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ABSTRACT

Among the class of generalized Fourier transformations, the
linear canonical transform is of pivotal importance mainly
due to its higher degrees of freedom in lieu of the conven-
tional Fourier and fractional Fourier transforms. This ar-
ticle is a continuation of our recent work “Linear canonical
deformed Hankel transform and the associated uncertainty
Appl.(2023), 14:29”.
Building upon this, we formulate the generalized transla-

principles, J. Pseudo-Differ. Oper.
tion and convolution operators associated with this newly
proposed transformation. Besides, the obtained results are
invoked to examine and obtain an analytical solution of the
generalized heat equation. Finally, we study the heat semi-

group pertaining to the generalized heat equation.

RESUMEN

Entre la clase de transformaciones de Fourier generalizadas,
la transformada lineal canénica es de importancia central,
mayormente debido a sus grados de libertad maéas altos en
lugar de las transformadas convencionales de Fourier y de
Fourier fraccionaria. Este articulo es una continuacién de
nuestro trabajo reciente “Linear canonical deformed Han-
kel transform and the associated uncertainty principles, J.
Pseudo-Differ. Oper. Appl.(2023), 14:29”. Construyendo a
partir de esto, formulamos los operadores de traslacién y con-
volucién generalizados asociados a esta nueva transformacion
propuesta. Ademés, los resultados obtenidos se utilizan para
examinar y obtener una solucién analitica de la ecuacién de
calor generalizada. Finalmente, estudiamos el semigrupo de

calor pertinente a la ecuacion de calor generalizada.
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1 Introduction

The Fourier transform is regarded as one of the remarkable discoveries in mathematical sciences
as it profoundly influenced diverse branches of science and engineering. In the realm of harmonic
analysis, the Fourier transform plays a pivotal role in analyzing signals wherein the characteristics
are statistically invariant over time [6]. In the higher-dimensional scenario, there are several ways
to arrive at the definition of the Fourier transform. The most basic formulation in R? is given by

the integral transform

1 —i{\,x
F(HN) = W/R fx)e " ™) dg. (1.1)
Alternatively, one can rewrite the transform as
1
FHA) = @ Jo f@) KA, z) d, (1.2)

where IC(A, x) is the unique solution to the system of partial differential equations

0p, KO\, 2) = —iN;K(\2), j=1,....d,
K(A,0) =1, A €R?

Yet another mathematical description of the higher-dimensional Fourier transform was proposed

by Howe [44] via the Laplace operator A on R? as follows:

F =exp (izd) exp (ZZ (A - ||x||2)> : (1.3)

It is pertinent to mention that each of the above alternative representations has its specific use
cases, and a detailed description regarding different ramifications of the Fourier transform can
be found in [10]. Many generalizations of the Fourier transform can be attributed to a deeper
understanding of the fundamental operators in Harmonic analysis. In the d-dimensional Euclidean
space, the three elementary operators are the Laplace operator A, norm ||-||, and the Euler operator

E, respectively defined as follows:
d d d
A= "02 al? =) a3 E=) 0.,
j=1 j=1 j=1

As observed in [44], the operators

2 A d
:7”952”7 F:_E’ and H=F+

E
2

are invariant under O(d) and generate the Lie algebra sly:

[H,E]=2E, [H F]=-2F, [E,F]=H.
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Recently, there has been a lot of interest in other differential or difference operator realizations of
sly or other Lie (super) algebras. The focus is in particular on the generalized Fourier transforms
that subsequently arise from these operator theoretic notions including the Dunkl transform [13],
various discrete Fourier transforms in R? [23], Fourier transforms in Clifford algebras [11] and many
more. However, the hard problem in this context is to find explicit closed formulas for the integral
kernel of the associated Fourier transforms. For further useful details regarding the generalized

Fourier transforms and their implications, we refer the interested reader to [10].

Very recently, Ben Said et al. [3] have given a foundation for the deformation theory of the
classical case, by constructing a generalization Fj, , of the Fourier transform, and the holomorphic

semigroup Zj, , with infinitesimal generator
Liad:= ||:rH2_aAk — ||x||a, a >0, (1.4)

acting on a concrete Hilbert space deforming L?(R%), where /A is the Dunkl Laplace operator.
The authors have analyzed Fj , and Zy (%) in the context of integral operators as well as rep-
resentation theory. The deformation parameters consist of a real parameter a coming from the
interpolation of the minimal unitary representations of two different reductive groups by keeping
smaller symmetries, and a parameter k& coming from Dunkl’s theory of differential-difference oper-
ators associated with a finite Coxeter group (see [3]). In case a = %, n € N and d =1, we call the

generalized Fourier transform Fy, 2, the deformed Hankel transform and will be denoted by Fj .

As of now, the deformed Hankel transform Fy, ,, has witnessed an ample amount of research in the
realm of harmonic analysis, which includes the study of kernel of the deformed Hankel transform
[9], the generalized translation operator [2,5,30], the generalized maximal function [2], the Flett
potentials [4], the deformed wavelet packets [19], uncertainty principles [25], the (k,n)-generalized
wavelet multipliers [26], the (k, n)-generalized wavelet transform [27,29], the localization operators
[34], the (k,n)-generalized Gabor transform [28], the (k,n)-generalized Stockwell transform [30],

the (k, n)-generalized Wigner transform [32] and many more.

This paper is a continuation of the recent work carried out in the article Linear canonical deformed
Hankel transform and the associated uncertainty principles [33]. Nonetheless, in [33], we have
introduced and studied the linear canonical transform in the deformed Hankel frame (i.e. special
case a = 2, n € N and d = 1). Recall that the classical linear canonical transform (LCT) was
independently introduced by Collins [8] in paraxial optics, and Moshinsky, and Quesne [35] in
quantum mechanics, to study the conservation of information and uncertainty under linear maps
of phase space. The LCT is an integral transformation associated with a general homogeneous
lossless linear mapping in phase space endowed with a total of three free parameters. The involved

parameters constitute a 2 x 2 uni-modular matrix mapping the position x and the wave number y
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into

where ad — bc = 1. The transformation maps any convex body into another convex body while
preserving the area of the body. Such transformations constitute the homogeneous special group
SL(2,R). The linear canonical transform of any signal f with respect to a real matrix M =

(a,b;c,d) € SL(2,R) with b # 0 is defined by

FM ()] (y) = % / F(@) KM (2, y) dy, (15)

where

KM (2, y) exp{i (CMM>} (1.6)
2 b
It is important to emphasize that the LCT provides a unified treatment of many generalized Fourier
transforms in the sense that it is an embodiment of several well-known integral transforms including
the Fourier transform [6,42], the fractional Fourier transform [1], the Fresnel transform [24], scaling
operations and so on [7,21]. Due to the extra degrees of freedom and simple geometrical manifes-
tation, the LCT is more flexible than other transforms and is as such suitable as well as a powerful
tool for investigating deep problems in optics, quantum physics and signal processing [7,21]. In-
deed, over a couple of decades, the application areas for LCT have been growing at an exponential
rate and is as such befitting for investigating deep problems in signal analysis, filter design, phase
retrieval problems, pattern recognition, radar analysis, holographic three-dimensional television,
quantum physics, and many more. Apart from applications, the theoretical framework of LCT has
likewise been extensively studied and investigated which has led to the formulation of convolution
theorems [40], sampling theorems [22], Poisson summation formulae [45] and uncertainty principles

[41]. For more about LCT and their applications, we allude to [7,21,37-39].

