

An asymptotic estimate of Aoki's function

VITO LAMPRET^{1,✉}
¹ Faculty of Civil and Geodetic
Engineering, University of Ljubljana,
Ljubljana 1000, Slovenia.

vito.lampret@guest.arnes.si[✉]

ABSTRACT

The Aoki's function $A(x) := (1 + \frac{1}{x})^x + (1 - \frac{1}{x})^{-x}$ is sharply estimated for $x \gg 1$. For example, we have the zero approximation given as

$$2e \left(1 + \frac{1}{4x^2 - 1} \right) < A(x) < 2e \left(1 + \frac{3}{4x^2 - 1} \right), \quad x \geq \frac{29}{14}.$$

RESUMEN

Estimamos ajustadamente la función de Aoki $A(x) := (1 + \frac{1}{x})^x + (1 - \frac{1}{x})^{-x}$ para $x \gg 1$. Por ejemplo, tenemos la aproximación cero dada por

$$2e \left(1 + \frac{1}{4x^2 - 1} \right) < A(x) < 2e \left(1 + \frac{3}{4x^2 - 1} \right), \quad x \geq \frac{29}{14}.$$

Keywords and Phrases: Approximation, estimate, expansion, exponential function, inequality.

2020 AMS Mathematics Subject Classification: 41A20, 41A60, 41A80, 26D07, 33B10.

Published: 23 January, 2026

Accepted: 30 October, 2025

Received: 28 December, 2024

©2026 V. Lampret. This open access article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

1 Introduction

The Aoki's function $A(x)$,

$$A(x) := \left(1 + \frac{1}{x}\right)^x + \left(1 - \frac{1}{x}\right)^{-x}, \quad (1.1)$$

the sum of two strictly monotonic functions, increasing and decreasing respectively, has been estimated in [1, Theorem 1] as

$$\frac{e(2x^e - 1)}{x^e - 1} =: A_1(x) < A(x) < A_2(x) := \frac{e(2x^2 - 1)}{x^2 - 1} \quad (x > 1). \quad (1.2)$$

Figure 1 (left), showing¹ the graphs of the functions $A_1(x)$, $A(x)$ and $A_2(x)$, discloses that the double inequality (1.2) is relatively rough. This fact has encouraged us to give more accurate approximations, which are illustrated in Figure 1 (right), where there are plotted the graphs of the functions $A_1^*(x)$, $A(x)$ and $A_2^*(x)$ from Example 3.5.

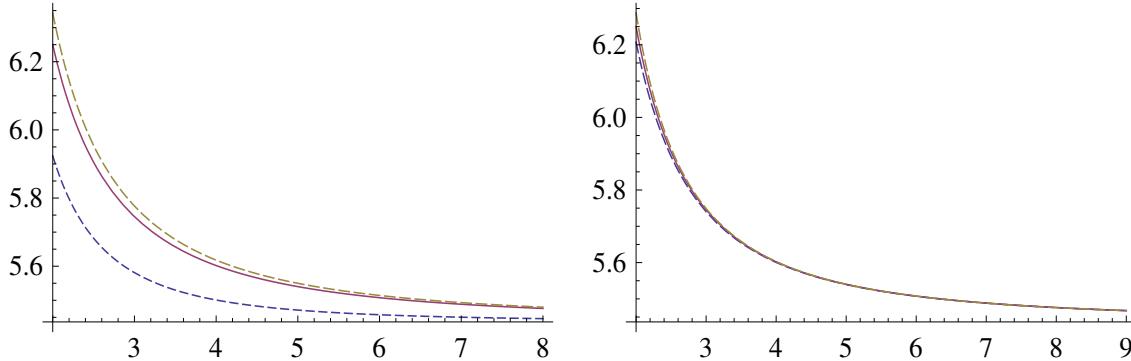


Figure 1: Left there are the graphs of the functions $A_1(x)$, $A(x)$ and $A_2(x)$. Right are illustrated the inequalities (3.1)–(3.2) in Example 3.5.

The main purpose of this article is to provide a sharp estimate of the function $A(x)$. The emphasis is on its brevity, a simple approach and its concrete sharpness (double inequalities), which is also important in some numerical treatments.

¹All graphics in this paper are made using Mathematica [4].

2 Background – an expansion of the function $(1+y)^{1/y}$

According to [3, (20) and Theorem and Corollaries 1–2 on p. 105] there holds the following lemma.

Lemma 2.1. *For every real $y > -1$, we have the expansion*

$$(1+y)^{1/y} = \frac{2e}{y+2} \sum_{i=0}^{\infty} B_{2i} \cdot \left(\frac{y}{y+2} \right)^{2i}, \quad (2.1)$$

where the sequence B_{2n} is strictly monotonically decreasing, bounded as

$$B_2 = B_3 = \frac{5}{6} \quad \text{and} \quad \frac{7}{10} < \lim_{n \rightarrow \infty} B_n < B_n < \frac{8}{10}, \quad \text{for } n \geq 4, \quad (2.2)$$

and is given recursively as

$$B_0 = B_1 = 1, \quad B_{2m+1} = B_{2m} = \frac{1}{m} \sum_{j=1}^m \frac{4j+1}{4j+2} B_{2m-2j}, \quad \text{for } m \geq 1. \quad (2.3)$$

Lemma 2.1 implies the next lemma.

