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RESUMEN

Este articulo presenta dos algoritmos extrapolados de tipo
Mann con viscosidad inercial para encontrar una solucion
comun al problema de desigualdad variacional que involucra
un operador continuo, monoétono y Lipschitz y al problema
de punto fijo para una aplicaciéon semicontractiva en espacios
de Hilbert reales. Los algoritmos propuestos presentan una
estrategia de tamafnio de paso adaptativo, calculado iterati-
vamente, que evita la necesidad del conocimiento previo de
la constante de Lipschitz del operador. Bajo hipotesis apro-
piadas, establecemos dos teoremas de convergencia fuertes
que garantizan la robustez de los métodos. Més atun, entre-
gamos un analisis comparativo del desempeiio de los algorit-
mos propuestos contra algunos esquemas existentes fuerte-
mente convergentes, sobre la base de experimentos numéri-

cos con ilustraciones graficas basadas en MATLAB.

Keywords and Phrases: Subgradient extragradient method, extragradient method, Mann-like method, inertial

method, viscosity method.
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1 Introduction

Consider a real Hilbert space D equipped with the inner product (., .), and the corresponding norm
Ill, and & # E be a closed, convex subset of D. This study is devoted to the pursuit of a common
solution to problems involving variational inequalities and fixed point theory within the framework
of real Hilbert spaces. The impetus for this investigation arises from the significant role these
problems play in numerous mathematical models, where constraints are naturally formulated as
variational inequalities and/or fixed point conditions. This situation occurs especially in practical
problems, such as signal processing, composite minimization problems, optimal control problems,
and image restoration. The relevance and applicability of this framework have been well-established

in prior works [3,17,20,23,32|. Let us recall the involved problems.

The variational inequality problem associated with the operator F : D — D over the set E seeks

to determine a point v € E such that the following condition is satisfied:

(Fv,s—v) >0, VseE. (VIP)

The solution set of the (VIP) is denoted by VI(E,F). Variational inequality problems provide
a useful and indispensable tool for investigating various interesting issues emerging in many ar-
eas, such as social, physics, engineering, economics, network analysis, medical imaging, inverse
problems, transportation and much more; see, e.g., [4,12,23]. Variational inequality theory has
been proven to provide a simple, universal, and consistent structure to deal with possible prob-
lems. In the past few decades, researchers have shown tremendous interest in exploring different
extensions of variational inequality problems. Recent advancements, as evidenced in works such
as [1,10,24,28,29] underscore a growing emphasis on the development of efficient and practically
implementable numerical algorithms for addressing variational inequalities. Under fairly general
conditions, two prominent strategies have emerged for solving monotone variational inequalities:
projection-type methods and regularization-based approaches. In this study, we concentrate on
projection-type methods, with particular attention to the projection gradient method, arguably

the most straightforward among them for solving (VIP) given as:

Sn+1 = PE(Sn - 77\7'.571,);

where Pg, denotes the metric projection onto the set E and n > 0 is an appropriately chosen step

size.

It is worth emphasizing that the projected gradient method necessitates only a single projection
onto the feasible set per iteration, making it computationally appealing. However, its convergence
typically hinges on relatively strong assumptions, most notably, that the underlying operator is

either strongly monotone or inverse strongly monotone. To relax these stringent conditions, Kor-
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pelevich [15] proposed the extragradient method, originally designed to solve saddle point problems
in Euclidean spaces. The method introduces an additional intermediate step to enhance conver-
gence properties under weaker assumptions. The iterative scheme of the extragradient method is
given by:

tn = Pr(sn — nFsn),
" " ) (1.1)
Sn+1 = Pr(sn, — nFty),
where operator F is assumed to be monotone and L-Lipschitz continuous, Pg represents the metric

projection from D onto F, and n € (0,1/L). It is established that the sequence {s, } produced by
the process (1.1) converges to an element in VI(E,F).