The main goal of this article is twofold. First, by employing the fundamental tools associated
with the linear canonical deformed Hankel transform (LCDHT) [33], we introduce and investigate
a generalized translation operator corresponding to the LCDHT. This operator is then utilized to
define a convolution product, and several of its essential properties are examined. Subsequently, we
establish the main theorems pertaining to the harmonic analysis in the framework of the LCDHT.
Recognizing that the LCDHT represents a recent addition to the class of integral transforms,
offering several additional degrees of freedom, we are further motivated to apply it to the heat
equation. Therefore, the second objective of this paper is to study the generalized heat equation
and the corresponding heat semigroup within the LCDHT setting. Thus, we can conclude that
the principal contribution of this work lies in developing the harmonic analysis and exploring the
generalized heat equation associated with a family of integral transforms such as the Dunkl, Bessel,

and linear canonical Bessel (LCB) transforms [12,15-17]. Besides, our analysis extends to other



CUBO

Generalized translation and convolution operators... 109

28, 1 (2026)

integral transforms that have not yet been studied in this context, including the Dunkl fractional

transform, the Dunkl Fresnel transform, and the LCD transform.

The remainder of this paper is organized as follows. Section 2 recalls the main results of the har-
monic analysis associated with the deformed Hankel transform and the linear canonical deformed
Hankel transform (LCDHT). Section 3 introduces and investigates the generalized translation op-
erator corresponding to the LCDHT, along with an examination of its fundamental properties,
including symmetry, commutativity, and continuity on certain functional spaces. Section 4 is
devoted to the development and analysis of the generalized convolution product. In Section 5,
we consider the generalized heat equation and the associated heat semigroup operator within the
LCDHT framework. Finally, Section 6 presents the concluding remarks, summarizing the principal

findings and outlining possible directions for future research.

2 Deformed Hankel transforms, translation and convolutions

In this section, we shall present the prerequisites concerning the deformed Hankel transform which
shall be frequently used in formulating the main results. More precisely, we shall briefly review the
conventional translation operators, deformed Hankel transform and the corresponding generalized
translation and convolutions. For a detailed perspective, we refer to the articles [3,5,30] and the

references therein.

2.1 Deformed Hankel transform

Let L7, (R),1 < p < o0, be the space of measurable functions on R such that

1/p
£l = ([ @ (e < o0 it 12 p<ox,

151 ey = 55 sup ] (0)] < o

where

n(2k—1
(2k—2)n+2 TL¥

Y (2) = Mypla| " dz, My = g Rk Vb2 1 (4”(2k71)+2,)’ . n

2

For p = 2, the space is equipped with the scalar product:

(.95 = [ @@ (o)
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To facilitate our narrative, we set some notations as under:

e (4(R) the space of bounded continuous functions on R.
e (} (R) the space of even bounded continuous functions on R.

e Cy(R) the space of continuous functions on R and vanishing at infinity. We provide Cy(R)

with the topology of uniform convergence.
e C.(R) the space of continuous functions on R and with compact support.
e CP(R) the space of functions of class C? on R.
e S(R) the Schwartz space of rapidly decreasing functions on R.

o Sp »(R) the space of all functions f € C°°(R*) such that

sup [(|z[7)7 (|22~ % Ag)* (@™ f0 (2))| < 00, for all j,s,m € No.
TER*
e SL(2,R) the group of 2 x 2 real matrices with determinant one.

We are now in a position to recall the notion of Dunkl operator. In this direction, we have the

following definition:

For any f € C*(R), the Dunkl operator T} on R is defined by
T f(z) == f'(z) + 2k W, (2.1)

where as the corresponding Dunkl-Laplace operator Ay, for any f € C?(R), is given by

Anf(@) = T2f(z) = f"(x) + 2k (f f") _J@) - “”) . (2.2)
Consider the operator
App = ‘xf—;Ak - ’a:|; (2.3)

In the following, we recall some spectral properties of the differential-difference operator Ay .

o Ay is an essentially self-adjoint operator on L}, (R).
e There is no continuous spectrum of Ay, .

o The discrete spectrum of —Ay ,, is {477” + 2k + % +1:me N}.
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n—1

Definition 2.1. For any f € L}Cvn(R) and k > , n €N, the deformed Hankel transform is

denoted by Fi.n(f) and is given as

Frn(f)(&) = /Rf(m) B n(\ ) dykn(x), for all X € R, (2.4)

where By n (A, z) is the deformed Hankel kernel given by

1 3 n”l_‘(nkfﬂqu) 1
Bin( A\ ) = gnk—n (n|Az]|™ ) + (=0)" (5 ———2 Ak n (n|Az| ). (2.5)
( ) (2) T (nk+2+1) * ( )
Observe that
u\ — © (_1)"’” w\ 2m
m=0 '

denotes the normalized Bessel function of index «.

Example 2.2. The function oy, t > 0, defined on R by

satisfies

2
Frnlae)(€) =e " veeR.
Here, we list some important properties of the deformed Hankel kernel and transform:

(i) Bin(z,t) = Bpn(t,2), Brn(2,0) =1, Brn(z,t) = Brn((—1)"z,1),

By n(A2,t) = Bin(2,At), Vz,t,A € R.

(ii) Bg,n(.,.) solves the following differential-difference equations on R x R

A2 % AXBrn (N ) = —|2|% Be (M, ),
|27 % AZ By (N, ) = —| A% Ben(\ ).

where the superscript in Af denotes the relevant variable.

(iii) For k > 1/2, By (., .) satisfies the following inequality

|Ben(z,y)| <1, Va,yeR (2.7)
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(iv) Bgn(.,.) is bounded if and only if
n—1

k> .
- 2n

(2.8)

(v) Under the bounded condition (2.8), there always exists a finite positive constant C' depending
on n and k such that

’Bk,n(az,y)‘ <C, Vz,yeR (2.9)

(vi) ([31]). For z,y € R and § € C with Red > 0, we have

—(n?/48)(|2|*/ "+ |y[*/™)
_ 2/n € € A\
/e O By (2,€) Bron (,€) dryien (€) = @k—Dn+2 B’“"( 2y (1) y)
R 26
()

(vii) Under the bounded condition (2.8), the deformed Hankel transform Fj , is bounded on
L,lc’n(R). In particular, if & > 1/2,

(2.10)

1Bn e < 1 e 2.1)

(viii) The deformed Hankel transform Fj ,, provides a natural generalization of the conventional

Hankel transform. For instance, if we set

even 1 . 1
Bie(@,y) = 5 (Ben(@,y) + Bun(@,—9)) = jui—s (nlayl* ). (212)

2

Then, F , of an even function f on R specializes to a Hankel type transform on R;. In

fact, when f(x) = F(|z]) is an even function on R and belongs to Ly, (R), then

an n

]:k;n(f)(g) = 2nk+2 n F ]znk = ( (T

)%)r7(2k7§r>n+2dr, VEER.  (2.13)

(ix) The deformed Hankel transform f — Fj »(f) is an isometric isomorphism on L%R(R) and

satisfies [3]

/ | Fn (D) Pdren () = / |F(@)[Pdyin (). (2.14)
R R

(x) For all f,g € L} ,(R), we have
[ P DNF @ ) = [ f@al@) i (o) (2.15)

(xi) The deformed Hankel transform Fj ,, is an involutive unitary operator on L,lcyn(R), that is;

Fol (@) = FunlH(=)"2), weR. (2.16)
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(xii) For any f € L}  (R),1 < p <2, the deformed Hankel transform Fj ,(f) belongs to Liln(R)

and satisfies the following inequality:

IFrkn (N gy < ||f||L§,n(R), (2.17)
where p’ denotes the conjugate exponent of p.
(xiil) Frn(S(R)) C C*(R) if and only if n = 1.
(xiv) Frn(S(R)) = S(R) if and only if n = 1.
(xv) For any f € S(R), we have
Fin D) = Fr (o7 ) + P (Iy1*) (2.18)
where the even functions Fi, Fy € S(R).

(xvi) The space 6, (R) satisfies the following properties: (see [14]).

® Fin(Skn(R)) =&k n(R).
e The embedding &, (R) = L} ,(R), 1 < p < o0, is continuous.

o &, (R) is a dense subset of L}  (R), 1 <p < o0.