Lemma 2.2. *The equation (2.1) holds for any real y such that $|y| < 1$.*

Remark 2.3. *Instead of Lemma 2.1, we could also use the results of the paper [2], which provides the expansion $(1+x)^{1/x} = e^{\sum_{j=0}^{\infty} (-1)^j b_j x^j}$ ($b_j \in \mathbb{R}^+$, $-1 < x \leq 1$). However, in this expansion, the convergence of the series is slower than the convergence of the series in the expansion $(1+x)^{1/x} = e \cdot \sum_{j=0}^{\infty} (-1)^j B_j \cdot \left(\frac{x}{x+2} \right)^j$ ($B_j \in \mathbb{R}^+$, $-1 < x \neq 0$), given in the paper [3].*

3 Expansion of the Aoki's function

Using $y = \pm \frac{1}{x}$ in Lemma 2.2, we get the following theorem.

Theorem 3.1. *The expansion*

$$A(x) = 2ex \sum_{i=0}^{\infty} B_{2i} \cdot \left(\frac{1}{(2x+1)^{2i+1}} + \frac{1}{(2x-1)^{2i+1}} \right)$$

holds true for any $x > 1$.

Proof. For $x > 1$, we have $|\pm \frac{1}{x}| < 1$. Consequently, using Lemma 2.2, the equation (2.1) holds for $y = \frac{1}{x}$ and also for $y = -\frac{1}{x}$. Therefore we obtain

$$\left(1 + \frac{1}{x} \right)^x = \frac{2ex}{1+2x} \sum_{i=0}^{\infty} B_{2i} \cdot \left(\frac{1}{1+2x} \right)^{2i}$$

and

$$\left(1 - \frac{1}{x}\right)^{-x} = \frac{2ex}{2x-1} \sum_{i=0}^{\infty} B_{2i} \cdot \left(\frac{1}{2x-1}\right)^{2i}. \quad \square$$

Corollary 3.2. *For any integer $m \geq 0$ and every real $x > 1$, we have*

$$A(x) = A_m^*(x) + \delta_m(x),$$

$$\text{where } A_m^*(x) := 2ex \sum_{i=0}^m B_{2i} \cdot \left(\frac{1}{(2x+1)^{2i+1}} + \frac{1}{(2x-1)^{2i+1}}\right)$$

and

$$0 < \delta_m(x) < \delta_m^*(x) := \frac{e B_{2m+2}}{(x-1)(2x-1)^{2m+1}} < \frac{e}{(x-1)(2x-1)^{2m+1}}.$$

Proof. Referring to Theorem 3.1 and (2.2) in Lemma 2.1, we have

$$\begin{aligned} 0 < \delta_m(x) &= 2ex \cdot \sum_{i=m+1}^{\infty} B_{2i} \cdot \frac{2}{(2x-1)^{2i+1}} < 4ex \cdot B_{2m+2} \cdot (2x-1)^{-(2m+3)} \sum_{i=0}^{\infty} (2x-1)^{-2i} \\ &= 4ex \cdot B_{2m+2} \cdot (2x-1)^{-(2m+3)} \cdot \frac{1}{1 - (2x-1)^{-2}} = \frac{e B_{2m+2}}{(x-1)(2x-1)^{2m+1}}. \end{aligned}$$

Hence, referring to the estimates (2.2), we prove Corollary 3.2. \square

Remark 3.3. *In Corollary 3.2, m is a parameter that affect the error term $\delta_m(x)$.*

Example 3.4 (zero approximation). *Setting $m = 0$ in Corollary 3.2 and using (2.2), we estimate*

$$\begin{aligned} 2e \left(1 + \frac{1}{4x^2-1}\right) &< A(x) < 2e \left(1 + \frac{1}{4x^2-1}\right) + \frac{5e}{6(x-1)(2x-1)}, \quad x > 1 \\ &\leq 2e \left(1 + \frac{3}{4x^2-1}\right), \quad x \geq \frac{29}{14}. \end{aligned}$$

Example 3.5. *Putting $m = 1$ in Corollary 3.2 and considering the equality $B_4 = \frac{287}{360}$, given by (2.3), we obtain the following inequalities*

$$A(x) > 2e \left(1 + \frac{1}{4x^2-1} + \frac{10x^2(4x^2+3)}{3(4x^2-1)^3}\right) \quad (3.1)$$

$$A(x) < 2e \left(1 + \frac{1}{4x^2-1} + \frac{10x^2(4x^2+3)}{3(4x^2-1)^3}\right) + \frac{287e}{360(x-1)(2x-1)^3}. \quad (3.2)$$