It is essential to recognize that solving the shortest distance problem is equivalent to computing
the metric projection onto a closed convex set E. As previously noted, the extragradient method
involves two projections onto E in each iteration. While effective, this requirement can pose sig-
nificant computational challenges, particularly when FE is a general closed and convex set with
a complex structure. To mitigate this issue, Censor et al. [9] introduced the subgradient extra-
gradient method as a refinement of the original extragradient algorithm. The key innovation in
this approach lies in replacing the second projection onto E with a projection onto a carefully
constructed half-space. This modification is advantageous because projecting onto a half-space is

computationally explicit and significantly simpler. The modified algorithm is formulated as follows:

t, = Pr(sn —nFsn),
T, = {s € D|{sy, — nF sy — tn,s — t,) <0}, (1.2)
Sn+1 = PT,L <Sn - 77~7:tn)7
The sequence {s,} produced by (1.2) converges weakly to a solution of the variational inequality
in this case where VI(E, F) # @.

On the other hand, the fixed point problem plays a pivotal role in the theory and solution of
variational inequalities. Let S : E — E be a nonlinear mapping. A point s € D is called a fixed
point of the mapping S if it satisfies the condition Ss = s. The set of all fixed points of S is
denoted as Fiz(S). The fixed point problem is formulated as follows:

find v € E'such that Sv = v. (FPP)

The principal objective of this paper is to determine a common solution to both the (VIP) and

the (FPP). Specifically, the goal is to find a point v such that

v € VI(E,F) N Fiz(S). (VIFPP)
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A wide range of numerical algorithms have been developed to tackle the combined variational
inequality and fixed point problem (VIFPP) in infinite-dimensional spaces as documented in [6,
7,11, 36], and the references therein. Notably, Takahashi and Toyoda [26] proposed an iterative

scheme for approximating a solution to the (VIFPP) which is described as follows:

Sp+1 = (1 - Cn)sn + CnSPE(Sn - 7771]:511)’ (1'3)

where F : E — D is p-inverse strongly monotone, S : E — E is nonexpansive, ¢, € (0,1) is a
control sequence, 1, > 0 is a stepsize parameter, Pr denotes the metric projection onto the convex
set E. They proved {s,} generated by (1.3) converges weakly to a solution of (VIFPP) under
certain conditions. More recently, Censor et al. [8] established the following iterative scheme and

proved its weak convergence to the solution of the (VIFPP),

tp = PE(Sn - 77]:511)’
T, = {s € D|{sy, — nFsy, —tn,s — tn) <0}, (1.4)
Sp+1 = Cnsn + (1 - Cn)SPTn (Sn - 77]:tn)

In the context of infinite-dimensional Hilbert spaces, strong (norm) convergence is generally more
desirable than weak convergence, particularly for practical applications. To ensure strong conver-
gence when solving the combined (VIFPP), Kraikaew and Saejung [16] introduced the Halpern Sub-
gradient Extragradient Method (HSEGM). This method integrates the Halpern iteration scheme
with the subgradient extragradient framework, providing a robust approach for approximating

common solutions to variational inequality and fixed point problems, which is described as:

ly = PE(STL - 77]:571)7
T, = {3 € D|<sn —NFsy —tn,s— tn> < 0},

Up = Cuso + (1 = Go)Pr, (50 — nFty),

(HSEGM)

Snt1 = Tndn + (1 — 7)) Sty

They proved that the sequence {s,} generated by the (HSEGM) converges strongly to
Pvinriz(s)(S0), the metric projection of the initial point sy onto the set of common solutions of

the variational inequality and fixed point problems.

Recently, Thong and Hieu [34] proposed the Modified Subgradient Extragradient Method (MSEGM)
by integrating the subgradient extragradient technique with the Mann-type iteration scheme. The
primary objective of this algorithm is to identify common solution elements belonging to both the

solution set of the variational inequality problem (VIP) and the fixed point set of a demicontractive
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mapping. The algorithm is formally outlined as follows:

tn = Pr(sn —nFsn),

T = {5 € D|(sn — nFsn — tn, s — tn) <0}, (MSEGM)

Up = ,PTn,(Sn - U]:tn)7

Sn4+1 = (]- - Cn - Tn)un + Tnsun»

They proved its strong convergence to an element v € VI(E, F) N Fixz(S), where ||v]| = min{||u] :
ue VI(E,F)N Fiz(S)}.