(xvii) The unitary operator Fj , satisfies the following intertwining relations on a dense subspace

of Li,n(R):

2 2 _2 2
Fiom o |x|™ = —\1:|2 n Ak o Fin, FknoO |az:|2 nAp = —|z|™ o Fin. (2.19)

2.2 Generalized translation and convolution operators

Definition 2.3 ([27]). The generalized translation operator f v+ 75" f on L7 . (R) is defined by

Frn(12™ f) = Bin (o 2) Fin(f)- (2.20)

It is fruitful to have a class of functions in which (2.20) holds pointwise. One such class is the

generalized Wigner space Wj, ,,(R) given by
Wen(R) = { € Li o(R) : Fin(f) € Lt (R)}.

Following, we give several properties of the generalized translation operator [27].
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(i) For any f € Li,n(R)v we have
’|Tolc€7nf”L§w(R) < HfHLg,n(R)’ vz ER. (2.21)
(ii) For any f € Wy »(R), we have
W) = [ Bl Bn(C) R OFalDO (), Yoy R (222
(iii) For any f € Wy ,(R), we have
" fy) = 1" ()(), Va,yeR. (2.23)
(iv) For all f in Wy ,(R) and g € L;1€7n(R) N L, (R), we have

[ A1 din) = [ 107 a0 dal), VeeR (220
R R

(v) ([31]). For every 6 > 0, the (k,n)-generalized translation of the generalized Gaussian function

,n2\s|% 7n2|m|%+\y\% T n
Tf’n (e 13 ) (y) —e 15 Bi.n <(25)n7 (’L) y) . (2.25)

Recently, an explicit formula for the generalized translation operator 75" has been reported in [5]:

is given by

-1
Theorem 2.4. For any f € Cp(R) and k > L, the generalized translation operator 5™ is
n
given by
Tf’"f(y):/f(z)dCf:g(z), (2.26)
R

where

’Ck,n<x7y7 z)d7k7n(2)7 Zf zy 7’é 0,

dCyy (2) = 4 o, (=), ify =0, (2.27)
déy(z), zfx =0,
nk—2 1 1 1
Kk}n(.%‘,y,Z) :KB 2(‘x|n7|y‘na|Z‘n)vk,n(£7yvz)7 (228)
having support on the set {Z eER: ||z & — ly v < |z w < |z w4 ly %},
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M n nisgn(ry) nk—2 2z 2
Vion(o002) = 292 {14 (1P I I (g 1)

nlsgn(xz) nk—n 2 2 2 nlsgn(yz) nk—z 2 2 2
w——Cn (A ) ) " o Cn (A ) ) " ’
etk (Al el i) + G Lot (A i 1)
(2.29)
1
Au,v,w) = 2\/l%(u—l—v—w), u,v,w € R, (2.30)
C’gki% the Gegenbauer polynomials and ngi% is the positive kernel given by

KpF% (u,0,w) =

[(nk—2+1) { [(u+v)2_u;2} [w2—(u—v)2]} 2

22nk—n—1p(nk7 ";1)1_‘(%) (uvw)znk—n

iflu—v <w<u+w,

0 elsewhere.

Remark 2.5. (i) For all z,y, A € R, we have the following product formula:

Tf’an,n()Hy) = Bk,n(Aax)Bk,n(Aay) (231)

(ii) For all z,y € R*, we have
[ Kraep)ntz) = 1. (232
R

(#ii) For all x,y,z € R*, we have

Kn(,y,2) = Kin(y, 2, 2). (2.33)

(i) For all z,y,z € R*, we have
Kin(z,y,2) = K n((—1)"z, 2, y). (2.34)

(v) For all z,y,z € R*, we have
Kz, (=1)"y, 2) = Kgn(2, (=1)"2,9). (2.35)

(vi) For any x,y € R, we have
[ Wtz 9l dentz) < 0 (2:36)
R
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On what follows we will recall the “trigonometric” form of the generalized translation operator

proved in [30].

Theorem 2.6. (i) For f € Cy(R) write f = fo + fo as a sum of even and odd functions. Then

M.” g n I's nk—% . nk—n
Tf,nf(y) — ﬁ /0 fe(<<$7y>>¢,n) {1 + (-1 ank 2 (cos¢)} (S1n¢)2 Fn g
" nlsgn(x) _ak-z [ |27 —|y|= cos¢
) (o) § G .0
nlsgn(y) nk-y [ |yl = lelweosd | | oy
e semy) omk—g [ 1Y T 12 €059 do| 2.37
(2kn —n), (907, (sine) g (237
where .
(@ = (2l + Iyl = 2oyl cos )™ (2.38)
(i1) For every f € Cp(R), we have
M n 4 ! nk—% . —
() = 5 [ ) {1 1 G s (s,
(2.39)
(i1i) For every A > 0, we have
o (c18 ) ) = Mo emalif o) 1), 20

where

™ 1 | n
. = 2X|zy|n cos ¢ 1 —1)" n. sgn(zy) Zk7§ . an,nd )
Vnhizg) = [ e { ()" Gt cos ) | sin ) o

(iv) ([30]). Using (2.40), properties of the Gegenbauer polynomials and by simple calculations,

we obtain

2 M 1 132
n
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Theorem 2.7 ([5]). Let 75" be the generalized translation operation as defined in (2.19). Then,

(i) For any f € L (dvyk.n) and k > nT—17 we have
T ) = Ty (@), " =]
(it) For any f € Ly ,,(R),1 < p < oo, we have
72" fll ey < 4N ey
(ii) For every f € Ly ,,(R), we have
Fra(me" X)) = Bea((—1)" X, 2) Frn f(A), A €R.

() For any f € L} ,(R),1 < p <2, we have

Fim (T )N = Br((=1)" M\, 2)Fu(F)(N),  a.e. A €R.

(v) For all f € Cy(R) or belongs in Ly, ,,(R),1 < p < oo, we have

() = ).

Proposition 2.8. If f € Cy(R), then we have

lim T
|z]|— o0

2" ()y) =0.

Proof. For f € Ch(R), y € R and ¢ € [0, 7], we have

lim f6(<<x7y>>¢,n) = le\iinoc f0(<<x7y>>¢,n) =0.

|z| =00

(2.42)

(2.43)

(2.44)

Using Theorem 2.6 (i), the properties of the Gegenbauer polynomials, an application of dominated

convergence theorem give the desired result.

O
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Theorem 2.9 (|30]). Let L}

k,n,e

R) be the space of even functions in LY (R). Then,
k,n

(i) For every bounded and non-negative function f € Lkne(R), we have TE"f >0, TEnf €
L;,(R), Vz € R, and

[ 10 ) = [ 560 dnty (245)

(ii) For any f € Ly, .(R), we have
Y T, (240

(ii) For every f € Ly ,(R), we have

[ttt = [ @) (2.47)
R
() If f1 and fo are two suitable functions, we have

/Tl}f’”fl((—1)”t)f2(t)d'yk7n(t) :/Tﬁ’"fg((—l)"t)fl(t)d’yk,n(t), yeR. (2.48)
R R

Definition 2.10. The generalized convolution product of two suitable functions f,g € L,c o (R) is
defined by

f o gla) = / (1)) 9(y) dyin (9). (2.49)

It is pertinent to mention that the convolution product (2.49) is both commutative and associative.

We culminate this subsection by giving the following important results.

Proposition 2.11 ([5]). Let f %y, g(z) be the generalized convolution as defined in (2.49). Then,

(i) For any f € L}, ,(R) and g € Lj. ,(R), we have
frrm g(x) = ATf’"f((—l)”y)g(y) Ak (y)- (2.50)

(i1) For every f € Li’n(R) and g € Lz}n(R) with 1 < p,q,r < 00, % + % —-1= %, the convolution

product f xj , g belongs to L};’n(R) and satisfies the inequality:

17 *tm gl ey < AFlLg

kn

)”gHLZ‘n(R)- (2.51)
(iii) For every f € L ,(R) and g € L}, ,(R), we have
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(iv) For f,g € Lz)n(R), the convolution f+p g € L%H(R) if and only if Fin(f)Frn(g) € Li)n(R)
and satisfies [27]
Fin(f #kn 9) = Frn(f) Frn(9)- (2.53)

(v) For every f,g € L} ,,(R), we have
[ 150 9@ (@) = [ | FenDOP Fenl@)@Pdmnte). 250
R R

2.3 Deformed Hankel transform in linear canonical domain

In this section, we recall some results proved in [33].

