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ABSTRACT

Among the class of generalized Fourier transformations, the
linear canonical transform is of pivotal importance mainly
due to its higher degrees of freedom in lieu of the conven-
tional Fourier and fractional Fourier transforms. This ar-
ticle is a continuation of our recent work “Linear canonical
deformed Hankel transform and the associated uncertainty
principles, J. Pseudo-Differ. Oper. Appl.(2023), 14:29”.
Building upon this, we formulate the generalized transla-
tion and convolution operators associated with this newly
proposed transformation. Besides, the obtained results are
invoked to examine and obtain an analytical solution of the
generalized heat equation. Finally, we study the heat semi-
group pertaining to the generalized heat equation.

RESUMEN

Entre la clase de transformaciones de Fourier generalizadas,
la transformada lineal canónica es de importancia central,
mayormente debido a sus grados de libertad más altos en
lugar de las transformadas convencionales de Fourier y de
Fourier fraccionaria. Este artículo es una continuación de
nuestro trabajo reciente “Linear canonical deformed Han-
kel transform and the associated uncertainty principles, J.
Pseudo-Differ. Oper. Appl.(2023), 14:29”. Construyendo a
partir de esto, formulamos los operadores de traslación y con-
volución generalizados asociados a esta nueva transformación
propuesta. Además, los resultados obtenidos se utilizan para
examinar y obtener una solución analítica de la ecuación de
calor generalizada. Finalmente, estudiamos el semigrupo de
calor pertinente a la ecuación de calor generalizada.
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1 Introduction

The Fourier transform is regarded as one of the remarkable discoveries in mathematical sciences

as it profoundly influenced diverse branches of science and engineering. In the realm of harmonic

analysis, the Fourier transform plays a pivotal role in analyzing signals wherein the characteristics

are statistically invariant over time [6]. In the higher-dimensional scenario, there are several ways

to arrive at the definition of the Fourier transform. The most basic formulation in Rd is given by

the integral transform

F(f)(λ) =
1

(2π)d/2

∫
Rd

f(x) e−i⟨λ,x⟩ dx. (1.1)

Alternatively, one can rewrite the transform as

F(f)(λ) =
1

(2π)d/2

∫
Rd

f(x)K(λ, x) dx, (1.2)

where K(λ, x) is the unique solution to the system of partial differential equations∂xj
K(λ, x) = −iλjK(λ, x), j = 1, . . . , d,

K(λ, 0) = 1, λ ∈ Rd

Yet another mathematical description of the higher-dimensional Fourier transform was proposed

by Howe [44] via the Laplace operator △ on Rd as follows:

F = exp

(
iπd

4

)
exp

(
iπ

4

(
△− ∥x∥2

))
. (1.3)

It is pertinent to mention that each of the above alternative representations has its specific use

cases, and a detailed description regarding different ramifications of the Fourier transform can

be found in [10]. Many generalizations of the Fourier transform can be attributed to a deeper

understanding of the fundamental operators in Harmonic analysis. In the d-dimensional Euclidean

space, the three elementary operators are the Laplace operator △, norm ∥·∥, and the Euler operator

E, respectively defined as follows:

△ :=

d∑
j=1

∂2
xj
, ∥x∥2 :=

d∑
j=1

x2
j , E :=

d∑
j=1

xj∂xj ,

As observed in [44], the operators

E =
∥x∥2

2
, F = −△

2
, and H = E +

d

2

are invariant under O(d) and generate the Lie algebra sl2:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.
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Recently, there has been a lot of interest in other differential or difference operator realizations of

sl2 or other Lie (super) algebras. The focus is in particular on the generalized Fourier transforms

that subsequently arise from these operator theoretic notions including the Dunkl transform [13],

various discrete Fourier transforms in Rd [23], Fourier transforms in Clifford algebras [11] and many

more. However, the hard problem in this context is to find explicit closed formulas for the integral

kernel of the associated Fourier transforms. For further useful details regarding the generalized

Fourier transforms and their implications, we refer the interested reader to [10].

Very recently, Ben Said et al. [3] have given a foundation for the deformation theory of the

classical case, by constructing a generalization Fk,a of the Fourier transform, and the holomorphic

semigroup Ik,a with infinitesimal generator

Lk,a,d :=
∥∥x∥∥2−a△k −

∥∥x∥∥a, a > 0, (1.4)

acting on a concrete Hilbert space deforming L2(Rd), where △k is the Dunkl Laplace operator.

The authors have analyzed Fk,a and Ik,a(z) in the context of integral operators as well as rep-

resentation theory. The deformation parameters consist of a real parameter a coming from the

interpolation of the minimal unitary representations of two different reductive groups by keeping

smaller symmetries, and a parameter k coming from Dunkl’s theory of differential-difference oper-

ators associated with a finite Coxeter group (see [3]). In case a = 2
n , n ∈ N and d = 1, we call the

generalized Fourier transform Fk, 2
n
, the deformed Hankel transform and will be denoted by Fk,n.

As of now, the deformed Hankel transform Fk,n has witnessed an ample amount of research in the

realm of harmonic analysis, which includes the study of kernel of the deformed Hankel transform

[9], the generalized translation operator [2, 5, 30], the generalized maximal function [2], the Flett

potentials [4], the deformed wavelet packets [19], uncertainty principles [25], the (k, n)-generalized

wavelet multipliers [26], the (k, n)-generalized wavelet transform [27,29], the localization operators

[34], the (k, n)-generalized Gabor transform [28], the (k, n)-generalized Stockwell transform [30],

the (k, n)-generalized Wigner transform [32] and many more.

This paper is a continuation of the recent work carried out in the article Linear canonical deformed

Hankel transform and the associated uncertainty principles [33]. Nonetheless, in [33], we have

introduced and studied the linear canonical transform in the deformed Hankel frame (i.e. special

case a = 2
n , n ∈ N and d = 1). Recall that the classical linear canonical transform (LCT) was

independently introduced by Collins [8] in paraxial optics, and Moshinsky, and Quesne [35] in

quantum mechanics, to study the conservation of information and uncertainty under linear maps

of phase space. The LCT is an integral transformation associated with a general homogeneous

lossless linear mapping in phase space endowed with a total of three free parameters. The involved

parameters constitute a 2× 2 uni-modular matrix mapping the position x and the wave number y
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into x′

y′

 =

a b

c d

x

y

 ,

where ad − bc = 1. The transformation maps any convex body into another convex body while

preserving the area of the body. Such transformations constitute the homogeneous special group

SL(2,R). The linear canonical transform of any signal f with respect to a real matrix M =

(a, b; c, d) ∈ SL(2,R) with b ̸= 0 is defined by

FM
[
f(x)

]
(y) =

1√
ib

∫
R
f(x)KM (x, y) dy, (1.5)

where

KM (x, y) = exp

{
i

2

(
dx2 + ay2 − ixy

b

)}
. (1.6)

It is important to emphasize that the LCT provides a unified treatment of many generalized Fourier

transforms in the sense that it is an embodiment of several well-known integral transforms including

the Fourier transform [6,42], the fractional Fourier transform [1], the Fresnel transform [24], scaling

operations and so on [7,21]. Due to the extra degrees of freedom and simple geometrical manifes-

tation, the LCT is more flexible than other transforms and is as such suitable as well as a powerful

tool for investigating deep problems in optics, quantum physics and signal processing [7, 21]. In-

deed, over a couple of decades, the application areas for LCT have been growing at an exponential

rate and is as such befitting for investigating deep problems in signal analysis, filter design, phase

retrieval problems, pattern recognition, radar analysis, holographic three-dimensional television,

quantum physics, and many more. Apart from applications, the theoretical framework of LCT has

likewise been extensively studied and investigated which has led to the formulation of convolution

theorems [40], sampling theorems [22], Poisson summation formulae [45] and uncertainty principles

[41]. For more about LCT and their applications, we allude to [7, 21,37–39].

The main goal of this article is twofold. First, by employing the fundamental tools associated

with the linear canonical deformed Hankel transform (LCDHT) [33], we introduce and investigate

a generalized translation operator corresponding to the LCDHT. This operator is then utilized to

define a convolution product, and several of its essential properties are examined. Subsequently, we

establish the main theorems pertaining to the harmonic analysis in the framework of the LCDHT.

Recognizing that the LCDHT represents a recent addition to the class of integral transforms,

offering several additional degrees of freedom, we are further motivated to apply it to the heat

equation. Therefore, the second objective of this paper is to study the generalized heat equation

and the corresponding heat semigroup within the LCDHT setting. Thus, we can conclude that

the principal contribution of this work lies in developing the harmonic analysis and exploring the

generalized heat equation associated with a family of integral transforms such as the Dunkl, Bessel,

and linear canonical Bessel (LCB) transforms [12, 15–17]. Besides, our analysis extends to other
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integral transforms that have not yet been studied in this context, including the Dunkl fractional

transform, the Dunkl Fresnel transform, and the LCD transform.

The remainder of this paper is organized as follows. Section 2 recalls the main results of the har-

monic analysis associated with the deformed Hankel transform and the linear canonical deformed

Hankel transform (LCDHT). Section 3 introduces and investigates the generalized translation op-

erator corresponding to the LCDHT, along with an examination of its fundamental properties,

including symmetry, commutativity, and continuity on certain functional spaces. Section 4 is

devoted to the development and analysis of the generalized convolution product. In Section 5,

we consider the generalized heat equation and the associated heat semigroup operator within the

LCDHT framework. Finally, Section 6 presents the concluding remarks, summarizing the principal

findings and outlining possible directions for future research.

2 Deformed Hankel transforms, translation and convolutions

In this section, we shall present the prerequisites concerning the deformed Hankel transform which

shall be frequently used in formulating the main results. More precisely, we shall briefly review the

conventional translation operators, deformed Hankel transform and the corresponding generalized

translation and convolutions. For a detailed perspective, we refer to the articles [3, 5, 30] and the

references therein.

2.1 Deformed Hankel transform

Let Lp
k,n(R), 1 ≤ p ≤ ∞, be the space of measurable functions on R such that

∥∥f∥∥
Lp

k,n(R)
=

(∫
R

∣∣f(x)∣∣pdγk,n(x))1/p

< ∞, if 1 ≤ p < ∞,∥∥f∥∥
L∞

k,n(R)
= ess sup

x∈R

∣∣f(x)∣∣ < ∞,

where

dγk,n(x) := Mk,n

∣∣x∣∣ (2k−2)n+2
n dx, Mk,n =

n
n(2k−1)

2

2
n(2k−1)+2

2 Γ
(

n(2k−1)+2
2

) , k ≥ n− 1

n
, n ∈ N.

For p = 2, the space is equipped with the scalar product:

〈
f, g
〉
L2

k,n(R)
:=

∫
R
f(x)g(x) dγk,n(x).
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To facilitate our narrative, we set some notations as under:

• Cb(R) the space of bounded continuous functions on R.

• Cb,e(R) the space of even bounded continuous functions on R.

• C0(R) the space of continuous functions on R and vanishing at infinity. We provide C0(R)

with the topology of uniform convergence.

• Cc(R) the space of continuous functions on R and with compact support.

• Cp(R) the space of functions of class Cp on R.

• S(R) the Schwartz space of rapidly decreasing functions on R.

• Sk,n(R) the space of all functions f ∈ C∞(R∗) such that

sup
x∈R∗

|(|x| 2
n )j(|x|2− 2

n△k)
s(xmf (m)(x))| < ∞, for all j, s,m ∈ N0.

