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An asymptotic estimate of Aoki’s function
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ABSTRACT

The Aoki’s function A(x) :=
(
1 + 1

x

)x
+
(
1− 1

x

)−x is sharply
estimated for x ≫ 1. For example, we have the zero approx-
imation given as

2e

(
1 +

1

4x2 − 1

)
< A(x) < 2e

(
1 +

3

4x2 − 1

)
, x ≥ 29

14
.

RESUMEN

Estimamos ajustadamente la función de Aoki A(x) :=(
1 + 1

x

)x
+

(
1− 1

x

)−x para x ≫ 1. Por ejemplo, tenemos
la aproximación cero dada por

2e

(
1 +

1

4x2 − 1

)
< A(x) < 2e

(
1 +

3

4x2 − 1

)
, x ≥ 29

14
.
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1 Introduction

The Aoki’s function A(x),

A(x) :=

(
1 +

1

x

)x

+

(
1− 1

x

)−x

, (1.1)

the sum of two strictly monotonic functions, increasing and decreasing respectively, has been

estimated in [1, Theorem 1] as

e(2xe − 1)

xe − 1
=: A1(x) < A(x) < A2(x) :=

e(2x2 − 1)

x2 − 1
(x > 1). (1.2)

Figure 1 (left), showing1 the graphs of the functions A1(x), A(x) and A2(x), discloses that the

double inequality (1.2) is relatively rough. This fact has encouraged us to give more accurate

approximations, which are illustrated in Figure 1 (right), where there are plotted the graphs of the

functions A∗
1(x), A(x) and A∗

2(x) from Example 3.5.
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Figure 1: Left there are the graphs of the functions A1(x), A(x) and A2(x). Right are illustrated
the inequalities (3.1)–(3.2) in Example 3.5.

The main purpose of this article is to provide a sharp estimate of the function A(x). The emphasis

is on its brevity, a simple approach and its concrete sharpness (double inequalities), which is also

important in some numerical treatments.

1All graphics in this paper are made using Mathematica [4].
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2 Background – an expansion of the function (1 + y)1/y

According to [3, (20) and Theorem and Corollaries 1–2 on p. 105] there holds the following lemma.

Lemma 2.1. For every real y > −1, we have the expansion

(1 + y)
1/y

=
2e

y + 2

∞∑
i=0

B2i ·
(

y

y + 2

)2i

, (2.1)

where the sequence B2n is strictly monotonically decreasing, bounded as

B2 = B3 =
5

6
and

7

10
< lim

n→∞
Bn < Bn <

8

10
, for n ≥ 4, (2.2)

and is given recursively as

B0 = B1 = 1, B2m+1 = B2m =
1

m

m∑
j=1

4j + 1

4j + 2
B2m−2j , for m ≥ 1. (2.3)

Lemma 2.1 implies the next lemma.

Lemma 2.2. The equation (2.1) holds for any real y such that |y| < 1.

Remark 2.3. Instead of Lemma 2.1, we could also use the results of the paper [2], which provides

the expansion (1 + x)1/x = e
∑∞

j=0(−1)jbjx
j (bj ∈ R+, −1 < x ≤ 1). However, in this expan-

sion, the convergence of the series is slower than the convergence of the series in the expansion

(1 + x)
1/x

= e ·
∑∞

j=0(−1)jBj ·
(

x
x+2

)j

(Bj ∈ R+, −1 < x ̸= 0), given in the paper [3].

3 Expansion of the Aoki’s function

Using y = ± 1
x in Lemma 2.2, we get the following theorem.

Theorem 3.1. The expansion

A(x) = 2e x

∞∑
i=0

B2i ·
(

1

(2x+ 1)2i+1
+

1

(2x− 1)2i+1

)

holds true for any x > 1.

Proof. For x > 1, we have
∣∣ ± 1

x

∣∣ < 1. Consequently, using Lemma 2.2, the equation (2.1) holds

for y = 1
x and also for y = − 1

x . Therefore we obtain

(
1 +

1

x

)x

=
2ex

1 + 2x

∞∑
i=0

B2i ·
(

1

1 + 2x

)2i
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and (
1− 1

x

)−x

=
2ex

2x− 1

∞∑
i=0

B2i ·
(

1

2x− 1

)2i

.