Definition 2.12. The deformed linear canonical Hankel transform of any function f € L}“n(R),
with respect to the uni-modular matriz M = (a,b;c,d) € SL(2,R) is defined by

F () @) = — e / KM (2,9) £ () din (), (2.55)
(b)) = JR
where

Ké\j[n(x,y) = e%(%zbr%y?)Bkm (%,y) . (2.56)
Definition 2.12 allows us to make the followings comments:

(i) For M = (1,b,0,1), the deformed linear canonical Hankel transform (2.55) coincides with

the Fresnel transform associated with the deformed Hankel transform:

S S
W () = (i) B /REk,n(x,y)f(y) dyin(y), b0,

f(x)a b: 0,

where E,l;}n(x, y) = eﬁ(IZerz)Bk,n (%a y) .

(ii) For M = (cosh(b),sinh(b);sinh(b), cosh(b)), b € R, the deformed linear canonical Hankel

transform (2.55) boils down to the following integral transform

1
Vi (x) = { (isinh(b))
f(fﬂ), b=0,

— /R R (2, 9) f(y) dyn(y)s D0,

where Rz’n(;c’y) — % coth(b)(z®+y )Bk,n (Smww,y) )
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(iii) For M = (cos a,sin a; —sina, cos ), @ € R, the deformed linear canonical Hankel transform

(2.55) coincides with the fractional deformed Hankel transform ', :

e

((” 2”“)((1 2nm)—Gr/2)
. (2k—1)nt2 /lck n\T y d'Yk ﬂ( ) (2.7 - 1)7T <a< (2.7 + 1)71—’
sin ()| 22

f(.iL‘)7 a=2jm,

f(=z), a=(2j+ ),
where & = sgn(sin(a)), K3, (2,y) = e 2 COt(o‘)(IQ'Hﬁ)Bk,n (Smrﬁ»y) :

Definition 2.13. For any uni-modular matrizc M € SL(2,R), the differential-difference operator
Aﬁ/fn 1s defined by

1 d? 2k d d d? d k
AM g2 D (2 %) & (D % +1)i + —(1— 2.
ko = 2] {dm2+<x sz> o <b2x + (2k + )zb x2( 3))}, (2.57)

where s(u(x)) := u(—x).
Definition 2.13 allows us to make the following comments:

(i) For M = (0,1;—-1,0), A%n boils down to the deformed Laplace operator Ay ,, whereas ]—'é‘f[n

coincides with the deformed Hankel transform Fj, ,, (except for a constant unimodular factor

(61%) (2k—2112n+2 )
(ii) A, is related to the deformed Laplace operator Ay, via

2

i dg :Ak,n+|$

ol

. (2.58)

(iii) For any f,g € S(R), we have
/ AM, F(@)g(@) dn / @) DI g(@) dyin (2). (2.59)

(iv) For each y € R, the kernel K ,i‘/[n(, y) of the linear canonical deformed Hankel transform ]-',ﬁ”n
satisfy the following:

AN KM = Y KM (., y),
K (by) = =151 K () (2.60)

2

K,%L(O, y) = ez 5"

(v) For each z,y € R, we have
K (2, y)] < 1. (2.61)
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Theorem 2.14. Let M = (a,b;c,d) € SL(2,R). Then,

(i) For any f € Li,n(R% ]—',%L(f) belongs to Cy(R) and satisfies the following inequality:

(2k—1)n+2

M _(@k-Untz
T sl V. 2e)
(ii) For every f € Ly ,(R) with F} (f) € L}, ,(R), we have

(P o ) = (F o ) () = swia () ace, (2.63)

where s;(f)(x) == f((=1)7z), Vo €R, j €N,
(iii) F}, is a topological isomorphism from L . (R) into itself.
(iv) f,ﬁ‘/fn is a topological isomorphism from &y, »(R) into itself.

(v) For any f,g € Ly ,,(R), we have
| A D@ dnle) = [ ) FE @)@ drn o)
(vi) If f € L}, ,(R) N L{ ,(R), then FM (f) € L} ,(R) and
1y =112z ey (264)

vii) For any f,g € L? (R), we have
kn

(FinlF):9) s @ = (1.7, 1g> (2.65)

k n(R)
(viii) (Operational formulas). Let M € SL(2,R) and f € S(R). Then we have
Al £)] = —lolt o2, [ 7). (2.66)

and

[ = FR () = —[b]®

ErAIS ] (2.67)
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Definition 2.15. The deformed linear canonical Hankel transform of any function f € L?TL(R),
1 <p < 2 with respect to the uni-modular matriv M = (a,b;c,d) € SL(2,R) is defined by

(2k—1)n+2

FM(f) = e () 5 5m0) (L% 0 Ay 0 Fipn 0 L%) (f), (2.68)

where F.p : Ly, ,(R) — Lz:”(R) is the deformed Hankel transformation on Ly, (R), Ly, and Ay

are the chirp multiplication and dilation operators, defined respectively, by

L.f(x) = e%sy?f(x), seER and Asf(x)= ;f (f) , s € R*. (2.69)

(2k—1)n+2
s

Theorem 2.16 (Young’s inequality). For any uni-modular matric M = (a,b;c¢,d) € SL(2,R) and
1<p<2 ‘7:,?’4” satisfies the following inequality:

2k—1)n+2\( 2
[Z4 D]y ey < W) (2.70)

1712

3 Generalized translations associated with LCDHT

Definition 3.1. Let M = (a,b;c,d) € SL(2,R), b # 0, a given uni-modular matriz. For suitable

function f, we define the generalized translation operator associated with the operator A%n by

Wl

Tfy’k’”f(y) — 6%%(3”24_3/2)7-5’" {6_

’ f(S)} (), (3.1)
where TF™ is the (k,n)-generalized translation operator associated with Ay, .
We will rely on this definition for each function on the following spaces:

o 17 ,(R),1 <p<oo
o (h(R).
Some important properties of the generalized translation operator TM*" are assembled in the
following theorem.
Theorem 3.2. Let M = (a,b;c,d) € SL(2,R), b # 0, then the generalized translation operator
TMEn a5 defined in (3.1) satisfies the following properties:
(i) Linearity: T}PR" [af + Bg] (y) = oT 205" f(y) + BT} " g(y), o, B € R.

(1) Symmetry: Téw’k’" = Id, TM+*7n f(y) = T;VI”“”f(x), V,y€R.
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(iii) Product Formula: For every x,,y,z € R, we have

2

TR (KM (Ly)] (2) = e 289 KM (2,9) KM (2,y). (3.2)

(iv) Commutative: We have

M,k Mk _ Mkn Mk, M Mk _ Mk A M
T, oT, =T, oT, and Ay, 0T, =T, WAV (3.3)

(v) Let f € Sy n(R). The function u(z,y) = TMF"f(y) is a solution of the problem

u(z,0) = f(x).
(vi) For all z,y € R, we have
T2 1) = [ 8 1) Wi 09.2) (), (35)
where
W,%L(:c,y, z) = 3§ @y +2%) Kin(z,y, 2). (3.6)

(vii) The generalized translation operator TMk" js continuous from Cy(R) into itself. Moreover,
the operator is also continuous from LZ’H(R), 1 < p < o0, into itself and satisfies the following
inequality:

M, k,n
viii) For any f € L} (R) and g € Cy(R), we have
k,n

(=87 1) [125g((—1)"8)] drin).

A[Tf[’k’"f((—l)’Ly>} {e_i%yzg(y)} d'Wc,n(y):/
(3.8)

R

(iz) For any f € LLH(RL we have

F TR g () = e KL OVe) FEL (D), A ER. (3.9)

(v) For every f € Ly ,(R), 1 < p <2, we have

FL [T ke g] ) = e KOV FL(DO), e (3.10)

x
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(zi) If f € Co(R), then we have
Jim T2 TRnf(y) =0, yeR.