• SL(2,R) the group of 2× 2 real matrices with determinant one.

We are now in a position to recall the notion of Dunkl operator. In this direction, we have the

following definition:

For any f ∈ C1(R), the Dunkl operator Tk on R is defined by

Tkf(x) := f ′(x) + 2k
f(x)− f(−x)

x
, (2.1)

where as the corresponding Dunkl-Laplace operator △k, for any f ∈ C2(R), is given by

△kf(x) := T 2
k f(x) = f ′′(x) + 2k

(
f ′(x)

x
− f(x)− f(−x)

2x2

)
. (2.2)

Consider the operator

∆k,n :=
∣∣x∣∣2− 2

n△k −
∣∣x∣∣ 2n . (2.3)

In the following, we recall some spectral properties of the differential-difference operator ∆k,n.

• ∆k,n is an essentially self-adjoint operator on L2
k,n(R).

• There is no continuous spectrum of ∆k,n.

• The discrete spectrum of −∆k,n is
{

4m
n + 2k + 2

n ± 1 : m ∈ N
}
.
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Definition 2.1. For any f ∈ L1
k,n(R) and k ≥ n− 1

n
, n ∈ N, the deformed Hankel transform is

denoted by Fk,n(f) and is given as

Fk,n(f)(ξ) =

∫
R
f(x)Bk,n(λ, x) dγk,n(x), for all λ ∈ R, (2.4)

where Bk,n(λ, x) is the deformed Hankel kernel given by

Bk,n(λ, x) = ȷnk−n
2

(
n|λx| 1

n

)
+ (−i)n

(n
2

)n Γ
(
nk − n

2 + 1
)

Γ
(
nk + n

2 + 1
)λxȷnk+n

2

(
n|λx| 1

n

)
. (2.5)

Observe that

ȷα(u) := Γ(α+ 1)
(u
2

)−α

Jα(u) = Γ(α+ 1)

∞∑
m=0

(−1)m

m! Γ(α+m+ 1)

(u
2

)2m
(2.6)

denotes the normalized Bessel function of index α.

Example 2.2. The function αt, t > 0, defined on R by

αt(x) =
1

(2t)
2nk+2−n

2

e−
n|x|

2
n

4t ,

satisfies

Fk,n(αt)(ξ) = e−nt|ξ|
2
n , ∀ ξ ∈ R.

Here, we list some important properties of the deformed Hankel kernel and transform:

(i) Bk,n(z, t) = Bk,n(t, z), Bk,n(z, 0) = 1, Bk,n(z, t) = Bk,n((−1)nz, t),

Bk,n(λz, t) = Bk,n(z, λt), ∀z, t, λ ∈ R.

(ii) Bk,n(., .) solves the following differential-difference equations on R× R|λ|2− 2
n△λ

kBk,n(λ, x) = −|x| 2
nBk,n(λ, x),

|x|2− 2
n△x

kBk,n(λ, x) = −|λ| 2
nBk,n(λ, x).

where the superscript in △x
k denotes the relevant variable.

(iii) For k ≥ 1/2, Bk,n(., .) satisfies the following inequality

∣∣Bk,n(x, y)
∣∣ ≤ 1, ∀x, y ∈ R (2.7)
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(iv) Bk,n(., .) is bounded if and only if

k ≥ n− 1

2n
. (2.8)

(v) Under the bounded condition (2.8), there always exists a finite positive constant C depending

on n and k such that ∣∣Bk,n(x, y)
∣∣ ≤ C, ∀x, y ∈ R. (2.9)

(vi) ([31]). For x, y ∈ R and δ ∈ C with Re δ > 0, we have

∫
R
e−δ|ξ|2/n Bk,n(x, ξ)Bk,n(y, ξ) dγk,n(ξ) =

e−(n2/4δ)(|x|2/n+|y|2/n)(
2δ

n

) (2k−1)n+2
2

Bk,n

(
x

( 2δn )n
, (−i)ny

)
.

(2.10)

(vii) Under the bounded condition (2.8), the deformed Hankel transform Fk,n is bounded on

L1
k,n(R). In particular, if k ≥ 1/2,

∥∥Fk,n(f)
∥∥
L∞

k,n(R)
≤
∥∥f∥∥

L1
k,n(R)

. (2.11)

(viii) The deformed Hankel transform Fk,n provides a natural generalization of the conventional

Hankel transform. For instance, if we set

Beven
k,n (x, y) =

1

2
(Bk,n(x, y) +Bk,n(x,−y)) = jnk−n

2

(
n|xy| 1

n

)
. (2.12)

Then, Fk,n of an even function f on R specializes to a Hankel type transform on R+. In

fact, when f(x) = F (|x|) is an even function on R and belongs to L1
k,n(R), then

Fk,n(f)(ξ) =
(n2 )

( 2nk−n
2 )

Γ
(
2nk+2−n

2

) ∫ ∞

0

F (r)j 2nk−n
2

(
n(r|ξ|) 1

n

)
r

(2k−2)n+2
n dr, ∀ ξ ∈ R. (2.13)

(ix) The deformed Hankel transform f 7→ Fk,n(f) is an isometric isomorphism on L2
k,n(R) and

satisfies [3] ∫
R

∣∣Fk,n(f)(λ)
∣∣2dγk,n(λ) = ∫

R

∣∣f(x)∣∣2dγk,n(x). (2.14)

(x) For all f, g ∈ L2
k,n(R), we have

∫
R
Fk,n(f)(λ)Fk,n(g)(λ) dγk,n(λ) =

∫
R
f(x)g(x) dγk,n(x). (2.15)

(xi) The deformed Hankel transform Fk,n is an involutive unitary operator on L1
k,n(R), that is;

F−1
k,n(f)(x) = Fk,n(f)((−1)nx), x ∈ R. (2.16)
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(xii) For any f ∈ Lp
k,n(R), 1 ≤ p ≤ 2, the deformed Hankel transform Fk,n(f) belongs to Lp′

k,n(R)

and satisfies the following inequality:

∥Fk,n(f)∥Lp′
k,n(R)

≤
∥∥f∥∥

Lp
k,n(R)

, (2.17)

where p′ denotes the conjugate exponent of p.

(xiii) Fk,n(S(R)) ⊂ C∞(R) if and only if n = 1.

(xiv) Fk,n(S(R)) = S(R) if and only if n = 1.

(xv) For any f ∈ S(R), we have

Fk,n(f)(y) = F1

(
|y| 1

n

)
+ yF2

(
|y| 1

n

)
, (2.18)

where the even functions F1, F2 ∈ S(R).

(xvi) The space Sk,n(R) satisfies the following properties: (see [14]).

• Fk,n(Sk,n(R)) = Sk,n(R).

• The embedding Sk,n(R) ↪→ Lp
k,n(R), 1 ≤ p < ∞, is continuous.

• Sk,n(R) is a dense subset of Lp
k,n(R), 1 ≤ p < ∞.

(xvii) The unitary operator Fk,n satisfies the following intertwining relations on a dense subspace

of L2
k,n(R):

Fk,n ◦ |x| 2
n = −|x|2− 2

n∆k ◦ Fk,n, Fk,n ◦ |x|2− 2
n∆k = −|x| 2

n ◦ Fk,n. (2.19)

2.2 Generalized translation and convolution operators

Definition 2.3 ([27]). The generalized translation operator f 7→ τk,nx f on L2
k,n(R) is defined by

Fk,n(τ
k,n
x f) = Bk,n(., x)Fk,n(f). (2.20)

It is fruitful to have a class of functions in which (2.20) holds pointwise. One such class is the

generalized Wigner space Wk,n(R) given by

Wk,n(R) :=
{
f ∈ L1

k,n(R) : Fk,n(f) ∈ L1
k,n(R)

}
.

Following, we give several properties of the generalized translation operator [27].
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(i) For any f ∈ L2
k,n(R), we have

∥∥τk,nx f
∥∥
L2

k,n(R)
≤
∥∥f∥∥

L2
k,n(R)

, ∀x ∈ R. (2.21)

(ii) For any f ∈ Wk,n(R), we have

τk,nx f(y) =

∫
R
Bk,n((−1)nx, ξ)Bk,n((−1)ny, ξ)Fk,n(f)(ξ) dγk,n(ξ), ∀x, y ∈ R. (2.22)

(iii) For any f ∈ Wk,n(R), we have

τk,nx f(y) = τk,ny (f)(x), ∀x, y ∈ R. (2.23)

(iv) For all f in Wk,n(R) and g ∈ L1
k,n(R) ∩ L∞

k,n(R), we have

∫
R
τk,nx f(y)g(y) dγk,n(y) =

∫
R
f(y)τk,n(−1)nxg(y) dγk,n(y), ∀x ∈ R. (2.24)

(v) ([31]). For every δ > 0, the (k, n)-generalized translation of the generalized Gaussian function

is given by

τk,nx

(
e−

n2|s|
2
n

4δ

)
(y) = e−n2 |x|

2
n +|y|

2
n

4δ Bk,n

(
x

( 2δn )n
, (i)ny

)
. (2.25)

Recently, an explicit formula for the generalized translation operator τk,nx has been reported in [5]:

Theorem 2.4. For any f ∈ Cb(R) and k ≥ n− 1

n
, the generalized translation operator τk,nx is

given by

τk,nx f(y) =

∫
R
f(z) dζk,nx,y (z), (2.26)

where

dζk,nx,y (z) =


Kk,n(x, y, z)dγk,n(z), if xy ̸= 0,

dδx(z), if y = 0,

dδy(z), if x = 0,

(2.27)

Kk,n(x, y, z) = K
nk−n

2

B (|x| 1
n , |y| 1

n , |z| 1
n )∇k,n(x, y, z), (2.28)

having support on the set
{
z ∈ R : | |x| 1

n − |y| 1
n | < |z| 1

n < |x| 1
n + |y| 1

n

}
,
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∇k,n(x, y, z) =
Mk,n

2n

{
1 + (−1)n

n! sgn(xy)

(2kn− n)n
C

nk−n
2

n

(
∆(|x| 2

n , |y| 2
n , |z| 2

n )
)

+
n! sgn(xz)

(2kn− n)n
C

nk−n
2

n

(
∆(|z| 2

n , |x| 2
n , |y| 2

n )
)
+

n! sgn(yz)

(2kn− n)n
C

nk−n
2

n

(
∆(|z| 2

n , |y| 2
n , |x| 2

n )
)}

,

(2.29)

∆(u, v, w) =
1

2
√
uv

(u+ v − w), u, v, w ∈ R∗
+, (2.30)

C
nk−n

2
n the Gegenbauer polynomials and K

nk−n
2

B is the positive kernel given by

K
nk−n

2

B (u, v, w) =
Γ(nk−n

2 +1)

22nk−n−1Γ(nk−n−1
2 )Γ( 1

2 )

{[
(u+v)2−w2

] [
w2−(u−v)2

]}nk−n+1
2

(uvw)2nk−n if |u− v| < w < u+ v,

0 elsewhere.

