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An asymptotic estimate of Aoki’s function
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Estimamos ajustadamente la funcion de Aoki A(z) :=
(1+3)"+ (1—1)"" para 2 > 1. Por ejemplo, tenemos
la aproximaciéon cero dada por
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1 Introduction

The Aoki’s function A(x),

A(z) = <1+i>m+ (131) (1.1)

the sum of two strictly monotonic functions, increasing and decreasing respectively, has been

estimated in [1, Theorem 1] as

e(2z¢ — 1)
z¢ —1

e(2z? — 1)

= Ai(z) < A(z) < Ag(x) := 22 1

(x> 1). (1.2)

Figure 1 (left), showing® the graphs of the functions A;(z), A(z) and As(z), discloses that the
double inequality (1.2) is relatively rough. This fact has encouraged us to give more accurate
approximations, which are illustrated in Figure 1 (right), where there are plotted the graphs of the
functions Aj(x), A(x) and Aj(x) from Example 3.5.
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Figure 1: Left there are the graphs of the functions A;(x), A(z) and As(x). Right are illustrated
the inequalities (3.1)—(3.2) in Example 3.5.

The main purpose of this article is to provide a sharp estimate of the function A(x). The emphasis
is on its brevity, a simple approach and its concrete sharpness (double inequalities), which is also

important in some numerical treatments.

LAll graphics in this paper are made using Mathematica [4].
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2 Background — an expansion of the function (1 + y)l/ Y

According to [3, (20) and Theorem and Corollaries 1-2 on p. 105| there holds the following lemma.
Lemma 2.1. For every real y > —1, we have the expansion
Uy 90 & y \%
(I+y) "7 = m;Bm‘ : (y—|—2> ) (2.1)

where the sequence Ba,, is strictly monotonically decreasing, bounded as

5 7 8
= B, = = — i — > .
By = B3 5 and 10 < nh_)rrolan < B, < 10’ forn >4, (2.2)

and is given recursively as

m

1 &4+ 1
By =By =1, Boyii =By, = — T Bom i, > 1. 2.3
0 1 ; 2m+1 2 m;4j+2 om—25, form (2.3)

Lemma 2.1 implies the next lemma.
Lemma 2.2. The equation (2.1) holds for any real y such that |y| < 1.

Remark 2.3. Instead of Lemma 2.1, we could also use the results of the paper [2], which provides
the expansion (1 + z)'/* = eZ;CZO(—l)jbja?j (bj € RT, =1 < z < 1). However, in this expan-
sion, the convergence of the series is slower than the convergence of the series in the erpansion

. j
(1+ :Z:)l/m =e- > 0o(=1)B;- (ﬁ) (B e RY, =1 <z #0), given in the paper [3)].

3 Expansion of the Aoki’s function

Using y = :I:% in Lemma 2.2, we get the following theorem.

Theorem 3.1. The expansion

- 1 1
A(z) = 265520321 : ((Qx T 1)zt + (22 — 1)21+1>

holds true for any x > 1.

Proof. For x > 1, we have | + %‘ < 1. Consequently, using Lemma 2.2, the equation (2.1) holds

for y = < and also for y = —1 . Therefore we obtain

1\* 22 & 1\
14-) = Bo; - [ ———
<+m> 1+2x; 2 <1+2x>
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—x oo 21
1 2ex 1
(1_:1:) _293—1;32“(2@—1) ’ -

and

Corollary 3.2. For any integer m > 0 and every real x > 1, we have

A(z) = A7, (2) + 6 (),

where A () = 26@2% B ((2x TP (- 1)2"“)

d % L €B2m+2 €
an 0 < Om(z) <6y, () = (@ —1)(2z — 1)z < (z —1)(2z — 1)2m+1

Proof. Referring to Theorem 3.1 and (2.2) in Lemma 2.1, we have

00 oo

2 .

0< 6m(x) =2ex- E By; - W <d4dex- B277l+2 . (2.23 — 1)7(27n+3) E (233 _ 1)721
=0

1=m-+1
1 _ € Bom 2
1212 (z_1)@2c_ 17"

=dex - Bopmyo - (22 — 1)*(2””3) .

Hence, referring to the estimates (2.2), we prove Corollary 3.2. O
Remark 3.3. In Corollary 3.2, m is a parameter that affect the error term d,,(x).
Example 3.4 (zero approximation). Setting m = 0 in Corollary 3.2 and using (2.2), we estimate

1 1 5e
2 (14— ) < Az) < 2¢ (1 1
e( +4x2—1)< (@) < e( +4x2—1)+6(x—1)(2x—1)’ v

<21+ 3 > 29
e — X —_—.
- 42 —-1)° — 14

Example 3.5. Putting m = 1 in Corollary 3.2 and considering the equality By = %, given by

(2.3), we obtain the following inequalities

1 1022 (422 + 3)

A(z) > 2e (1 1t S o1 ) (3.1)
1 1022 (422 + 3) 287e

Alz) <2 (1 T 1T a1 ) 360(z — 1)(2z — 1)3 (32)

Corollary 3.6. For an integer m > 0 and a real x > 1, the relative error

of the approzimation A(x) = A%, () satisfies the double inequality

Bam42 < 1
2(x — 1)(2z — 1)2m+1 " 2(x — 1)(20 — 1)2m+1

0 < pm(z) < pr(a) =
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Proof. According to Example 3.4, we have A(x) > 2e. Therefore, using Corollary 3.2, we get

_ (A5 @) +0n(@) — A (2)  Sn(x) Bom
pm(@) = A(2) S T2 T 20— 1)(;z+f1)2m+1 ' -

Example 3.7. Thanks to Lemma 2.1 and Corollary 3.6, we have

) 287

P@) = B Dee—n ™ M0 G D

x> 1.

Figure 2 shows the graphs of the errors p;(z) and pi(x) on the left and the graphs of the quotient
pi(x)/p1(z) on the right respectively.
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Figure 2: On the left are the graphs of the errors p;(x) and pi(z); on the right is the graph of the
quotient p3 (z)/ 1 ().

Remark 3.8. A reviewer of this article suggested that the author rewrite the article following
reviewer’s suggestions, which, in his opinion, also include a better and much simpler approach to

the problem at hand. The result of reviewer’s intervention is his expansion

o0 m
a_2n a_2n
A(I‘) = Z r2n = Z xr2n + Em(l'),
n=0 n=0
2e . .
where a_g, = (2n)'D2" with D, defined recursively as
iy (m—1)! m-—
Dyi=1, Dy =Y (=1)™7 . D, m>1
— 4! m+1—j
7=0
and estimated as
2€|l)2n1+2| &

m!
Dm o 0 Em )
‘ | < 9 | (m)| < (2m + 2)! - (z2m+2 — p2miT) < (z — 1)z2m+1

for m > 1. However, the sequence (Dy)n>0 s not simple. Additionally, the crucial fact is that the

a—2n

series Y~ o 2 converges more slowly than the series Y.~ Ba; - ((zzﬁ)ziﬂ + (217})21;“) , see

Corollary 3.2.
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