Corollary 3.2. For any integer m ≥ 0 and every real x > 1, we have

A(x) = A∗
m(x) + δm(x),

where A∗
m(x) := 2e x

m∑
i=0

B2i ·
(

1

(2x+ 1)2i+1
+

1

(2x− 1)2i+1

)
and 0 < δm(x) < δ∗m(x) :=

eB2m+2

(x− 1)(2x− 1)2m+1
<

e

(x− 1)(2x− 1)2m+1
.

Proof. Referring to Theorem 3.1 and (2.2) in Lemma 2.1, we have

0 < δm(x) = 2e x ·
∞∑

i=m+1

B2i ·
2

(2x− 1)2i+1
< 4e x ·B2m+2 · (2x− 1)−(2m+3)

∞∑
i=0

(2x− 1)−2i

= 4e x ·B2m+2 · (2x− 1)−(2m+3) · 1

1− (2x− 1)−2
=

eB2m+2

(x− 1)(2x− 1)2m+1
.

Hence, referring to the estimates (2.2), we prove Corollary 3.2.

Remark 3.3. In Corollary 3.2, m is a parameter that affect the error term δm(x).

Example 3.4 (zero approximation). Setting m = 0 in Corollary 3.2 and using (2.2), we estimate

2e

(
1 +

1

4x2 − 1

)
< A(x) < 2e

(
1 +

1

4x2 − 1

)
+

5e

6(x− 1)(2x− 1)
, x > 1

≤ 2e

(
1 +

3

4x2 − 1

)
, x ≥ 29

14
.

Example 3.5. Putting m = 1 in Corollary 3.2 and considering the equality B4 = 287
360 , given by

(2.3), we obtain the following inequalities

A(x) > 2e

(
1 +

1

4x2 − 1
+

10x2(4x2 + 3)

3(4x2 − 1)3

)
(3.1)

A(x) < 2e

(
1 +

1

4x2 − 1
+

10x2(4x2 + 3)

3(4x2 − 1)3

)
+

287e

360(x− 1)(2x− 1)3
. (3.2)

Corollary 3.6. For an integer m ≥ 0 and a real x > 1, the relative error

ρm(x) :=
A(x)−A∗

m(x)

A(x)

of the approximation A(x) ≈ A∗
m(x) satisfies the double inequality

0 < ρm(x) < ρ∗m(x) :=
B2m+2

2(x− 1)(2x− 1)2m+1
<

1

2(x− 1)(2x− 1)2m+1
.
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Proof. According to Example 3.4, we have A(x) > 2e. Therefore, using Corollary 3.2, we get

ρm(x) =

(
A∗

m(x) + δm(x)
)
−A∗

m(x)

A(x)
<

δ∗m(x)

2e
=

B2m+2

2(x− 1)(2x− 1)2m+1
.

Example 3.7. Thanks to Lemma 2.1 and Corollary 3.6, we have

ρ∗0(x) =
5

12(x− 1)(2x− 1)
and ρ∗1(x) =

287

720(x− 1)(2x− 1)3
, x > 1.

Figure 2 shows the graphs of the errors ρ1(x) and ρ∗1(x) on the left and the graphs of the quotient

ρ∗1(x)/ρ1(x) on the right respectively.
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Figure 2: On the left are the graphs of the errors ρ1(x) and ρ∗1(x); on the right is the graph of the
quotient ρ∗1(x)/ρ1(x).

Remark 3.8. A reviewer of this article suggested that the author rewrite the article following

reviewer’s suggestions, which, in his opinion, also include a better and much simpler approach to

the problem at hand. The result of reviewer’s intervention is his expansion

A(x) =

∞∑
n=0

a−2n

x2n
=

m∑
n=0

a−2n

x2n
+ Em(x) ,

where a−2n :=
2e

(2n)!
D2n with Dn defined recursively as

D0 := 1, Dm :=

m−1∑
j=0

(−1)m−j (m− 1)!

j!
· m− j

m+ 1− j
Dj , m ≥ 1

and estimated as

∣∣Dm

∣∣ < m!

2
,

∣∣Em(x)
∣∣ < 2e|D2m+2|

(2m+ 2)! · (x2m+2 − x2m+1)
<

e

(x− 1)x2m+1
,

for m ≥ 1. However, the sequence (Dn)n≥0 is not simple. Additionally, the crucial fact is that the

series
∑∞

n=0
a−2n

x2n converges more slowly than the series
∑∞

i=0 B2i ·
(

1
(2x+1)2i+1 + 1

(2x−1)2i+1

)
, see

Corollary 3.2.
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