Remark 2.5. (i) For all x, y, λ ∈ R, we have the following product formula:

τk,nx Bk,n(λ, y) = Bk,n(λ, x)Bk,n(λ, y). (2.31)

(ii) For all x, y ∈ R∗, we have ∫
R
Kk,n(x, y, z)dγk,n(z) = 1. (2.32)

(iii) For all x, y, z ∈ R∗, we have

Kk,n(x, y, z) = Kk,n(y, x, z). (2.33)

(iv) For all x, y, z ∈ R∗, we have

Kk,n(x, y, z) = Kk,n((−1)nx, z, y). (2.34)

(v) For all x, y, z ∈ R∗, we have

Kk,n(x, (−1)ny, z) = Kk,n(x, (−1)nz, y). (2.35)

(vi) For any x, y ∈ R, we have ∫
R
|Kk,n(x, y, z)| dγk,n(z) ≤ 4. (2.36)
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On what follows we will recall the “trigonometric” form of the generalized translation operator

proved in [30].

Theorem 2.6. (i) For f ∈ Cb(R) write f = fe + fo as a sum of even and odd functions. Then

τk,nx f(y) =
Mk,n

2n

∫ π

0

fe
(
⟨⟨x, y⟩⟩ϕ,n

){
1 + (−1)n

n! sgn(xy)

(2kn− n)n
C

nk−n
2

n (cosϕ)

}
(sinϕ)2nk−ndϕ

 |y| 1
n − |x| 1

n cosϕ

⟨⟨x, y⟩⟩
1
n

ϕ,n


+

∫ π

0

fo

(
⟨⟨x, y⟩⟩ϕ,n

) n! sgn(x)

(2kn− n)n
C

nk−n
2

n

 |x| 1
n − |y| 1

n cosϕ

⟨⟨x, y⟩⟩
1
n

ϕ,n


+

n! sgn(y)

(2kn− n)n
C

nk−n
2

n

 |y| 1
n − |x| 1

n cosϕ

⟨⟨x, y⟩⟩
1
n

ϕ,n

 (sinϕ)2nk−ndϕ

 , (2.37)

where

⟨⟨x, y⟩⟩ϕ,n :=
(
|x| 2

n + |y| 2
n − 2|xy| 1

n cosϕ
)n

2

. (2.38)

(ii) For every f ∈ Cb,e(R), we have

τk,nx f(y) =
Mk,n

2n

∫ π

0

f
(
⟨⟨x, y⟩⟩ϕ,n

){
1 + (−1)n

n! sgn(xy)

(2kn− n)n
C

nk−n
2

n (cosϕ)

}
(sinϕ)2nk−ndϕ.

(2.39)

(iii) For every λ > 0, we have

τk,nx

(
e−λ|.|

2
n

)
(y) =

Mk,n

2n
e−λ
(
|x|

2
n +|y|

2
n

)
Vk,n(λ;x, y), (2.40)

where

Vk,n(λ;x, y) :=

∫ π

0

e2λ|xy|
1
n cosϕ

{
1 + (−1)n

n! sgn(xy)

(2kn− n)n
C

nk−n
2

n (cosϕ)

}
(sinϕ)2nk−ndϕ.

(iv) ([30]). Using (2.40), properties of the Gegenbauer polynomials and by simple calculations,

we obtain ∣∣∣∣τk,nx

(
e−λ|.|

2
n

)
(y)

∣∣∣∣ ≤ Mk,n

2n
e−λ
(
|x|

1
n −|y|

1
n

)2
. (2.41)



CUBO
28, 1 (2026)

Generalized translation and convolution operators... 117

Theorem 2.7 ([5]). Let τk,nx be the generalized translation operation as defined in (2.19). Then,

(i) For any f ∈ L1
loc(dγk,n) and k ≥ n− 1

n
, we have

τk,nx f(y) = τk,ny f(x), τk,n0 f = f.

(ii) For any f ∈ Lp
k,n(R), 1 ≤ p ≤ ∞, we have

∥∥τk,nx f
∥∥
Lp

k,n(R)
≤ 4
∥∥f∥∥

Lp
k,n(R)

. (2.42)

(iii) For every f ∈ L1
k,n(R), we have

Fk,n(τ
k,n
x f)(λ) = Bk,n((−1)nλ, x)Fk,nf(λ), λ ∈ R.

(iv) For any f ∈ Lp
k,n(R), 1 ≤ p ≤ 2, we have

Fk,n(τ
k,n
x f)(λ) = Bk((−1)nλ, x)Fk(f)(λ), a.e. λ ∈ R. (2.43)

(v) For all f ∈ Cb(R) or belongs in Lp
k,n(R), 1 ≤ p ≤ ∞, we have

τk,nx τk,ny (f) = τk,ny τk,nx (f). (2.44)

Proposition 2.8. If f ∈ C0(R), then we have

lim
|x|→∞

τk,nx (f)(y) = 0.

Proof. For f ∈ C0(R), y ∈ R and ϕ ∈ [0, π], we have

lim
|x|→∞

fe
(
⟨⟨x, y⟩⟩ϕ,n

)
= lim

|x|→∞
fo
(
⟨⟨x, y⟩⟩ϕ,n

)
= 0.

Using Theorem 2.6 (i), the properties of the Gegenbauer polynomials, an application of dominated

convergence theorem give the desired result.
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Theorem 2.9 ([30]). Let Lp
k,n,e(R) be the space of even functions in Lp

k,n(R). Then,

(i) For every bounded and non-negative function f ∈ L1
k,n,e(R), we have τk,nx f ≥ 0, τk,nx f ∈

L1
k,n(R), ∀x ∈ R, and

∫
R
τk,nx f(y) dγk,n(y) =

∫
R
f(y) dγk,n(y). (2.45)

(ii) For any f ∈ Lp
k,n,e(R), we have

∥∥τk,nx f
∥∥
Lp

k,n,e(R)
≤
∥∥f∥∥

Lp
k,n,e(R)

. (2.46)

(iii) For every f ∈ L1
k,n(R), we have

∫
R
τk,nx f(y) dγk,n(y) =

∫
R
f(y) dγk,n(y). (2.47)

(iv) If f1 and f2 are two suitable functions, we have∫
R
τk,ny f1((−1)nt)f2(t)dγk,n(t) =

∫
R
τk,ny f2((−1)nt)f1(t)dγk,n(t), y ∈ R. (2.48)

Definition 2.10. The generalized convolution product of two suitable functions f, g ∈ L2
k,n(R) is

defined by

f ∗k,n g(x) =

∫
R
τk,nx f((−1)ny) g(y) dγk,n(y). (2.49)

It is pertinent to mention that the convolution product (2.49) is both commutative and associative.

We culminate this subsection by giving the following important results.

Proposition 2.11 ([5]). Let f ∗k,n g(x) be the generalized convolution as defined in (2.49). Then,

(i) For any f ∈ L2
k,n(R) and g ∈ L1

k,n(R), we have

f ∗k,n g(x) =

∫
R
τk,nx f((−1)ny)g(y) dγk,n(y). (2.50)

(ii) For every f ∈ Lp
k,n(R) and g ∈ Lq

k,n(R) with 1 ≤ p, q, r ≤ ∞, 1
p + 1

q − 1 = 1
r , the convolution

product f ∗k,n g belongs to Lr
k,n(R) and satisfies the inequality:

∥∥f ∗k,n g
∥∥
Lr

k,n(R)
≤ 4∥f∥Lp

k,n(R)∥g∥Lq
k,n(R). (2.51)

(iii) For every f ∈ L2
k,n(R) and g ∈ L1

k,n(R), we have

Fk,n(f ∗k,n g) = Fk,n(f)Fk,n(g). (2.52)
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(iv) For f, g ∈ L2
k,n(R), the convolution f ∗k,ng ∈ L2

k,n(R) if and only if Fk,n(f)Fk,n(g) ∈ L2
k,n(R)

and satisfies [27]

Fk,n(f ∗k,n g) = Fk,n(f)Fk,n(g). (2.53)

(v) For every f, g ∈ L2
k,n(R), we have

∫
R

∣∣f ∗k,n g(x)
∣∣2dγk,n(x) = ∫

R

∣∣Fk,n(f)(ξ)
∣∣2|Fk,n(g)(ξ)|2dγk,n(ξ). (2.54)

2.3 Deformed Hankel transform in linear canonical domain

In this section, we recall some results proved in [33].

Definition 2.12. The deformed linear canonical Hankel transform of any function f ∈ L1
k,n(R),

with respect to the uni-modular matrix M = (a, b; c, d) ∈ SL(2,R) is defined by

FM
k,n(f)(x) =

1

(ib)
(2k−1)n+2

2n

∫
R
KM

k,n(x, y)f(y) dγk,n(y), (2.55)

where

KM
k,n(x, y) = e

i
2 (

d
b x

2+ a
b y

2)Bk,n

(x
b
, y
)
. (2.56)

Definition 2.12 allows us to make the followings comments:

(i) For M = (1, b, 0, 1), the deformed linear canonical Hankel transform (2.55) coincides with

the Fresnel transform associated with the deformed Hankel transform:

Wb
k,nf(x) =


1

(ib)
(2k−1)n+2

2n

∫
R
Eb

k,n(x, y)f(y) dγk,n(y), b ̸= 0,

f(x), b = 0,

where Eb
k,n(x, y) = e

i
2b (x

2+y2)Bk,n

(
x
b , y
)
.

(ii) For M = (cosh(b), sinh(b); sinh(b), cosh(b)), b ∈ R, the deformed linear canonical Hankel

transform (2.55) boils down to the following integral transform

Vb
k,nf(x) =


1

(i sinh(b))
(2k−1)n+2

2n

∫
R
Rb

k,n(x, y)f(y) dγk,n(y), b ̸= 0,

f(x), b = 0,

where Rb
k,n(x, y) = e

i
2 coth(b)(x2+y2)Bk,n

(
x

sinh(b) , y
)
.
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(iii) For M = (cosα, sinα;− sinα, cosα), α ∈ R, the deformed linear canonical Hankel transform
(2.55) coincides with the fractional deformed Hankel transform Fα

k,n:

Fα
k,nf(x) =



e
i
(

(2k−1)n+2
2n

)
(α−2nπ)−α̂π/2)

| sin(α)|
(2k−1)n+2

2n

∫
R
Kα

k,n(x, y)f(y) dγk,n(y), (2j − 1)π < α < (2j + 1)π,

f(x), α = 2jπ,

f(−x), α = (2j + 1)π,

where α̂ = sgn(sin(α)), Kα
k,n(x, y) = e−

i
2 cot(α)(x2+y2)Bk,n

(
x

sin(α) , y
)
.

Definition 2.13. For any uni-modular matrix M ∈ SL(2,R), the differential-difference operator

△M
k,n is defined by

△M
k,n := |x|2(1− 1

n )

{
d2

dx2
+

(
2k

x
− 2i

d

b
x

)
d

dx
−
(
d2

b2
x2 + (2k + 1)i

d

b
+

k

x2
(1− s)

)}
, (2.57)

where s(u(x)) := u(−x).

Definition 2.13 allows us to make the following comments:

(i) For M = (0, 1;−1, 0), △M
k,n boils down to the deformed Laplace operator △k,n whereas FM

k,n

coincides with the deformed Hankel transform Fk,n (except for a constant unimodular factor

(ei
π
2 )

(2k−1)n+2
2n ).