Proof. Using (3.1), we establish the proof of (i) and (ii).

(iii) Invoking Definition 3.1 and (2.31), we observe that

2

—e 2%V K,ﬁV[n(m,y)K,%l(z,y)

(iv) For any f € Ly ,(R), 1 <p < oo (or f € Cy(R)), (3.1) and Theorem 2.7 imply that

[T;\/I,k,n oTyILI,k,n] f(z) = b £ @4y +2%) [Tg]f" o T;cn] [e—g

i d 2 2 2 id 2
e5 b (@ +y?+27) [7—5,” 07—9’;7"] [6—533

[Tt o T (),
Moreover, for any f € &y, (R), identities (2.58) and (2.19) imply that

x

[AY, o Tk f(y) = e84 [la-h g o rhn] o287
= ez (@ +Y") {T!f” o |x|2*%Ak} [e’%

= [T o AYL] ().
(v) Since system (3.4) is equivalent to

2>~ % A () = [y*~F Dy, v),

i 2

a(z,0) = e~ 257 f(x),

(3.11)

where @(z,y) = e_%%(‘”z‘*‘yz)u(x, y). Therefore, by invoking the transmutation property

together with the identity (2.19) and 75" A) = Ap75", we obtain that the function

ie,y) = k" e F f(s)] (o)
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is a solution of the previous system. Consequently, we get

is a solution of (3.4).
(vi) This is a direct consequence of (3.1) and (2.26).

(vii) The continuous property of TM-*" follows directly from the fact that

T f=|La oLy

T

Tk"oL_% f

where La, L_a, 75" are continuous from C,(R) into itself and L} (R) into itself, respec-
b b V)

tively. Moreover, for any f € Lz’n(R), the operator TM-*: f belongs to Li,n(R) and satisfies

o 1y ]|

(viii) For any f € L; ,(R) and g € C4(R), (3.1) and (2.49) yield

HTaﬁw’k’anLgm(R) -

<4y

=40 fllzp  m-

LY .(R) LY,

[ (-1 [ o 0)] donn )
R

(ix) For any f € Ly, (R), (2.55), (2.56), (3.1) and Theorem 2.7 imply that

(ib) @

A2_ag,? n | i%s? A
b )/T’ |:€2b f 5) (y)Bk,n <bay> d")/k,n(y)
R
2_a,2 ia,2 n A "
_62( A b )/62 v Y f k |:3'_> Bk,n (b,8>:| ((_1) y) drykvn(y)
R

M}Fk 1 [TMfl,k,nf] (\)

2 2
es (N —¢a )Bk,n

>l m
| >/
]
—
®
SIS
S
<

[V
~
—
&
&
ol
3
N
| >
~_
IS
)
>
3
—~
S~—

(2k—1)n+2 i
7} ok

(Gl R O 2) FML ().
(x) For any f € L,lcyn(R) N Ly ,(R), the result follows directly by virtue of property (ix) while
as Young inequality (2.70) and relation (3.7) show that the mappings f — F7, [Ti” “hkn f}

and f — FM (f) are continuous from L} (R) into LZIH(R) As such, the result follows
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immediately by the density of Lj , (R) N L}, (R) in L}  (R).
(xi) Using the relation (3.1) and Proposition 2.8, we derive the result. O

Corollary 3.3. For any f € S(R), we have

-1 pn 1 _dia,2 n/\ <
U = (=175 0) RED F ) i )
—1 2n

(3.12)

Proof. For any f € S(R), inequality (3.7) implies that y — [Té‘rl’k’”f](y) is continuous function
of Ly, (R). Therefore, as a consequence of (3.9) and the inversion formula of the deformed linear

canonical Hankel transform, the result follows immediately. O

We conclude this section with the following important result.
Theorem 3.4. Let TyMJ“’n be the generalized translation operator associated with the uni-modular

matric M = (a,b;c,d), b# 0. Then,

(i) For all f € Co(R), we have
lim ||T,"%" f — f||__ =0. (3.13)

y—0

(ii) For any f € L} ,(R), 1 < p < oo, we have

lim ||T)"%" f — fHLz,n(R) =0. (3.14)

y—0
Proof. (i) First step: We shall prove the result for any f € C.(R). Using the fact that

My,

/ ﬂ(sin $)2""dp =1 and / " onkd (cos @) (sin )2~ "d¢ = 0,
2n 0 0

the generalized translation operator TyM +*7 we can be expressed

TMENf () — f(2) = ay (@) + by () + ¢y (x) + dy(2), (3.15)
where
ay(w) = 252 £ () /O et ) {1 + (—D"%cﬁ’“’%(cw ¢>)} (sin 6)>"" " do,
i) = 5t / o 3 (07~ (i el cone) ) [ (@ 9),0) = fol@)] (sin @)™ " dg
co(a) = " ola) /0 e85 @50 1] Ry, y, 6) (sin )™ "do
@) = Mo [7 (B ) [ ) 0] B0 00
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3

0 cos ¢

1 1 1
nlsgn(e) nk-g [ |27 —ly[=cosg ) nlsgn(y) —me—g [ |yl~ —|o

(2kn =)~ (@i, ) Ghnomat (.95

Rk,n(xa Y, ¢) =

Invoking the properties of the Gegenbauer polynomials, we observe that there exists a

positive constant €(k,n) such that

ei%(gﬁ‘“/zf«way»im) -1 (Sil’l ¢>2nk—nd¢

wﬂm<e%m>mméw

Therefore, we have

lin}) B @ (i) 1 =0, |t lmuli) 1) <2,
Yy—r

and

" : 2nk—n n
sin do = < 00.
| oy = S

Then, an application of dominated convergence theorem implies that
s

lim
y—0 0

G @y = ()2 ) _ 1’ (sin ¢)>"*~"dg = 0.

So, we derive that

tim o, = 0.

As limy ¢ fe (((x, y>>¢n) = fe(z), we derive from the uniform continuity of f, that for
given € > 0, there exists § > 0 such that |y| < ¢ and

|y ()] < e /o7T

2 [ fe (G wdo ) — fel@)| (sin gy —do < e

Hence

3}1_% byl oo = 0.
Similarly, one can prove that
lim ey, = lim 4], = 0.
Thus, we conclude that for any f € C.(R), we have

lim [T — g =0,
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Second step: Assume that f € Cy(R). Using the fact that C.(R) is dense in Cy(R), there
exists a function g € C.(R) such that ||f — glloc < 15 so that

17757 = e < 1T = D)l + 1T = gl + 1S = dll

S [ N e

From the first step, for sufficiently small values of y, the quantity HT;” ko

g— gHOO can

be made less than €/2. As such, we shall get the desired result.

(ii) Let f € C.(R) such that supp f C [~ R, R] and y € [—1, 1]. Involving Theorem 3.2 of [4], we
derive that the functions Tyj\/[ ko foare also supported in a common compact set

[—(R* + |y|=)", (R% + |y|=)"] € [-2"(R +1),2"(R +1)]. Consequently, we have

||TM,k,nf . pr < /2"(R+1) i (a:) HTM,k,nf _ f“ -0, asy—0
Yy Li,n(R) ~ _an(RA1) k,n Yy oo ) .

Therefore, the general case follows immediately by the density of C.(R) in LZ’H(R). This
completes the proof of the theorem. O

4 Generalized convolutions product associated with LCDHT
Definition 4.1. For a given uni-modular matric M = (a,b; ¢, d) € SL(2,R), b # 0, the generalized
convolution product, associated with .7:,%“ for two suitable functions f and g is defined by

d

f @ng(x):A[Ty’k’"f] ((=1)™y) {6”'3"’29(31)} AV (y)- (4.1)

M.k
Some elementary properties of convolution (4.1) are summarized below:

(i) An application of Fubini’s theorem together with (2.35), (3.5) and (3.6), we have

£ 0= [ [ rami e 0 )| [ )] dwat

M.k

:/]R [/R e—i%yzg(y)WiiV,[n(x,(—1)”y,z) dw,n(y)} {e—i%ff(z)} Yo (2) =9 © f.

ksn

(ii) Using Fubini’s theorem, we have

(1o a) = [ (1,0 o) WL dua

M,k

_ /Re—i%zz [/R [Tk f((~1)7s)] {e—i%ﬁg(s)} d'}/k:,n(s):| Wt (@,y, 2) dyen(2)
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_ /R { /R e TS F(2) | Wik (2,9, 2) d%n(z)] e g(s)| din(s)
= [z [ ) o [ 00 drin (o

= [T e g (1) [ ()] don (o)

= ([TQEM”“’"J‘] i g) (v)-

The following proposition contain the basic facts about convolutions of L  (R), 1 < p < oco.