Corollary 3.6. *For an integer $m \geq 0$ and a real $x > 1$, the relative error*

$$\rho_m(x) := \frac{A(x) - A_m^*(x)}{A(x)}$$

of the approximation $A(x) \approx A_m^(x)$ satisfies the double inequality*

$$0 < \rho_m(x) < \rho_m^*(x) := \frac{B_{2m+2}}{2(x-1)(2x-1)^{2m+1}} < \frac{1}{2(x-1)(2x-1)^{2m+1}}.$$

Proof. According to Example 3.4, we have $A(x) > 2e$. Therefore, using Corollary 3.2, we get

$$\rho_m(x) = \frac{(A_m^*(x) + \delta_m(x)) - A_m^*(x)}{A(x)} < \frac{\delta_m^*(x)}{2e} = \frac{B_{2m+2}}{2(x-1)(2x-1)^{2m+1}}. \quad \square$$

Example 3.7. *Thanks to Lemma 2.1 and Corollary 3.6, we have*

$$\rho_0^*(x) = \frac{5}{12(x-1)(2x-1)} \quad \text{and} \quad \rho_1^*(x) = \frac{287}{720(x-1)(2x-1)^3}, \quad x > 1.$$

Figure 2 shows the graphs of the errors $\rho_1(x)$ and $\rho_1^*(x)$ on the left and the graphs of the quotient $\rho_1^*(x)/\rho_1(x)$ on the right respectively.

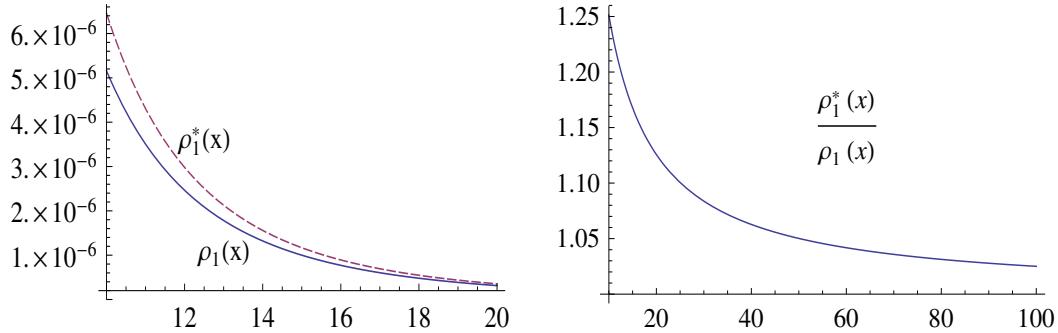


Figure 2: On the left are the graphs of the errors $\rho_1(x)$ and $\rho_1^*(x)$; on the right is the graph of the quotient $\rho_1^*(x)/\rho_1(x)$.

Remark 3.8. *A reviewer of this article suggested that the author rewrite the article following reviewer's suggestions, which, in his opinion, also include a better and much simpler approach to the problem at hand. The result of reviewer's intervention is his expansion*

$$A(x) = \sum_{n=0}^{\infty} \frac{a_{-2n}}{x^{2n}} = \sum_{n=0}^m \frac{a_{-2n}}{x^{2n}} + E_m(x),$$

where $a_{-2n} := \frac{2e}{(2n)!} D_{2n}$ with D_n defined recursively as

$$D_0 := 1, \quad D_m := \sum_{j=0}^{m-1} (-1)^{m-j} \frac{(m-1)!}{j!} \cdot \frac{m-j}{m+1-j} D_j, \quad m \geq 1$$

and estimated as

$$|D_m| < \frac{m!}{2}, \quad |E_m(x)| < \frac{2e|D_{2m+2}|}{(2m+2)! \cdot (x^{2m+2} - x^{2m+1})} < \frac{e}{(x-1)x^{2m+1}},$$

for $m \geq 1$. However, the sequence $(D_n)_{n \geq 0}$ is not simple. Additionally, the crucial fact is that the series $\sum_{n=0}^{\infty} \frac{a_{-2n}}{x^{2n}}$ converges more slowly than the series $\sum_{i=0}^{\infty} B_{2i} \cdot \left(\frac{1}{(2x+1)^{2i+1}} + \frac{1}{(2x-1)^{2i+1}} \right)$, see Corollary 3.2.

References

- [1] M. Aoki, Y. Nishizawa, R. Suzuki, and G. Takamori, “Approximations by the fractional function of the sum of two functions converging to e ,” *Appl. Math. E-Notes*, vol. 24, pp. 19–26, 2024.
- [2] C.-P. Chen and R. B. Paris, “An inequality involving the constant e and a generalized Carleman-type inequality,” *Math. Inequal. Appl.*, vol. 23, no. 4, pp. 1197–1203, 2020, doi: 10.7153/mia-2020-23-92.
- [3] V. Lampret, “Sharp, double inequalities bounding the function $(1+x)^{(1/x)}$ and a refinement of Carleman’s inequality,” *Math. Inequal. Appl.*, vol. 26, no. 1, pp. 93–107, 2023, doi: 10.7153/mia-2023-26-08.
- [4] Wolfram Research, Inc., “Mathematica,” Version 7.0, Champaign, IL, USA, Nov. 2008, computer software.