(ii) △M
k,n is related to the deformed Laplace operator △k,n via

e−
i
2

d
b x

2

◦ △M
k,n ◦ e i

2
d
b x

2

= △k,n + |x| 2
n . (2.58)

(iii) For any f, g ∈ S(R), we have∫
R
△M

k,nf(x)g(x) dγk,n(x) =

∫
R
f(x)△M

k,ng(x) dγk,n(x). (2.59)

(iv) For each y ∈ R, the kernel KM
k,n(., y) of the linear canonical deformed Hankel transform FM

k,n

satisfy the following: △M
k,nK

M
k,n(., y) = −|yb |

2
nKM

k,n(., y),

KM
k,n(0, y) = e

i
2

a
b y

2

.
(2.60)

(v) For each x, y ∈ R, we have

|KM
k,n(x, y)| ≤ 1. (2.61)
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Theorem 2.14. Let M = (a, b; c, d) ∈ SL(2,R). Then,

(i) For any f ∈ L1
k,n(R), FM

k,n(f) belongs to C0(R) and satisfies the following inequality:

∥∥FM
k,n(f)

∥∥
L∞

k,n(R)
≤ |b|−

(2k−1)n+2
2n

∥∥f∥∥
L1

k,n(R)
. (2.62)

(ii) For every f ∈ L1
k,n(R) with FM

k,n(f) ∈ L1
k,n(R), we have

(
FM

k,n ◦ FM−1

k,n

)
(f) =

(
FM−1

k,n ◦ FM
k,n

)
(f) = sn+1(f) a.e., (2.63)

where sj(f)(x) := f((−1)jx), ∀x ∈ R, j ∈ N.

(iii) FM
k,n is a topological isomorphism from L2

k,n(R) into itself.

(iv) FM
k,n is a topological isomorphism from Sk,n(R) into itself.

(v) For any f, g ∈ L1
k,n(R), we have

∫
R
FM

k,n(f)(x)g(x) dγk,n(x) =

∫
R
f(x)FM−1

k,n (g)(x) dγk,n(x).

(vi) If f ∈ L1
k,n(R) ∩ L2

k,n(R), then FM
k,n(f) ∈ L2

k,n(R) and

∥∥FM
k,n(f)

∥∥
L2

k,n(R)
=
∥∥f∥∥

L2
k,n(R)

. (2.64)

(vii) For any f, g ∈ L2
k,n(R), we have

〈
FM

k,n(f), g
〉
L2

k,n(R)
=
〈
f,FM−1

k,n g
〉
L2

k,n(R)
. (2.65)

(viii) (Operational formulas). Let M ∈ SL(2,R) and f ∈ S(R). Then we have

FM
k,n

[
|y| 2

n f(y)
]
= −|b| 2

n△M
k,n

[
FM

k,n(f)
]
, (2.66)

and

|x| 2
nFM

k,n(f) = −|b| 2
nFM

k,n

[
△M−1

k,n (f)
]
. (2.67)
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Definition 2.15. The deformed linear canonical Hankel transform of any function f ∈ Lp
k,n(R),

1 ≤ p ≤ 2 with respect to the uni-modular matrix M = (a, b; c, d) ∈ SL(2,R) is defined by

FM
k,n(f) = e−i( (2k−1)n+2

2n )π
2 sgn(b)

(
L d

b
◦∆b ◦ Fk,n ◦ L a

b

)
(f), (2.68)

where Fk,n : Lp
k,n(R) → Lp′

k,n(R) is the deformed Hankel transformation on Lp
k,n(R), Ld/b and ∆b

are the chirp multiplication and dilation operators, defined respectively, by

Lsf(x) = e
is
2 x2

f(x), s ∈ R and ∆sf(x) =
1

|s|
(2k−1)n+2

2n

f
(x
s

)
, s ∈ R∗. (2.69)

Theorem 2.16 (Young’s inequality). For any uni-modular matrix M = (a, b; c, d) ∈ SL(2,R) and

1 ≤ p ≤ 2, FM
k,n satisfies the following inequality:

∥∥FM
k,n(f)

∥∥
Lp′

k,n(R)
≤ |b|(

(2k−1)n+2
2n )

(
2
p′ −1

)∥∥f∥∥
Lp

k,n(R)
. (2.70)

3 Generalized translations associated with LCDHT

Definition 3.1. Let M = (a, b; c, d) ∈ SL(2,R), b ̸= 0, a given uni-modular matrix. For suitable

function f , we define the generalized translation operator associated with the operator △M
k,n by

TM,k,n
x f(y) = e

i
2

d
b (x

2+y2)τk,nx

[
e−

i
2

d
b s

2

f(s)
]
(y), (3.1)

where τk,nx is the (k, n)-generalized translation operator associated with ∆k,n.

We will rely on this definition for each function on the following spaces:

• Lp
k,n(R), 1 ≤ p ≤ ∞.

• Cb(R).

Some important properties of the generalized translation operator TM,k,n
x are assembled in the

following theorem.

Theorem 3.2. Let M = (a, b; c, d) ∈ SL(2,R), b ̸= 0, then the generalized translation operator

TM,k,n
x as defined in (3.1) satisfies the following properties:

(i) Linearity: TM,k,n
x [αf + βg] (y) = αTM,k,n

x f(y) + βTM,k,n
x g(y), α, β ∈ R.

(ii) Symmetry: TM,k,n
0 = Id, TM,k,n

x f(y) = TM,k,n
y f(x), ∀x, y ∈ R.
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(iii) Product Formula: For every x, , y, z ∈ R, we have

TM,k,n
x

[
KM

k,n(., y)
]
(z) = e−

i
2

a
b y

2

KM
k,n(x, y)K

M
k,n(z, y). (3.2)

(iv) Commutative: We have

TM,k,n
x ◦ TM,k,n

y = TM,k,n
y ◦ TM,k,n

x and △M
k,n ◦ TM,k,n

x = TM,k,n
x ◦ △M

k,n. (3.3)

(v) Let f ∈ Sk,n(R). The function u(x, y) = TM,k,n
x f(y) is a solution of the problem∆M

x,k,n u(x, y) = ∆M
y,k,n u(x, y)

u(x, 0) = f(x).
(3.4)

(vi) For all x, y ∈ R, we have

TM,k,n
x f(y) =

∫
R
e−i d

b z
2

f(z) WM
k,n(x, y, z) dγk,n(z), (3.5)

where

WM
k,n(x, y, z) = e

i
2

d
b (x

2+y2+z2) Kk,n(x, y, z). (3.6)

(vii) The generalized translation operator TM,k,n
x is continuous from Cb(R) into itself. Moreover,

the operator is also continuous from Lp
k,n(R), 1 ≤ p ≤ ∞, into itself and satisfies the following

inequality: ∥∥TM,k,n
x f

∥∥
Lp

k,n(R)
≤ 4 ∥f∥Lp

k,n(R)
. (3.7)

(viii) For any f ∈ L1
k,n(R) and g ∈ Cb(R), we have

∫
R

[
TM,k,n
x f((−1)ny)

] [
e−i d

b y
2

g(y)
]
dγk,n(y) =

∫
R

[
e−i d

b y
2

f(y)
] [

TM,k,n
x g((−1)ny)

]
dγk,n(y).

(3.8)

(ix) For any f ∈ L1
k,n(R), we have

FM
k,n

[
TM−1,k,n
x f

]
(λ) = e

i
2

d
b λ

2

KM
k,n(λ, x)F

M
k,n(f)(λ), λ ∈ R. (3.9)

(x) For every f ∈ Lp
k,n(R), 1 < p ≤ 2, we have

FM
k,n

[
TM−1,k,n
x f

]
(λ) = e

i
2

d
b λ

2

KM
k,n(λ, x)F

M
k,n(f)(λ), a.e. (3.10)
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(xi) If f ∈ C0(R), then we have

lim
|x|→∞

TM−1,k,n
x f(y) = 0, y ∈ R. (3.11)

Proof. Using (3.1), we establish the proof of (i) and (ii).

(iii) Invoking Definition 3.1 and (2.31), we observe that

TM,k,n
x

[
KM

k,n(·, y)
]
(z) = e

i
2

d
b (x

2+z2)τk,nx

[
s 7→ e

i
2

a
b y

2

Bk,n

(s
b
, y
)]

(z)

= e
i
2

d
b (x

2+z2)e
i
2

a
b y

2

τk,nx

[
s 7→ Bk,n

(s
b
, y
)]

(z)

= e
i
2

d
b (x

2+z2)e
i
2

a
b y

2

Bk,n

(x
b
, y
)
Bk,n

(z
b
, y
)

= e−
i
2

a
b y

2

KM
k,n(x, y)K

M
k,n(z, y).

(iv) For any f ∈ Lp
k,n(R), 1 ≤ p ≤ ∞ (or f ∈ Cb(R)), (3.1) and Theorem 2.7 imply that

[
TM,k,n
x ◦ TM,k,n

y

]
f(z) = e

i
2

d
b (x

2+y2+z2)
[
τk,nx ◦ τk,ny

] [
e−

i
2

d
b s

2

f(s)
]
(z)

= e
i
2

d
b (x

2+y2+z2)
[
τk,ny ◦ τk,nx

] [
e−

i
2

d
b s

2

f(s)
]
(z)

=
[
TM,k,n
y ◦ TM,k,n

x

]
f(z).

Moreover, for any f ∈ Sk,n(R), identities (2.58) and (2.19) imply that

[
△M

k,n ◦ TM,k,n
x

]
f(y) = e

i
2

d
b (x

2+y2)
[
|x|2− 2

n△k ◦ τk,nx

] [
e−

i
2

d
b s

2

f(s)
]
(y)

= e
i
2

d
b (x

2+y2)
[
τk,nx ◦ |x|2− 2

n△k

] [
e−

i
2

d
b s

2

f(s)
]
(y)

=
[
TM,k,n
x ◦ △M

k,n

]
f(y).

(v) Since system (3.4) is equivalent to|x|2− 2
n△k,xũ(x, y) = |y|2− 2

n△k,yũ(x, y),

ũ(x, 0) = e−
i
2

d
b x

2

f(x),

where ũ(x, y) = e−
i
2

d
b (x

2+y2)u(x, y). Therefore, by invoking the transmutation property

e−
i
2

d
b x

2

◦ △M
k,n ◦ e i

2
d
b x

2

= |x|2− 2
n△k,

together with the identity (2.19) and τk,nx △k = △kτ
k,n
x , we obtain that the function

ũ(x, y) = τk,nx

[
e−

i
2

d
b s

2

f(s)
]
(y)
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is a solution of the previous system. Consequently, we get

u(x, y) = e
i
2

d
b (x

2+y2)τk,nx

[
e−

i
2

d
b s

2

f(s)
]
(y) = TM,k,n

x (f)(y)

is a solution of (3.4).

(vi) This is a direct consequence of (3.1) and (2.26).

(vii) The continuous property of TM,k,n
x follows directly from the fact that

TM,k,n
x f =

[
L d

b ,x
◦ L d

b ,y
◦ τk,nx ◦ L− d

b

]
f

where L d
b
, L− d

b
, τk,nx are continuous from Cb(R) into itself and Lp

k,n(R) into itself, respec-

tively. Moreover, for any f ∈ Lp
k,n(R), the operator TM,k,n

x f belongs to Lp
k,n(R) and satisfies

∥∥TM,k,n
x f

∥∥
Lp

k,n(R)
=
∥∥∥τk,nx

[
L− d

b
f
]∥∥∥

Lp
k,n(R)

≤ 4
∥∥∥L− d

b
f
∥∥∥
Lp

k,n(R)
= 4 ∥f∥Lp

k,n(R)
.