Proposition 4.2 (Young’s Inequality). Let1 < p,q,r < oo withp 14+q~ ' =r~1+1. If f € Ly .(R)
and g € L} (R), then f © ge L (R) and satisfies the following inequality:
’ M,k,n ?

‘Lz,n(ﬂ%) = HfHL’é,AR) ||9|\Lz,n<m>' (4.2)

Proof. Using Holder’s inequality, we obtain

n —idq?
TR f(=1)" e g ()|
1/r 1/p—1/r

= (T2 p (0 gle) (T p((=1))|") (o))"

Moreover, we have

J

1/r

TR0 e B g () < ([ 1T g )

r—

(/]R (e ((CRIIY d%,n(y)> N (/R lg(y)|? d’7k,n(1/)> o

which leads us to

(2,9

T

< (L1meen syl nan) " Lol e

/R M (1)) 19(0)]? dn ().

By invoking (3.7), we observe that

<TG o ol o) [ T2 H" )l ()
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After multiply both sides by dvi »(z) and integrating over R, we get

P Il o [ | I S0 a1 )] 0
Lf () e Le

®
M,k

=4I o 9157 ) [ l90) [/ T fa) d%,m)} e n(0)

<A flzr @ llalze | @

Or equivalently,
|

ey I ey e 0

Theorem 4.3. Let © be the generalized convolution as defined by (4.1) associated with uni-

M, k,n

modular matric M = (a,b;c,d) € SL(2,R), b # 0. Then,

(i) For any f,g € Lllc,nGR)’ we have
.y ) (2k—1)n+2 _ i ng M M
]:k,n (f M*@k g) (l‘) = ((’Lb) 2n ) e 2t fk,n(f)(x)fk,n(g)(x)’ for all z € R.
(4.3)

(ii) For any f € L}C,n(R) and g € Ly, ,(R), 1 < p <2, we have

f,ﬁ‘fln (f ® g> (x) = ((ib)(mﬁ’jzn+2 ) e_%%xzf,yn(f)(x)f,i%(g)(:c), a.e. x € R. (4.4)

M-1kmn

(iii) For f,g,h € Ly, (R), we have

(f O] g) ® h=f © (g ® h). (4.5)

M, k,n M,k,n M, k,n M, k,n

Proof. (i) Using the definition of ]-' ", along with (3.9), it follows that

e (f ° g) (x)

M~1kn
= (2k 1)n+2 /Kkn (E y |:/ Ty]\/[717k7nf((_1)nz) [ei%z2g(2):| d’\/k,n('z)] d’yk,n(y)

ey

(Zb) o (k—Lnt2 1)n+2 / v |:/ Kk ,n 17 y (le)"k nf(y) dfyk,n(y):| drYk,n(Z)
€8 g(2)] |7, T{Kf;),;’;"f) (2)] dyin(2)

]R
(2k—D)n+2 1)n+2 _idg?

((zb ) HIRLG @ FL0)(@).
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It is pertinent to mention that Fubini theorem has been used in the second line as

2

/Rz K ()T (<) 2)e 8 g(2) | dn (9) den(2)

<C [ |TM R p(-1)"2)

19()| dven(y) dyin(2) < AC|fll gy lloll s gy < oo
R2 k,n k,n

(i) The result is true for g € Ly ,,(R) N L} ,(R) by virtue of (i). On the other hand, the Young’s
inequality (2.70) for the deformed linear canonical Hankel transform and Proposition 4.2 show

that the mappings g — .7-",?}4” (f * g> and g — .F,i‘a(f) }‘,i\fn(g) are continuous from

M~1kmn
Ly ,(R) into Li:n(R). Finally, the result follows directly from density of Lj , (R) N L} , (R)
in Lzm (R).
(iii) The result follows immediately by an application of result (i). O

5 Generalized heat equation and the associated operators

In this section, we shall illustrate our proposed theory developed in previous sections to the fol-

lowing generalized heat equation associated with the operator A,]XIT; '

L) _ =t oy, (1,2) € (0,50) B 5
u(0,z) = f(x),

where f is defined on the Banach space B which could be either Lg’n(R), 1<p<oo, (Cp(R),]lloo)
or (Co(R), ||.|lsc)s & > 0 is the coefficient of heat conductivity and the initial data u(0,z) = f(z)
means that u(t,z) — f(z) as ¢ — 0 in the norm of B.

5.1 Generalized heat kernel associated with oA}~ '

Given a uni-modular matrix M = (a,b;¢,d) € SL(2,R), b # 0 and o,t > 0, we define

-1 1 iay®> n
PM (y)::exp{—y —‘Z}, y €R. (5.2)

(Ut) (2k7;)n+2

Using the relations (2.55), (2.56), (5.2) and Example 2.2, we obtain

, 2
M M1t N idx? _ £
Fien (Pt ) (z) = exp {Qb t0<b|) } , Vt>0, xzeR. (5.3)
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Definition 5.1. Given a uni-modular matric M = (a,b;c,d) € SL(2,R), b # 0, the generalized

heat kernel associated with A%;l is denoted as G,{”fl and defined by
G () =T P (), wyeR, >0, (5.4)

We collect some basic properties of the generalized heat kernel Gi‘rl in the following proposition.

Proposition 5.2. The generalized heat kernel Givrl as defined in (5.4) satisfies the following

properties:

(i) Fort >0, we have

- 1 —ia(e® +y%)  n(lzl* + ly|7) T
Giu (:r,y) = G@h—Dntz XP - By ,(77,) Yyl
(1)

2b 20t (ot)m
(5.5)
(it) Fort > 0, there exists a positive constant C(k,n) such that
<IwI%—\y\%)2
M1 P T E—
‘Gt ({E, y)’ S C(k, TL) (2k—1)n+2 (56)
(o)
(i11) Fort >0, we have
[ A G @) dun() = 1. (5.7)
R
(iv) For s,t >0, we have
G () = [ GF7 @) G (02) € e, (58)
R

(v) For fized t > 0 and y € R, we have

£

b

} . (5.9)

(vi) For a fizedy € R, u(t,z) = Gi\rl(%y) is the solution of the generalized heat equation (5.1).

F (G () (©) = R (€ ) exp {—w

Proof. (i) Using the Definition 3.1, we observe that

- 1 ia nls|m
GM 7 (2,y) = —grmmre FEETTIE o | (y). (5.10)
(ot) *

Therefore, by simple application of (2.25), we derive the desired assertion.
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(ii) The assertion follows directly from the relation (5.10) and inequality (2.41).

(iii) An application of (5.10) leads us to

ia (g2 2 1 1 n [ _nlsl
/Re2 p@ I GM T (2, y) dye(y) = (f)(%ﬁ /RT;?’ (6 27t ) (v) dve,n(y)-
o 2

Thus, we obtain the desired result by applying (2.47) and simple calculations.

(iv) Using the identity (5.5), we obtain

2 2
1 -1 ja,2 1 ;i%($2+y2)_ l:”%"""%}
/Giw (2,2) GY (y,2) €87 dyen(2) = ——g—5mz €
R ((o)%ts) 2
sl ol
| Zer t2es :| x N Yy 7
/Re { By n ((at)"’(_l) z) B <(08)n7(—z) z) dV,n (%)

From the relation (2.10), we deduce that

3

2
lz]n | |=]

7"|: 20t T 20
e
R

o

Bin ((a‘:) (i)"z) Bin <(Oi)n (i)”z) i (2)

@k—ln+2 sl tuln
ots 2 ™| Sotets) T Zos(tF9) x o
= e Bin| ———,(@)"2 ),
t+s T\ (o(s+ 1))

which leads to the given desired result.

