradiction. Let t∗ denote the minimal time at which

zk (t
∗) /∈ Σ1. Utilizing the fact that zk ∈ C ([0, T ] ;Hm

0 (Ω)) we deduce that zk (t∗) ∈ ∂Σ1. In other

words, either J (zk (t
∗) , t∗) = n∞ or I (zk (t∗) , t∗) = 0. The former is impossible due to (5.3).

As a result, it is necessary to satisfy I (zk (t∗) , t∗) = 0 or equivalently,

∥∥∥A 1
2 zk (t

∗)
∥∥∥2 = α (t∗) ∥zk (t∗)∥r+1

Lr+1(Ω) ,

which implies

J (zk (t
∗) , t∗) =

r − 1

2 (r + 1)

∥∥∥A 1
2 zk (t

∗)
∥∥∥2 ≥ r − 1

2 (r + 1)
S−2
r ∥zk (t∗)∥2Lr+1(Ω)

=
r − 1

2 (r + 1)
S−2
r

α (t∗)
−1/2

∥∥∥A 1
2 zk (t

∗)
∥∥∥

∥z∥Lr+1(Ω)


2

r+1 (
1
2−

1
r+1 )

−1
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≥ r − 1

2 (r + 1)
α (t∗)

2/(1−r)
S−2(r+1)/(r−1)
r = n (t∗) ≥ n∞.

This statement contradicts the information provided in inequality (5.3). Therefore, zk (t) belongs

to the set Σ1 for each t in the interval [0, T ], as asserted.

For t ∈ [0, T ] , if zk (t) ∈ Σ1, it implies

∥∥∥A 1
2 zk (t)

∥∥∥2 = α (t) ∥zk (t)∥r+1
Lr+1(Ω) .

By utilizing equation (5.3) we can derive the following inequality:

∫ t

0

∫
Ω

ρkz
′
k (s)

2
dx ds+

(
1

2
− α (t)

r + 1

)∥∥∥A 1
2 zk (t)

∥∥∥2 < J (zk0, 0) < n∞. (5.4)

There is one in particular(
1

2
− 1

r + 1

)∥∥∥A 1
2 zk (t)

∥∥∥2 =

(
1

2
− α∞

r + 1

)∥∥∥A 1
2 zk (t)

∥∥∥2
<

(
1

2
− α (t)

r + 1

)∥∥∥A 1
2 zk (t)

∥∥∥2 < J (zk0, 0) , (5.5)

here α∞ = limt→∞ α (t) = 1 by hypothesis. Utilizing the Lemma 2.6, (5.5) and (5.2), we get

∫
Ω

|zk (t)|r+1
dx < Sr+1

r

(∥∥∥A 1
2 zk (t)

∥∥∥2)(r+1)/2

= Sr+1
r

(∥∥∥A 1
2 zk (t)

∥∥∥2)(r+1)/2−1 ∥∥∥A 1
2 zk (t)

∥∥∥2
< Sr+1

r

[(
1

2
− 1

r + 1

)−1

J (zk0, 0)

](r+1)/2−1 ∥∥∥A 1
2 zk (t)

∥∥∥2
< Sr+1

r

[(
1

2
− 1

r + 1

)−1

(J (z0, 0) + ϵ0)

](r+1)/2−1 ∥∥∥A 1
2 zk (t)

∥∥∥2
= δ

∥∥∥A 1
2 zk (t)

∥∥∥2 . (5.6)

Note that

0 < δ < Sr+1
r

[(
1

2
− 1

r + 1

)−1

d∞

](r+1)/2−1

=

[(
1

2
− 1

r + 1

)−1
r − 1

2 (r + 1)

](r−1)/2

= 1.

Next, we employ zk as a test function in (5.1) to obtain

1

2

∫
Ω

ρkz
2
k dx+

∫ t

0

∫
Ω

∣∣∣A 1
2 zk (s)

∣∣∣2 dx ds ≤ ∫ t

0

∫
Ω

|zk (s)|r+1
dx ds+

1

2

∫
Ω

ρkz
2
k0 dx

<δ

∫ t

0

∫
Ω

∣∣∣A 1
2 zk (s)

∣∣∣2 dx ds+ 1

2

∫
Ω

ρkz
2
k0 dx,
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where we utilized reference (5.6) in the second step.

It can be deduced that

1

2

∫
Ω

ρkz
2
k dx+ (1− δ)

∫ t

0

∫
Ω

∣∣∣A 1
2 zk (s)

∣∣∣2 dx ds < 1

2

∫
Ω

ρkz
2
k0 dx < C, (5.7)

here C > 0 is independent of k and T. As a result, the sequence {zk}k∈N is uniformly bounded in

L2 (0, T ;Hm
0 (Ω)) .

By (5.4) and (5.7), the following properties are satisfied:

zk → z a.e. in (0, T )× Ω,

ρ
1/2
k zk

ω→ zt
|x|m in L2

(
0, T ;L2 (Ω)

)
,

A 1
2 zk

ω→ A 1
2 z in L2

(
0, T ;L2 (Ω)

)
,

zk
ω→ z in L2

(
0, T ;Lr+1 (Ω)

)
,

zk
ω→ z in L2

(
0, T ;Lr+1 (Ω)

)
,

for all T > 0. The theorem now follows by taking limits as k → ∞ in (5.1). Since T > 0 is arbitrary,

the solution is global.
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