(viii) For any f ∈ L1
k,n(R) and g ∈ Cb(R), (3.1) and (2.49) yield

∫
R

[
TM,k,n
x f((−1)ny)

] [
e−i d

b y
2

g(y)
]
dγk,n(y)

= e
i
2

d
b x

2

∫
R
τk,nx

[
e−

i
2

d
b s

2

f(s)
]
((−1)ny)

[
e−

i
2

d
b y

2

g(y)
]
dγk,n(y)

= e
i
2

d
b x

2

∫
R

[
e−

i
2

d
b y

2

f(y)
]
τk,nx

[
e−

i
2

d
b s

2

g(s)
]
((−1)ny) dγk,n(y)

=

∫
R

[
e−i d

b y
2

f(y)
] [

TM,k,n
x g((−1)ny)

]
dγk,n(y).

(ix) For any f ∈ L1
k,n(R), (2.55), (2.56), (3.1) and Theorem 2.7 imply that

[
(ib)

(2k−1)n+2
2n

]
FM

k,n

[
TM−1,k,n
x f

]
(λ)

= e
i
2 (

d
b λ

2− a
b x

2)

∫
R
τk,nx

[
e

i
2

a
b s

2

f(s)
]
(y)Bk,n

(
λ

b
, y

)
dγk,n(y)

= e
i
2 (

d
b λ

2− a
b x

2)

∫
R
e

i
2

a
b y

2

f(y)τk,nx

[
s 7→ Bk,n

(
λ

b
, s

)]
((−1)ny) dγk,n(y)

= e
i
2 (

d
b λ

2− a
b x

2)Bk,n

(
λ

b
, x

)∫
R
e

i
2

a
b y

2

f(y)Bk,n

(
λ

b
, y

)
dγk,n(y)

=
[
(ib)

(2k−1)n+2
2n

]
e

i
2

d
b λ

2

KM
k,n(λ, x)F

M
k,n(f)(λ).

(x) For any f ∈ L1
k,n(R) ∩ Lp

k,n(R), the result follows directly by virtue of property (ix) while

as Young inequality (2.70) and relation (3.7) show that the mappings f 7→ FM
k,n

[
TM−1,k,n
x f

]
and f 7→ FM

k,n(f) are continuous from Lp
k,n(R) into Lp′

k,n(R). As such, the result follows
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immediately by the density of L1
k,n(R) ∩ Lp

k,n(R) in Lp
k,n(R).

(xi) Using the relation (3.1) and Proposition 2.8, we derive the result.

Corollary 3.3. For any f ∈ S(R), we have

TM−1,k,n
x f(y) =

1

(−ib)
(2k−1)n+2

2n

e−
i
2

a
b y

2

∫
R
Bk,n

(
(−1)n

λ

b
, y

)
KM

k,n(λ, x)F
M
k,n(f)(λ) dγk,n(λ).

(3.12)

Proof. For any f ∈ S(R), inequality (3.7) implies that y 7→ [TM−1,k,n
x f ](y) is continuous function

of L1
k,n(R). Therefore, as a consequence of (3.9) and the inversion formula of the deformed linear

canonical Hankel transform, the result follows immediately.

We conclude this section with the following important result.

Theorem 3.4. Let TM,k,n
y be the generalized translation operator associated with the uni-modular

matrix M = (a, b; c, d), b ̸= 0. Then,

(i) For all f ∈ C0(R), we have

lim
y→0

∥∥TM,k,n
y f − f

∥∥
∞ = 0. (3.13)

(ii) For any f ∈ Lp
k,n(R), 1 ≤ p < ∞, we have

lim
y→0

∥∥TM,k,n
y f − f

∥∥
Lp

k,n(R)
= 0. (3.14)

Proof. (i) First step: We shall prove the result for any f ∈ Cc(R). Using the fact that

Mk,n

2n

∫ π

0

(sinϕ)2nk−ndϕ = 1 and

∫ π

0

C
nk−n

2
n (cosϕ)(sinϕ)2nk−ndϕ = 0,

the generalized translation operator TM,k,n
y we can be expressed

TM,k,n
y f(x)− f(x) = ay(x) + by(x) + cy(x) + dy(x), (3.15)

where

ay(x) =
Mk,n

2n
fe(x)

∫ π

0

[
ei

d
2b

(x2+y2−⟨⟨x,y⟩⟩2ϕ,n) − 1
]{

1 + (−1)n
n! sgn(xy)

(2kn− n)n
C

nk−n
2

n (cosϕ)

}
(sinϕ)2nk−ndϕ,

by(x) =
Mk,n

2n

∫ π

0

e
i d
2b

(
x2+y2−

(
|x|

2
n +|y|

2
n −2|xy|

1
n cosϕ

)n) [
fe

(
⟨⟨x, y⟩⟩ϕ,n

)
− fe(x)

]
(sinϕ)2nk−ndϕ

cy(x) =
Mk,n

2n
fo(x)

∫ π

0

[
ei

d
2b

(x2+y2−⟨⟨x,y⟩⟩2ϕ,n) − 1
]
Rk,n(x, y, ϕ)(sinϕ)

2nk−ndϕ

dy(x) =
Mk,n

2n

∫ π

0

e
i d
2b

(
x2+y2−

(
|x|

2
n +|y|

2
n −2|xy|

1
n cosϕ

)n) [
fo
(
⟨⟨x, y⟩⟩ϕ,n

)
− fo(x)

]
Rk,n(x, y, ϕ)(sinϕ)

2nk−ndϕ,
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(i) stel and

Rk,n(x, y, ϕ) =
n! sgn(x)

(2kn− n)n
C

nk−n
2

n

 |x| 1
n − |y| 1

n cosϕ

⟨⟨x, y⟩⟩
1
n

ϕ,n

+
n! sgn(y)

(2kn− n)n
C

nk−n
2

n

 |y| 1
n − |x| 1

n cosϕ

⟨⟨x, y⟩⟩
1
n

ϕ,n

 .

(i) stel Invoking the properties of the Gegenbauer polynomials, we observe that there exists a

positive constant C(k, n) such that

∥∥ay∥∥∞ ≤ C(k, n)∥f∥∞
∫ π

0

∣∣∣ei d
b (x

2+y2−⟨⟨x,y⟩⟩2ϕ,n) − 1
∣∣∣ (sinϕ)2nk−ndϕ.

Therefore, we have

lim
y→0

ei
d
b (x

2+y2−⟨⟨x,y⟩⟩2ϕ,n) − 1 = 0, |ei
d
b (x

2+y2−⟨⟨x,y⟩⟩2ϕ,n) − 1| ≤ 2,

and ∫ π

0

(sinϕ)2nk−ndϕ =
2n

Mk,n
< ∞.

Then, an application of dominated convergence theorem implies that

lim
y→0

∫ π

0

∣∣∣ei d
b (x

2+y2−⟨⟨x,y⟩⟩2ϕ,n) − 1
∣∣∣ (sinϕ)2nk−ndϕ = 0.

So, we derive that

lim
y→0

∥∥ay∥∥∞ = 0.

As limy→0 fe

(
⟨⟨x, y⟩⟩ϕ,n

)
= fe(x), we derive from the uniform continuity of f , that for

given ϵ > 0, there exists δ > 0 such that |y| < δ and

∣∣by(x)∣∣ ≤ Mk,n

2n

∫ π

0

∣∣∣fe (⟨⟨x, y⟩⟩ϕ,n)− fe(x)
∣∣∣ (sinϕ)2nk−ndϕ ≤ ϵ.

Hence

lim
y→0

∥by∥∞ = 0.

Similarly, one can prove that

lim
y→0

∥cy∥∞ = lim
y→0

∥dy∥∞ = 0.

Thus, we conclude that for any f ∈ Cc(R), we have

lim
y→0

∥∥TM,k,n
y f − f

∥∥
∞ = 0.
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Second step: Assume that f ∈ C0(R). Using the fact that Cc(R) is dense in C0(R), there

exists a function g ∈ Cc(R) such that ∥f − g∥∞ ≤ ϵ
10 so that

∥∥TM,k,n
y f − f

∥∥
∞ ≤

∥∥TM,k,n
y (f − g)

∥∥
∞ +

∥∥TM,k,n
y g − g

∥∥
∞ + ∥f − g∥∞

≤ 5 ∥f − g∥∞ +
∥∥TM,k,n

y g − g
∥∥
∞ ≤ ϵ

2
+
∥∥TM,k,n

y g − g
∥∥
∞ .

From the first step, for sufficiently small values of y, the quantity
∥∥TM,k,n

y g − g
∥∥
∞ can

be made less than ϵ/2. As such, we shall get the desired result.

(ii) Let f ∈ Cc(R) such that supp f ⊂ [−R,R] and y ∈ [−1, 1]. Involving Theorem 3.2 of [4], we

derive that the functions TM,k,n
y f are also supported in a common compact set

[−(R
1
n + |y| 1

n )n, (R
1
n + |y| 1

n )n] ⊂ [−2n(R+ 1), 2n(R+ 1)]. Consequently, we have

∥∥TM,k,n
y f − f

∥∥p
Lp

k,n(R)
≤

(∫ 2n(R+1)

−2n(R+1)

dγk,n(x)

)∥∥TM,k,n
y f − f

∥∥
∞ → 0, as y → 0.

Therefore, the general case follows immediately by the density of Cc(R) in Lp
k,n(R). This

completes the proof of the theorem.

4 Generalized convolutions product associated with LCDHT

Definition 4.1. For a given uni-modular matrix M = (a, b; c, d) ∈ SL(2,R), b ̸= 0, the generalized

convolution product, associated with FM
k,n, for two suitable functions f and g is defined by

f ⊙
M,k,n

g(x) =

∫
R

[
TM,k,n
x f

]
((−1)ny)

[
e−i d

b y
2

g(y)
]
dγk,n(y). (4.1)

Some elementary properties of convolution (4.1) are summarized below:

(i) An application of Fubini’s theorem together with (2.35), (3.5) and (3.6), we have

f ⊙
M,k,n

g =

∫
R

[∫
R
e−i d

b z
2

f(z)WM
k,n(x, (−1)ny, z) dγk,n(z)

] [
e−i d

b y
2

g(y)
]
dγk,n(y)

=

∫
R

[∫
R
e−i d

b y
2

g(y)WM
k,n(x, (−1)ny, z) dγk,n(y)

] [
e−i d

b z
2

f(z)
]
dγk,n(z) = g ⊙

M,k,n
f.

(ii) Using Fubini’s theorem, we have

TM,k,n
x

(
f ⊙

M,k,n
g

)
(y) =

∫
R
e−i d

b z
2

(
f ⊙

M,k,n
g

)
(z)WM

k,n(x, y, z) dγk,n(z)

=

∫
R
e−i d

b z
2

[∫
R

[
TM,k,n
z f((−1)ns)

] [
e−i d

b s
2

g(s)
]
dγk,n(s)

]
WM

k,n(x, y, z) dγk,n(z)
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=

∫
R

[∫
R
e−i d

b z
2
[
TM,k,n
(−1)nsf(z)

]
WM

k,n(x, y, z) dγk,n(z)

] [
e−i d

b s
2

g(s)
]
dγk,n(s)

=

∫
R
TM,k,n
x

[
TM,k,n
(−1)nsf

]
(y)
[
e−i d

b s
2

g(s)
]
dγk,n(s)

=

∫
R
TM,k,n
y

[
TM,k,n
x f

]
((−1)ns)

[
e−i d

b s
2

g(s)
]
dγk,n(s)

=

([
TM,k,n
x f

]
∗

M,k,n
g

)
(y).