(v) Involving the relations (5.4), (3.9) and (5.3), we get the desired result.

(vi) For fixed y € R and t > 0, we put v(x,t) := Gi\rl(x,y). Using (5.4) and Corollary 3.3, we
deduce that

n

AdVen ().
b %,()

(5.11)
By taking differentiations under integral, the identities (2.66), (2.60) and by standard anal-

—1 1 S d )2 n)\ =7 T
Géw (l',y) = o\ (2k—1)nt2 /ele Bk,n ((_1) bay) Kﬁ?ﬂ(Avm) eXp —to
(=ib)™ = JR

ysis, we see that
0 -1 —1
L’?t — aﬁﬂffn ] Gi\/f (z,y) =0.

This completes the proof of the Proposition 5.2. O
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Theorem 5.3. Assume that M = (a,b;c,d) € SL(2,R) such that b # 0. Let B be one of the
Banach spaces Ly, (R) (1 <p < 00), (C(R), [|.[loc) 07 (Co(R), [|-[lec) - Then:

(i) For each f € X, the function u(t,z) = (PtMl ) f) (x) satisfies the generalized heat
M-1kmn

equation

= oAM Cu(t,x), (t2) € (0,00) X R, (5.12)

1/q
4 (20 (=02 0y, )

Ly (R) < (o) GE=Dn+2 ||f||L§,n(R)’

and

[|u(t, )] (5.13)

ce 11 1
where p,q,r € [1,00] satisfying ste=1++
m
ia, .2 .
(ii) Let f(x) =e 237 p (|x\%> with p(s) = g c;s’.
j=0

We define the function u as u(t,x) = (PtMl ® f) (z). We have
M-t kn

2
n

n J _
—lag? . 20t w n|a:
u(t,w) = e 257N jle; <n> i )<_ 20t ) (5.14)

=0

((Zkfl)n)

where L; * denote the Laguerre functions of degree j [43]. Moreover,
t _
a“ét’x) — o AM u(t,x),  (t,x) € (0,00) xR, with u(0,z) = f(x).

Proof. (i) In view of (5.11) and Fubini’s theorem, the function u(¢,z) can be expressed as

n

1 i AN T
u(t,x) = ( ‘b) (2k—Dnt2 /]Re B Kliwn()‘vx) exp{—ta
—q on

b

}fk,n(f)(k)d%,n()\) (5.15)

Moreover, as above take again differentiation under the integral in (5.15) and (2.66), we

derive the result.

Furthermore, the Young’s inequality (4.2) implies that

M-t
P

e, )|

©

) = H’Pt - f

<4|
LQ,"’(R)

L;m(R

M-1kn L{ ,(R)
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Using (5.16) and the fact that

2%k — )n +2 1/a
1 2 1/q <2F (( n)n aa ) Mkn>
</ e~ gk lyln d’Yk,n(y)) 4
R

(2k—Dnt2 = (2k—Lnt2 ’
2 (a't) 2

LLL®) (gt)

we obtain the desired inequality (5.12).
(ii) Firstly, it is easy to see that
2

uta) = [ G (<19 38 (o) o) (5.17)

Now, if we write p (\y|%) = ch|y|%, then using (5.5) and by the change of variables
j=1

Y

uz( t)ﬂ,we obtain
ot)2
M1 n ia,? 2
G (@, (<)) e p (1) dyen(y)
R
o
iag2 nlel™ m 2
My pe”25% 7 201 / n=luln x . (2k—2)n+242j
= 2 - . 20t B , n —n  d
() B g e e ( g @7 ) 1o y
m 1 2
2 t J ia x|
:ch <J> 67§§$2€,n|21’t It(l'), (518)
i=1 "
where

2 —u? 2| u _ :
I — u o (2k—1)n+1+2j du.
(@) F((Qk—l)n—l—Q) /Re Jeroe | A v
2 n

Using the identity (6.631(10) in [20]), we get
i y F ]. 22 2
/ 67u2ja(uz)u2j+2a+ldu — #j!efTL? (Z> , z>0.
0

Further, by simple calculations, we see that

. w2 ((2k=Dn n|x|2/"
L) = il - 8a?enlsl  (B5522) R. 5.19
H(x) =jle e ; ( 901 > y T E (5.19)

Substituting (5.19) in (5.18), we get the desired identity:

n i o 2
_ia . 20t (aghm) nlx|n
— x2 . 2 _
u(t,r) =e" 2% g Jle; ( - ) L; 5o |-

J=0
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Finally, using (i) we observe that the function u solves (5.12). Moreover using the identity,

(e 193], | )
(2015) L (_nle/") _Jal#
n J 20t =0 ]'
we derive that u(0,2) = f(z). This completes the proof of the Theorem 5.3. O

5.2 Heat semi-groups associated with UA%: '

We begin this subsection by recalling the necessary tools on semigroups.

Definition 5.4 ([36]). Let X be a Banach space. A one-parameter family S = {S(t); t > 0} of

bounded linear operators on X is called a strongly continuous semigroup if it satisfies:
(i) S(0) = Idx.
(i) S(t+s) = S(t)S(s) for allt,s > 0.
(ii) The mapping t — S(t)u is continuous on [0,00) for all u € X. A strongly continuous semi-
group s called a contraction semigroup, if ||S(t)|| <1 for allt > 0.
Let S = (S(t));>q be a strongly continuous semigroup. The generator O of S is defined by the
formula

Ou = lim Su=u = iS(t)u ,

the domain D(D) of O being the set of all w € X for which the limit defined above exists.

In this subsection, we shall denote B as one of the Banach spaces L} ,(R) (1 < p < oo) or
(Co(R), [[-llso)-

Definition 5.5. Let M = (a,b;¢,d) € SL(2,R) be a uni-modular matriz such that b # 0. Then,
for eacht >0 and f € X, we define a family of operators

1] .

Z Pt ® f Zf t > O,

M~-1kmn

SM()f = (5.20)

f if t=0.

The family of operators (5.20) is often called the heat semigroup associated with aA,i‘ﬁ: "
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Theorem 5.6. The family of operators {S,i\f[nfl(t) it > O} is strongly continuous contraction on
B.

Proof. We shall divide the proof of the theorem into two steps.

First step: (i) Assume that B = Cy(R). Then, the result is trivial when ¢ = 0. For any
f € Co(R) and t > 0, (3.8) and (5.2), implies that

(st @)@ = [ [P | (1) [ 1) dnn)

4
1 1 ia,?2 —nly\% 1 kn n
— e [ PR [T (1) )
=

(at)
(2k—1)n+2
2

-2 (2) /Re%(%"ef\vl% 2 ] <(1)n <2’n”’f) v) B (0).

(5.21)

Clearly the mapping (z,v) — [Té‘/lflvk’”f] ((fl)" (M)Ev) is continuous on RZ.
Moreover, using (3.11) and (3.7), we have

s g o (2)') -

and

<A|f|le " e L (R).

ei%(2gt)n6_‘vlw [Té\/lilvklnf] ((_1)" <M> ’U)
n

Therefore, it follows by the dominated convergence theorem that S%nfl(t) f € Co(R)

and satisfies the inequality:

(2k—1)n+42
2

[stws| < (B) T [ttt p 17l = 1]l
0o R

By taking supremum over all f € Cy(R) and noting that ||f|lc < 1, we obtain
Jsts" ] <1
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(ii) For allt,s > 0 and f € Cp(R), from (5.8) we have
St () (St (0f) @)
- 1/0%1(33@)&%* (/ GM ™ (y, 2)e " f(y) d%,n(y)> dyin(2)
-1/, (/ GM 7 (o, 2)GY T (y,2) € d (= >> e F(y) dyn ()

/Gﬁtl 2,9)e Y f(y) drn(y)

= S,m (8 +t)f(z).