The following proposition contain the basic facts about convolutions of Lp
k,n(R), 1 ≤ p ≤ ∞.

Proposition 4.2 (Young’s Inequality). Let 1 ≤ p, q, r ≤ ∞ with p−1+q−1 = r−1+1. If f ∈ Lp
k,n(R)

and g ∈ Lq
k,n(R), then f ⊙

M,k,n
g ∈ Lr

k,n(R) and satisfies the following inequality:

∥∥∥∥f ⊙
M,k,n

g

∥∥∥∥
Lr

k,n(R)
≤ 4

∥∥f∥∥
Lp

k,n(R)

∥∥g∥∥
Lq

k,n(R)
. (4.2)

Proof. Using Hölder’s inequality, we obtain

∣∣∣TM,k,n
x f((−1)ny)e−i d

b y
2

g(y)
∣∣∣

=
(∣∣TM,k,n

x f((−1)ny)
∣∣p |g(y)|q)1/r (∣∣TM,k,n

x f((−1)ny)
∣∣p)1/p−1/r

(|g(y)|q)1/q−1/r
.

Moreover, we have

∫
R

∣∣∣TM,k,n
x f((−1)ny)e−i d

b y
2

g(y)
∣∣∣dγk,n(y) ≤ (∫

R

∣∣TM,k,n
x f((−1)ny)

∣∣p |g(y)|q dγk,n(y))1/r

(∫
R

∣∣TM,k,n
x f((−1)ny)

∣∣p dγk,n(y)) r−p
rp
(∫

R
|g(y)|q dγk,n(y)

) r−q
rq

,

which leads us to

∣∣∣∣(f ⊙
M,k,n

g

)
(x)

∣∣∣∣r ≤
(∫

R

∣∣TM,k,n
x f((−1)ny)

∣∣p dγk,n(y)) r−p
p

∥g∥r−q
Lq

k,n(R)∫
R

∣∣TM,k,n
x f((−1)ny)

∣∣p |g(y)|q dγk,n(y).
By invoking (3.7), we observe that∣∣∣∣(f ⊙

M,k,n
g
)
(x)

∣∣∣∣r ≤ 4r−p ∥f∥r−p
Lp

k,n(R)
∥g∥r−q

Lq
k,n(R)

∫
R

∣∣TM,k,n
x f((−1)ny)

∣∣p |g(y)|q dγk,n(y).
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After multiply both sides by dγk,n(x) and integrating over R, we get∥∥∥∥f ⊙
M,k,n

g

∥∥∥∥r
Lr

k,n(R)
≤ 4r−p ∥f∥r−p

Lp
k,n(R)

∥g∥r−q
Lq

k,n(R)

∫
R

[∫
R

∣∣TM,k,n
x f((−1)ny)

∣∣p |g(y)|q dγk,n(y)] dγk,n(x)
= 4r−p ∥f∥r−p

Lp
k,n(R)

∥g∥r−q
Lq

k,n(R)

∫
R
|g(y)|q

[∫
R

∣∣∣TM,k,n
(−1)nyf(x)

∣∣∣p dγk,n(x)] dγk,n(y)
≤ 4r ∥f∥rLp

k,n(R)
∥g∥rLq

k,n(R)
.

Or equivalently, ∥∥∥∥f ⊙
M,k,n

g

∥∥∥∥
Lr

k,n(R)
≤ 4

∥∥f∥∥
Lp

k,n(R)

∥∥g∥∥
Lq

k,n(R)
.

Theorem 4.3. Let ⊙
M,k,n

be the generalized convolution as defined by (4.1) associated with uni-

modular matrix M = (a, b; c, d) ∈ SL(2,R), b ̸= 0. Then,

(i) For any f, g ∈ L1
k,n(R), we have

FM
k,n

(
f ⊙

M−1,k,n
g

)
(x) =

(
(ib)

(2k−1)n+2
2n

)
e−

i
2

d
b x

2

FM
k,n(f)(x)FM

k,n(g)(x), for all x ∈ R.

(4.3)

(ii) For any f ∈ L1
k,n(R) and g ∈ Lp

k,n(R), 1 < p ≤ 2, we have

FM
k,n

(
f ⊙

M−1,k,n
g

)
(x) =

(
(ib)

(2k−1)n+2
2n

)
e−

i
2

d
b x

2

FM
k,n(f)(x)FM

k,n(g)(x), a.e. x ∈ R. (4.4)

(iii) For f, g, h ∈ L1
k,n(R), we have

(
f ⊙

M,k,n
g

)
⊙

M,k,n
h = f ⊙

M,k,n

(
g ⊙

M,k,n
h

)
. (4.5)

Proof. (i) Using the definition of FM
k,n along with (3.9), it follows that

FM
k,n

(
f ⊙

M−1,k,n
g

)
(x)

=
1

(ib)
(2k−1)n+2

2n

∫
R
KM

k,n(x, y)

[∫
R
TM−1,k,n
y f((−1)nz)

[
ei

a
b z

2

g(z)
]
dγk,n(z)

]
dγk,n(y)

=
1

(ib)
(2k−1)n+2

2n

∫
R

[
ei

a
b z

2

g(z)
] [∫

R
KM

k,n(x, y)T
M−1,k,n
(−1)nz f(y) dγk,n(y)

]
dγk,n(z)

=

∫
R

[
ei

a
b z

2

g(z)
] [

FM
k,n

(
TM−1,k,n
(−1)nz f

)
(x)
]
dγk,n(z)

=
(
(ib)

(2k−1)n+2
2n

)
e−

i
2

d
b x

2

FM
k,n(f)(x)FM

k,n(g)(x).



CUBO
28, 1 (2026)

Generalized translation and convolution operators... 131

It is pertinent to mention that Fubini theorem has been used in the second line as

∫
R2

∣∣∣KM
k,n(x, y)T

M−1,k,n
y f((−1)nz)ei

a
b z

2

g(z)
∣∣∣ dγk,n(y) dγk,n(z)

≤ C

∫
R2

∣∣∣TM−1,k,n
y f((−1)nz)

∣∣∣ |g(z)| dγk,n(y) dγk,n(z) ≤ 4C
∥∥f∥∥

L1
k,n(R)

∥∥g∥∥
L1

k,n(R)
< ∞.

(ii) The result is true for g ∈ L1
k,n(R)∩Lp

k,n(R) by virtue of (i). On the other hand, the Young’s

inequality (2.70) for the deformed linear canonical Hankel transform and Proposition 4.2 show

that the mappings g 7→ FM
k,n

(
f ∗

M−1,k,n
g

)
and g 7→ FM

k,n(f) FM
k,n(g) are continuous from

Lp
k,n(R) into Lp′

k,n(R). Finally, the result follows directly from density of L1
k,n(R) ∩ Lp

k,n(R)

in Lp
k,n(R).

(iii) The result follows immediately by an application of result (i).

5 Generalized heat equation and the associated operators

In this section, we shall illustrate our proposed theory developed in previous sections to the fol-

lowing generalized heat equation associated with the operator △M−1

k,n :


∂u(t, x)

∂t
= σ△M−1

k,n u(t, x), (t, x) ∈ (0,∞)× R

u(0, x) = f(x),
(5.1)

where f is defined on the Banach space B which could be either Lp
k,n(R), 1 ≤ p ≤ ∞, (Cb(R), ∥.∥∞)

or (C0(R), ∥.∥∞), σ > 0 is the coefficient of heat conductivity and the initial data u(0, x) = f(x)

means that u(t, x) → f(x) as t → 0 in the norm of B.

5.1 Generalized heat kernel associated with σ△M−1

k,n

Given a uni-modular matrix M = (a, b; c, d) ∈ SL(2,R), b ̸= 0 and σ, t > 0, we define

PM−1

t (y) :=
1

(σt)
(2k−1)n+2

2

exp

{
− iay2

2b
− ny2

2σt

}
, y ∈ R. (5.2)

Using the relations (2.55), (2.56), (5.2) and Example 2.2, we obtain

FM
k,n

(
PM−1

t

)
(x) = exp

{
idx2

2b
− tσ

(
x

|b|

)2
}
, ∀ t > 0, x ∈ R. (5.3)



132 H. Mejjaoli, F. A. Shah & N. Sraieb CUBO
28, 1 (2026)

Definition 5.1. Given a uni-modular matrix M = (a, b; c, d) ∈ SL(2,R), b ̸= 0, the generalized

heat kernel associated with △M−1

k,n is denoted as GM−1

t and defined by

GM−1

t (x, y) = TM−1,k,n
x

[
PM−1

t

]
(y), x, y ∈ R, t > 0. (5.4)

We collect some basic properties of the generalized heat kernel GM−1

t in the following proposition.

Proposition 5.2. The generalized heat kernel GM−1

t as defined in (5.4) satisfies the following

properties:

(i) For t > 0, we have

GM−1

t (x, y) =
1

(σt)
(2k−1)n+2

2

exp

{
−ia(x2 + y2)

2b
− n(|x| 2

n + |y| 2
n )

2σt

}
Bk,n

(
x

(σt)n
, (−i)ny

)
.

(5.5)

(ii) For t > 0, there exists a positive constant C(k, n) such that

∣∣∣GM−1

t (x, y)
∣∣∣ ≤ C(k, n)e

−n

(
|x|

1
n −|y|

1
n

)2

2σt

(σt)
(2k−1)n+2

2

. (5.6)

(iii) For t > 0, we have ∫
R
e

i
2

a
b (x

2+y2)GM−1

t (x, y) dγk,n(y) = 1. (5.7)

(iv) For s, t > 0, we have

GM−1

t+s (x, y) =

∫
R
GM−1

t (x, z)GM−1

s (y, z) ei
a
b z

2

dγk,n(z). (5.8)

(v) For fixed t > 0 and y ∈ R, we have

FM
k,n

(
GM−1

t (., y)
)
(ξ) = ei

d
b ξ

2

KM
k,n(ξ, y) exp

{
−tσ

∣∣∣∣ξb
∣∣∣∣ 2n
}
. (5.9)

(vi) For a fixed y ∈ R, u(t, x) = GM−1

t (x, y) is the solution of the generalized heat equation (5.1).

Proof. (i) Using the Definition 3.1, we observe that

GM−1

t (x, y) =
1

(σt)
(2k−1)n+2

2

e−
i
2

a
b (x

2+y2)τk,nx

[
e−

n|s|
2
n

2σt

]
(y). (5.10)

Therefore, by simple application of (2.25), we derive the desired assertion.
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(ii) The assertion follows directly from the relation (5.10) and inequality (2.41).

(iii) An application of (5.10) leads us to

∫
R
e

i
2

a
b (x

2+y2)GM−1

t (x, y) dγk,n(y) =
1

(σt)
(2k−1)n+2

2

∫
R
τk,nx

(
e−

n|s|
2
n

2σt

)
(y) dγk,n(y).

Thus, we obtain the desired result by applying (2.47) and simple calculations.

(iv) Using the identity (5.5), we obtain

∫
R
GM−1

t (x, z)GM−1

s (y, z) ei
a
b z

2

dγk,n(z) =
1

((σ)2ts)
(2k−1)n+2

2

e

−i
2

a
b (x

2+y2)−
[
n

|x|
2
n

2σt +n
|y|

2
n

2σs

]

∫
R
e
−n

[
|z|

2
n

2σt +
|z|

2
n

2σs

]
Bk,n

(
x

(σt)n
, (−i)nz

)
Bk,n

(
y

(σs)n
, (−i)nz

)
dγk,n(z).

From the relation (2.10), we deduce that

∫
R
e
−n

[
|z|

2
n

2σt +
|z|

2
n

2σs

]
Bk,n

(
x

(σt)n
, (i)nz

)
Bk,n

(
y

(σs)n
, (i)nz

)
dγk,n(z)

=

(
σts

t+ s

) (2k−1)n+2
2

e
n

[
s|x|

2
n

2σt(t+s)
+

t|y|
2
n

2σs(t+s)

]
Bk,n

(
x

(σ(s+ t))n
, (i)nz

)
,

which leads to the given desired result.

(v) Involving the relations (5.4), (3.9) and (5.3), we get the desired result.

(vi) For fixed y ∈ R and t > 0, we put v(x, t) := GM−1

t (x, y). Using (5.4) and Corollary 3.3, we

deduce that

GM−1

t (x, y) =
1

(−ib)
(2k−1)n+2

2n

∫
R
ei

d
b λ

2

Bk,n

(
(−1)n

λ

b
, y

)
KM

k,n(λ, x) exp

{
−tσ

∣∣∣∣λb
∣∣∣∣ 2n
}

dγk,n(λ).

(5.11)

By taking differentiations under integral, the identities (2.66), (2.60) and by standard anal-

ysis, we see that [
∂

∂t
− σ△M−1

k,n

]
GM−1

t (x, y) = 0.

This completes the proof of the Proposition 5.2.
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Theorem 5.3. Assume that M = (a, b; c, d) ∈ SL(2,R) such that b ̸= 0. Let B be one of the

Banach spaces Lp
k,n(R) (1 ≤ p ≤ ∞), (Cb(R), ∥.∥∞) or (C0(R), ∥.∥∞) . Then:

(i) For each f ∈ X, the function u(t, x) =

(
PM−1

t ⊙
M−1,k,n

f

)
(x) satisfies the generalized heat

equation
∂u(t, x)

∂t
= σ△M−1

k,n u(t, x), (t, x) ∈ (0,∞)× R, (5.12)

and ∥∥u(t, ·)∥∥
Lr

k,n(R)
≤

4
(
2Γ
(

(2k−1)n+2
nq

)
Mk,n

)1/q
(σt)

(2k−1)n+2
2

∥∥f∥∥
Lp

k,n(R)
, (5.13)

where p, q, r ∈ [1,∞] satisfying 1
p + 1

q = 1 + 1
r .

(ii) Let f(x) = e−
i
2

a
b x

2

p
(
|x| 2

n

)
with p(s) =

m∑
j=0

cjs
j.

We define the function u as u(t, x) =

(
PM−1

t ⊙
M−1,k,n

f

)
(x). We have

u(t, x) = e−
i
2

a
b x

2
n∑

j=0

j! cj

(
2σt

n

)j

L
( (2k−1)n

2 )
j

(
−n|x| 2

n

2σt

)
, (5.14)

where L
( (2k−1)n

2 )
j denote the Laguerre functions of degree j [43]. Moreover,

∂u(t, x)

∂t
= σ△M−1

k,n u(t, x), (t, x) ∈ (0,∞)× R, with u(0, x) = f(x).

Proof. (i) In view of (5.11) and Fubini’s theorem, the function u(t, x) can be expressed as

u(t, x) =
1

(−ib)
(2k−1)n+2

2n

∫
R
ei

d
b λ

2

KM
k,n(λ, x) exp

{
−tσ

∣∣∣∣λb
∣∣∣∣ 2n
}
Fk,n(f)(λ) dγk,n(λ). (5.15)

Moreover, as above take again differentiation under the integral in (5.15) and (2.66), we

derive the result.

Furthermore, the Young’s inequality (4.2) implies that

∥∥u(t, .)∥∥
Lr

k,n(R)
=

∥∥∥∥PM−1

t ⊙
M−1,k,n

f

∥∥∥∥
Lr

k,n(R)
≤ 4

∥∥∥PM−1

t

∥∥∥
Lq

k,n(R)

∥∥f∥∥
Lp

k,n(R)
. (5.16)
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Using (5.16) and the fact that

∥∥∥PM−1

t

∥∥∥
Lq

k,n(R)
=

1

(σt)
(2k−1)n+2

2

(∫
R
e−

nq
2σt |y|

2
n dγk,n(y)

)1/q

=

(
2Γ

(
(2k − 1)n+ 2

nq

)
Mk,n

)1/q

(σt)
(2k−1)n+2

2

,

we obtain the desired inequality (5.12).

(ii) Firstly, it is easy to see that

u(t, x) =

∫
R
GM−1

t (x, (−1)ny) e
i
2

a
b y

2

p
(
|y| 2

n

)
dγk,n(y). (5.17)

Now, if we write p
(
|y| 2

n

)
=

m∑
j=1

cj |y|
2j
n , then using (5.5) and by the change of variables

u =
y

(σt)
n
2

, we obtain

∫
R
GM−1

t (x, (−1)ny) e
i
2

a
b y

2

p
(
|y| 2

n

)
dγk,n(y)

=
Mk,ne

− i
2

a
b x

2

e−
n|x|

2
n

2σt

(σt)
(2k−1)n+2

2

m∑
j=1

cj

∫
R
en

−|y|
2
n

2σt Bk,n

(
x

(σt)n
, (i)ny

)
|y|

(2k−2)n+2+2j
n dy

=

m∑
j=1

cj

(
2σt

n

)j

e−
i
2

a
b x

2

e−n
|x|

2
n

2σt It(x), (5.18)

where

It(x) =
2

Γ

(
(2k − 1)n+ 2

2

) ∫
R
e−u2

j (2k−1)n
2

2i|x| 1
nu√

2σt
n

u(2k−1)n+1+2j du.

Using the identity (6.631(10) in [20]), we get

∫ ∞

0

e−u2

jα(uz)u
2j+2α+1du =

Γ(α+ 1)

2
j! e−

z2

4 Lα
j

(
z2

4

)
, z ≥ 0.

Further, by simple calculations, we see that

It(x) = j! e−
i
2

a
b x

2

en
|x|

2
n

2σt L
( (2k−1)n

2 )
j

(
−n|x|2/n

2σt

)
, x ∈ R. (5.19)

Substituting (5.19) in (5.18), we get the desired identity:

u(t, x) = e−
i
2

a
b x

2
n∑

j=0

j! cj

(
2σt

n

)j

L
( (2k−1)n

2 )
j

(
−n|x| 2

n

2σt

)
.
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Finally, using (i) we observe that the function u solves (5.12). Moreover using the identity,

(cf. [43]), (
2σt

n

)j

L
(2k−1)n

2
j

(
−n|x|2/n

2σt

)∣∣∣∣
t=0

=
|x|

2j
n

j!

we derive that u(0, x) = f(x). This completes the proof of the Theorem 5.3.

5.2 Heat semi-groups associated with σ△M−1

k,n

We begin this subsection by recalling the necessary tools on semigroups.

Definition 5.4 ([36]). Let X be a Banach space. A one-parameter family S = {S(t); t ≥ 0} of

bounded linear operators on X is called a strongly continuous semigroup if it satisfies:

(i) S(0) = IdX .

(ii) S(t+ s) = S(t)S(s) for all t, s ≥ 0.

(iii) The mapping t 7→ S(t)u is continuous on [0,∞) for all u ∈ X. A strongly continuous semi-

group is called a contraction semigroup, if ∥S(t)∥ ≤ 1 for all t ≥ 0.

Let S = (S(t))t≥0 be a strongly continuous semigroup. The generator O of S is defined by the

formula

Ou = lim
t→0

S(t)u− u

t
=

d

dt
S(t)u

∣∣∣∣
t=0

,

the domain D(O) of O being the set of all u ∈ X for which the limit defined above exists.

In this subsection, we shall denote B as one of the Banach spaces Lp
k,n(R) (1 ≤ p < ∞) or

(C0(R), ∥.∥∞).

Definition 5.5. Let M = (a, b; c, d) ∈ SL(2,R) be a uni-modular matrix such that b ̸= 0. Then,

for each t ≥ 0 and f ∈ X, we define a family of operators

SM−1

k,n (t)f =


1

4

[
PM−1

t ⊙
M−1,k,n

f

]
if t > 0,

f if t = 0.

(5.20)

The family of operators (5.20) is often called the heat semigroup associated with σ△M−1

k,n .
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Theorem 5.6. The family of operators
{
SM−1

k,n (t) : t ≥ 0
}

is strongly continuous contraction on

B.

Proof. We shall divide the proof of the theorem into two steps.

First step: (i) Assume that B = C0(R). Then, the result is trivial when t = 0. For any

f ∈ C0(R) and t > 0, (3.8) and (5.2), implies that

(
SM−1

k,n (t)f
)
(x) =

1

4

∫
R

[
TM−1,k,n
x PM−1

t

]
((−1)ny)

[
ei

a
b y

2

f(y)
]
dγk,n(y)

=
1

4

∫
R
ei

a
b y

2

PM−1

t (y)
[
TM−1,k,n
x f

]
((−1)ny) dγk,n(y)

=
1

4

1

(σt)
(2k−1)n+2

2

∫
R
e

i
2

a
b y

2

e
−n|y|

2
n

2σt

[
TM−1,k,n
x f

]
((−1)ny) dγk,n(y)

=
1

4

(
2

n

) (2k−1)n+2
2

∫
R
ei

a
2b (

2σt
n )

n

e−|v|
2
n
[
TM−1,k,n
x f

](
(−1)n

(
2σt

n

)n
2

v

)
dγk,n(v).

(5.21)

Clearly the mapping (x, v) 7−→
[
TM−1,k,n
x f

] (
(−1)n

(
2σt
n

)n
2 v
)

is continuous on R2.

Moreover, using (3.11) and (3.7), we have

lim
|x|→∞

[
TM−1,k,n
x f

](
(−1)n

(
2σt

n

)n
2

v

)
= 0

and∣∣∣∣∣ei a
2b (

2σt
n )

n

e−|v|
2
n
[
TM−1,k,n
x f

](
(−1)n

(
2σt

n

)n
2

v

)∣∣∣∣∣ ≤ 4
∥∥f∥∥∞e−|v|

2
n ∈ L1

k,n(R).

Therefore, it follows by the dominated convergence theorem that SM−1

k,n (t)f ∈ C0(R)

and satisfies the inequality:

∥∥∥SM−1

k,n (t)f
∥∥∥
∞

≤


(
2

n

) (2k−1)n+2
2

∫
R
e−|y|

2
n dγk,n(y)

∥∥f∥∥∞ =
∥∥f∥∥∞.

By taking supremum over all f ∈ C0(R) and noting that ∥f∥∞ ≤ 1, we obtain∥∥∥SM−1

k,n (t)
∥∥∥ ≤ 1.
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(ii) For all t, s > 0 and f ∈ C0(R), from (5.8) we have

SM−1

k,n (s)
(
SM−1

k,n (t)f
)
(x)

=
1

4

∫
R
GM−1

s (x, z)ei
a
b z

2

(∫
R
GM−1

t (y, z)ei
a
b y

2

f(y) dγk,n(y)

)
dγk,n(z)

=
1

4

∫
R

(∫
R
GM−1

s (x, z)GM−1

t (y, z) ei
a
b z

2

dγk,n(z)

)
ei

a
b y

2

f(y) dγk,n(y)

=
1

4

∫
R
GM−1

s+t (x, y)ei
a
b y

2

f(y) dγk,n(y)

= SM−1

k,n (s+ t)f(x).