(iii) Using the fact

(2k—1)n+2

(721)2/]R i AV (y) =1,

identity (5.21) gives the freedom to write

(SM‘ (t) f) (2) — f(2) = as(x) + bi(z) (5.22)
where
(2k=Dynt2 ,
ay(z) = %/Re*lvﬁ (a‘%(%) ol _ 1) F(z) dyn (v), (5.23)
(2k—1)nt2
be(z) =~
[ et <{T.i”_l”“’”f} ((1)” () ) - f<x>> B (0).
(5.24)

Using the fact that

P

M~ k,n
RS I

together as above with an application of the dominated convergence theorem, we get

the desired result as

5 (2k—1)n+2
( ) 2
n 2 | o famen
||at”oo < nf [/ e lvlm elﬁ(%t) [v]2 1‘ d’Yk,n(v):| Ifll.o — 0, ast—0,
R
(2k—1)n+2
2

IN
A~
S
~—

el e

o]
o2
1 /Re

T(Afl) (201 f fH d’yk n ) 0, ast — 0.
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Second step: (i) Assume that X = L}, (R), 1 < p < oo. For any f € L (R), Young’s
inequality (4.2) yields

1 1
st o], ‘PM o f <| Ml
H k, (]R) 4 t M-1kn Ly (R kn(]R) H HLk,n(R)
Since ,
‘PM’I 1 /6_ nlyln dyen(y) = 1
= T (Gk—Dntz 7 kn\Y) = 1.
Collne (o e

Thus, we obtain

Jsts" o1

S

Ly (®)

By taking supremum over all f € L¥ (R) and noting that ||fHL£ ®) < 1, we obtain
for each ¢t > 0, S,%;l(t) is a bounded linear operator on L} (R) and ||S,¥n71(t)\\ <L

(ii) Since S(R) C Cy(R), we derive that
SM (s +t)=SM " (s)SM (1) on S(R).
On the other hand, S,]C‘f[n_l(s), S,i\f[n_l(t) and S%;l(s + 1) are continuous from Lj  (R)
into itself. Therefore, the result follows immediately by the density of S(R) in L}, , (R).
(iii) Firstly, we show that if f € C.(R), then

. M1 .
lim HSk (t) — 0. (5.25)

By virtue of the relation (5.22), it follows that

HSM - f‘ L ® HatHLim/(R) + HthLgm(Ry
with
(2k—1)n+2
( 2
||atHL§ _® < nf {/Revln i35 (288)" Il _ 1’d’)/kn ] ||f||Lp L (R) —0,

ast — 0,

whereas the Minkowski’s inequality yields that

(2k—1)n+2
2

(=)
n ol
HthLg,n(R) < 4 /Re

TJ\/Iil,kZ,’I’L f _ f

(—1)"(@)%1; Ay (v) — 0,

Lin(R)

ast — 0.
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Implementation of the dominated convergence theorem implies that

lim ||7 M~ km n = O, ( e Theorem 3. )a
t—0 (71)n(2T<7t)2v se 3.4

Ly, (R)
2
and v e I" € L} (R).

Since C¢(R) is dense in L} ,(R), therefore, for any f € L} , (R), there exists g € Cc(R)

such that
€
Hf _QHLQH(R) = 3

and

M-t

HS%,_ f*f‘ Set, (t)g — g’

O

<| +]
L (®) L, (®)

+ Hf - gHLim/(R)

LY . (R)

< 2Hf - QHL;TL(R) + Hsl]c\f[nil(t)

2¢ —1
<25 g -]

FMON

Further the relation (5.25) implies that, for sufficiently small values of ¢, we have

Subsequently, we obtain

hmHSk ) f — f’ —0.

L (R)
This completes the proof of Theorem 5.6. O

We close this section by the following statement for the semigroup (S k)n_l (t),t > 0) acting on the
Banach spaces B = L} (R) (1 <p < 00) or (Co(R), ||-]lec)-

Proposition 5.7. The operator Aﬁ{;l is closable and its closure generates the semigroup

(S%Jl(t),t > 0) acting on the Banach spaces B.

Proof. Let f € & »(R). Involving the relations (5.20) and (5.15), we observe that

SM () — Id etol 31T
i, ("(t)f) )= AL,
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Thus, we derive that

t—0 b

M=ty 2
it (S ) )< <o 3 00 R () ),

Using the injectivity of ]-",i”n on & ,(R), we infer that the generator of the semigroup
(S,i‘?n_1 (t),t> O), denoted by Oy, ,,, satisfies

SM™N (1) — Id

. k,n -1
Opnf = lim == f = oA, f.

As & »(R) is invariant under Fy ,,, we derive that Sy, (R) is invariant under (S%gl(t),t > 0)
which is a strongly continuous semigroup of contractions on B. So, we observe that &y ,(R) is
subset of Oy ,. Moreover since &y, (R) is dense in B, Then by [36, Corollary 1.2.2], it follows
that Sy, (R) is a core for the generator Oy, , and the desired result is proved. O

6 Potential applications and simulation perspectives

The theoretical framework developed in this article admits several potential applications in diverse
areas of harmonic analysis, signal processing, and mathematical physics. Owing to the additional
degrees of freedom offered by the parameters of the linear canonical deformed Hankel transform
(LCDHT), the corresponding generalized translation and convolution operators introduced here

extend the analytical and practical scope of existing transform methods.

6.1 Uncertainty principles

The LCDHT provides a natural platform for establishing new variants of classical uncertainty
relations, including the Heisenberg, Donoho-Stark, and Hardy-type inequalities. By incorporating
linear canonical and deformed Hankel parameters, the LCDHT allows sharper localization bounds
in both the time and transform domains. Such results are expected to find applications in quantum
mechanics, optical tomography, and time—frequency localization theory, where precise phase—space

characterizations are essential.

6.2 Signal reconstruction

The generalized translation and convolution structures developed in this work constitute the foun-
dation for signal reconstruction and sampling theorems in the LCDHT domain. These results
facilitate the recovery of signals that are bandlimited with respect to the LCDHT rather than the

classical Fourier transform, offering significant advantages in nonuniform sampling, filter design,
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and inverse problems. Potential applications include optical field recovery, radar and sonar imag-

ing, seismic data interpretation, and medical image reconstruction, where signals often exhibit

Hankel-type or radial symmetries.

6.3 Simulation and error analysis perspectives

Although the present work is primarily theoretical, the proposed framework can be extended toward
numerical validation and simulation studies. A theoretical error analysis may focus on the stability
and convergence of the generalized translation and convolution operators under discretization or
kernel truncation. Synthetic test signals, such as Gaussian—Bessel or chirp-type functions, may be
used to verify reconstruction accuracy and energy preservation. Quantitative measures like mean
square error (MSE) and signal-to-noise ratio (SNR) would help assess computational fidelity. Such
experiments would not only corroborate the analytical findings but also demonstrate the robustness

and applicability of the LCDHT in signal reconstruction and time—frequency localization problems.

7 Conclusion and future work

In this paper, we have investigated the generalized translation and convolution operators within
the framework of the linear canonical deformed Hankel transform (LCDHT). Although the results
presented here are primarily theoretical, they have been effectively applied to the analysis of the
generalized heat equation and the associated heat semigroup. It is pertinent to mention that the
proposed transform not only unifies several existing integral transforms such as the classical and
fractional Fourier transforms, as well as the linear canonical transform in the Dunkl and Hankel
settings but also leads to the formulation of new integral transforms, including the fractional
(k,n)-generalized Fourier transform and the generalized Fresnel transform. Furthermore, building
upon the harmonic analysis developed in the earlier sections, we have explored the Gabor, wavelet,
Wigner, and wavelet multiplier transforms in the context of the LCDHT framework [18]. For future
research, we plan to extend this work by investigating additional applications in time-frequency
analysis and by developing the reproducing kernel theory associated with the LCDHT. These
directions are expected to further enrich the theoretical foundations and broaden the applicability

of this new class of integral transforms.
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