(iii) Using the fact (
2

n

) (2k−1)n+2
2

∫
R
e−|y|

2
n dγk,n(y) = 1,

identity (5.21) gives the freedom to write

(
SM−1

k,n (t)f
)
(x)− f(x) = at(x) + bt(x) (5.22)

where

at(x) =

(
2
n

) (2k−1)n+2
2

4

∫
R
e−|v|

2
n
(
ei

a
2b (

2σt
n )

n|v|2 − 1
)
f(x) dγk,n(v), (5.23)

bt(x) =

(
2
n

) (2k−1)n+2
2

4∫
R
ei

a
2b (

2σt
n )

n|v|2e−|v|
2
n

([
TM−1,k,n
x f

](
(−1)n

(
2σt

n

)n
2

v

)
− f(x)

)
dγk,n(v).

(5.24)

Using the fact that∥∥∥∥TM−1,k,n

(−1)n( 2σt
n )

n
2 v

f − f

∥∥∥∥
∞

≤ 5
∥∥f∥∥∞ and lim

t→0

∥∥∥∥TM−1,k,n

(−1)n( 2σt
n )

n
2 v

f − f

∥∥∥∥
∞

= 0,

together as above with an application of the dominated convergence theorem, we get

the desired result as

∥∥at∥∥∞ ≤

(
2

n

) (2k−1)n+2
2

4

[∫
R
e−|v|

2
n

∣∣∣ei α
2b (

2σt
n )

n|v|2 − 1
∣∣∣ dγk,n(v)] ∥f∥∞ −→ 0, as t → 0,

∥∥bt∥∥∞ ≤

(
2

n

) (2k−1)n+2
2

4

∫
R
e−|v|

2
n

∥∥∥∥TM−1,k,n

(−1)n( 2σt
n )

n
2 v

f − f

∥∥∥∥
∞

dγk,n(v) −→ 0, as t → 0.
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Second step: (i) Assume that X = Lp
k,n(R), 1 ≤ p < ∞. For any f ∈ Lp

k,n(R), Young’s

inequality (4.2) yields

∥∥∥SM−1

k,n (t)f
∥∥∥
Lp

k,n(R)
=

1

4

∥∥∥∥PM−1

t ⊙
M−1,k,n

f

∥∥∥∥
Lr

k,n(R)
≤
∥∥∥PM−1

t

∥∥∥
L1

k,n(R)

∥∥f∥∥
Lp

k,n(R)
.

Since ∥∥∥PM−1

t

∥∥∥
L1

k,n(R)
=

1

(σt)
(2k−1)n+2

2

∫
R
e−

n|y|
2
n

2σt dγk,n(y) = 1.

Thus, we obtain ∥∥∥SM−1

k,n (t)f
∥∥∥
Lp

k,n(R)
≤
∥∥f∥∥

Lp
k,n(R)

.

By taking supremum over all f ∈ Lp
k,n(R) and noting that ∥f∥Lp

k,n(R) ≤ 1, we obtain

for each t ≥ 0, SM−1

k,n (t) is a bounded linear operator on Lp
k,n(R) and ∥SM−1

k,n (t)∥ ≤ 1.

(ii) Since S(R) ⊂ C0(R), we derive that

SM−1

k,n (s+ t) = SM−1

k,n (s)SM−1

k,n (t) on S(R).

On the other hand, SM−1

k,n (s), SM−1

k,n (t) and SM−1

k,n (s + t) are continuous from Lp
k,n(R)

into itself. Therefore, the result follows immediately by the density of S(R) in Lp
k,n(R).

(iii) Firstly, we show that if f ∈ Cc(R), then

lim
t→0

∥∥∥SM−1

k,n (t)f − f
∥∥∥
Lp

k,n(R)
= 0. (5.25)

By virtue of the relation (5.22), it follows that∥∥∥SM−1

k,n (t)f − f
∥∥∥
Lp

k,n(R)
≤
∥∥at∥∥Lp

k,n(R)
+
∥∥bt∥∥Lp

k,n(R)
,

with

∥∥at∥∥Lp
k,n(R)

≤

(
2

n

) (2k−1)n+2
2

4

[∫
R
e−|v|

2
n

∣∣∣ei a
2b (

2σt
n )

n|v|2 − 1
∣∣∣ dγk,n(v)] ∥∥f∥∥Lp

k,n(R)
−→ 0,

as t → 0,

whereas the Minkowski’s inequality yields that

∥∥bt∥∥Lp
k,n(R)

≤

(
2

n

) (2k−1)n+2
2

4

∫
R
e−|v|

2
n

∥∥∥∥TM−1,k,n

(−1)n( 2σt
n )

n
2 v

f − f

∥∥∥∥
Lp

k,n(R)
dγk,n(v) −→ 0,

as t → 0.
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Implementation of the dominated convergence theorem implies that∥∥∥∥TM−1,k,n

(−1)n( 2σt
n )

n
2 v

f − f

∥∥∥∥
Lp

k,n(R)
≤ 5

∥∥f∥∥
Lp

k,n(R)
(by (3.7)),

lim
t→0

∥∥∥∥TM−1,k,n

(−1)n( 2σt
n )

n
2 v

f − f

∥∥∥∥
Lp

k,n(R)
= 0, (see Theorem 3.4),

and v 7→ e−|v|
2
n ∈ L1

k,n(R).

Since Cc(R) is dense in Lp
k,n(R), therefore, for any f ∈ Lp

k,n(R), there exists g ∈ Cc(R)

such that ∥∥f − g
∥∥
Lp

k,n(R)
≤ ϵ

3
,

and ∥∥∥SM−1

k,n (t)f − f
∥∥∥
Lp

k,n(R)
≤
∥∥∥SM−1

k,n (t)(f − g)
∥∥∥
Lp

k,n(R)
+
∥∥∥SM−1

k,n (t)g − g
∥∥∥
Lp

k,n(R)

+
∥∥f − g

∥∥
Lp

k,n(R)

≤ 2
∥∥f − g

∥∥
Lp

k,n(R)
+
∥∥∥SM−1

k,n (t)g − g
∥∥∥
Lp

k,n(R)

≤ 2ϵ

3
+
∥∥∥SM−1

k,n (t)g − g
∥∥∥
Lp

k,n(R)
.

Further the relation (5.25) implies that, for sufficiently small values of t, we have∥∥∥SM−1

k,n (t)g − g
∥∥∥
Lp

k,n(R)
≤ ϵ

3
.

Subsequently, we obtain

lim
t→0

∥∥∥SM−1

k,n (t)f − f
∥∥∥
Lp

k,n(R)
= 0.

This completes the proof of Theorem 5.6.

We close this section by the following statement for the semigroup
(
SM−1

k,n (t), t ≥ 0
)

acting on the

Banach spaces B = Lp
k,n(R) (1 ≤ p < ∞) or (C0(R), ∥.∥∞).

Proposition 5.7. The operator △M−1

k,n is closable and its closure generates the semigroup(
SM−1

k,n (t), t ≥ 0
)

acting on the Banach spaces B.

Proof. Let f ∈ Sk,n(R). Involving the relations (5.20) and (5.15), we observe that

FM
k,n

(
SM−1

k,n (t)− Id

t
f

)
(λ) =

e−tσ|λb |
2
n − 1

t
FM

k,n(f)(λ).
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Thus, we derive that

lim
t→0

FM
k,n

(
SM−1

k,n (t)− Id

t
f

)
(λ) = −σ

∣∣∣∣λb
∣∣∣∣ 2n FM

k,n(f)(λ) = FM
k,n

(
σ△M−1

k,n f
)
(λ).

Using the injectivity of FM
k,n on Sk,n(R), we infer that the generator of the semigroup(

SM−1

k,n (t), t ≥ 0
)
, denoted by Ok,n, satisfies

Ok,nf = lim
t→0

SM−1

k,n (t)− Id

t
f = σ△M−1

k,n f.

As Sk,n(R) is invariant under Fk,n, we derive that Sk,n(R) is invariant under
(
SM−1

k,n (t), t ≥ 0
)

which is a strongly continuous semigroup of contractions on B. So, we observe that Sk,n(R) is

subset of Ok,n. Moreover since Sk,n(R) is dense in B, Then by [36, Corollary 1.2.2], it follows

that Sk,n(R) is a core for the generator Ok,n and the desired result is proved.

6 Potential applications and simulation perspectives

The theoretical framework developed in this article admits several potential applications in diverse

areas of harmonic analysis, signal processing, and mathematical physics. Owing to the additional

degrees of freedom offered by the parameters of the linear canonical deformed Hankel transform

(LCDHT), the corresponding generalized translation and convolution operators introduced here

extend the analytical and practical scope of existing transform methods.

6.1 Uncertainty principles

The LCDHT provides a natural platform for establishing new variants of classical uncertainty

relations, including the Heisenberg, Donoho–Stark, and Hardy-type inequalities. By incorporating

linear canonical and deformed Hankel parameters, the LCDHT allows sharper localization bounds

in both the time and transform domains. Such results are expected to find applications in quantum

mechanics, optical tomography, and time–frequency localization theory, where precise phase–space

characterizations are essential.

6.2 Signal reconstruction

The generalized translation and convolution structures developed in this work constitute the foun-

dation for signal reconstruction and sampling theorems in the LCDHT domain. These results

facilitate the recovery of signals that are bandlimited with respect to the LCDHT rather than the

classical Fourier transform, offering significant advantages in nonuniform sampling, filter design,
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and inverse problems. Potential applications include optical field recovery, radar and sonar imag-

ing, seismic data interpretation, and medical image reconstruction, where signals often exhibit

Hankel-type or radial symmetries.

6.3 Simulation and error analysis perspectives

Although the present work is primarily theoretical, the proposed framework can be extended toward

numerical validation and simulation studies. A theoretical error analysis may focus on the stability

and convergence of the generalized translation and convolution operators under discretization or

kernel truncation. Synthetic test signals, such as Gaussian–Bessel or chirp-type functions, may be

used to verify reconstruction accuracy and energy preservation. Quantitative measures like mean

square error (MSE) and signal-to-noise ratio (SNR) would help assess computational fidelity. Such

experiments would not only corroborate the analytical findings but also demonstrate the robustness

and applicability of the LCDHT in signal reconstruction and time–frequency localization problems.

7 Conclusion and future work

In this paper, we have investigated the generalized translation and convolution operators within

the framework of the linear canonical deformed Hankel transform (LCDHT). Although the results

presented here are primarily theoretical, they have been effectively applied to the analysis of the

generalized heat equation and the associated heat semigroup. It is pertinent to mention that the

proposed transform not only unifies several existing integral transforms such as the classical and

fractional Fourier transforms, as well as the linear canonical transform in the Dunkl and Hankel

settings but also leads to the formulation of new integral transforms, including the fractional

(k, n)-generalized Fourier transform and the generalized Fresnel transform. Furthermore, building

upon the harmonic analysis developed in the earlier sections, we have explored the Gabor, wavelet,

Wigner, and wavelet multiplier transforms in the context of the LCDHT framework [18]. For future

research, we plan to extend this work by investigating additional applications in time-frequency

analysis and by developing the reproducing kernel theory associated with the LCDHT. These

directions are expected to further enrich the theoretical foundations and broaden the applicability

of this new class of integral transforms.
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