A notable limitation of both the (HSEGM) and (MSEGM) algorithms is their reliance on prior
knowledge of the Lipschitz constant of the mapping F. However, in many practical situations, this
information is either unavailable or difficult to estimate accurately. To address this issue, Thong
and Hieu [35] proposed two extragradient-viscosity algorithms, designed to solve the combined
(VIFPP) without requiring the Lipschitz constant. Their approach incorporates an adaptive step-

size rule, allowing automatic updates at each iteration. The algorithms are formulated as follows:

th = PE(S'n - nnfsn)a
T, =1{s € D|(sp, — My F S$pn — tn,s —tn,) <0},
{ [(sn =1 ) <0} (VSEGM)
Up = PTn(Sn - 77n-7:tn)7
8n+1 - an(sn) + (1 - Cn)[(l - Tn)un + Tnsun]v
and
tn = Pr(sn — mnF Sn),
Up =ty — N (Ftn — Fsp), (VIEGM)

Snt1 = (T (8n) + (1 = C)[(1 — m)un + 7 Sunl,

where algorithms (VSEGM) and (VTEGM) update the step size {n,} by the following rule:

min{ V||sn — tal
N1 = [ Fsn = Ftull

Mns otherwise,

The sequences produced by (VTEGM) and (VTEGM) converges strongly under mild assumptions
to ¢ € Fix(S)NVI(E,F), where ¢ = Priys)nvie,r) (T (q))-

In recent years, fast iterative algorithms have attracted considerable interest, especially those
employing inertial techniques inspired by discrete analogues of second-order dissipative dynamical
systems [2,19]. These inertial methods accelerate convergence by incorporating momentum-like

terms into the iterative process. Leveraging this framework, Tan et al. [33] proposed the following
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inertial algorithm for solving the combined variational inequality and fixed point problem (VIFPP)

Wy, = Sp 4+ Kn(Sn — Sn—1),

tn, = Pr(w, — npFwy),

T, = {s € D|(w,, — MFwy — tn,s —t,) <0}, (IVSEGM)
Un, = Pr, (W, — 10 Fin),

Snt1 = G (5n) + (1 = G)[(1 — 7)) upn + 7o Suy),

where the step size {K,} and {n,} are updated by the following rules:

min {6" IC} , if sp # Sp_1,
ICn = Hsn

— sp—1l’
K, otherwise,
and
—t
min{ysnnlmn} , if Fs, — Ft, #0,
M1 = | F s — Ftnll

N, otherwise.

Recently, Mewomo et al. [18] integrated the inertial, viscosity, and Tseng’s approaches and intro-
duced two Generalized Viscosity Inertial Tseng Methods (GVITMs) for solving pseudomonotone

variational inequalities with fixed point constraints, formulated as follows:

Wy, = Sp + 6n(3n - 37L—1)7
tn - PC(wn - ’Ynfwn)a
Zn =ty — Yn(Ftn — Fwy,), (GVITM)

m
Up = ﬁn,Ozn + Zizl ﬁn,ivn,iy Uni € Siz’m

Sn+1 = an")/j(wn) + (I - anG)Una
where §,, and ~,, are updated by (1.5) and (1.6), respectively.

min{enats}: if Sn#sn—lv
Op = [0 — sn—1l| (1.5)

6, otherwise,

min{ ollwn — ta|
Y+l = ||]:wn - ]:tn”

Yn + On, otherwise,

ﬁn—l—gﬁn}, if Fw,, — Ft, #0,
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and

Wp, = Sp, + (Sn(sn - Snfl)y
th = PC(wn - anwwn),

m
Up = Bn,OZn + Zi:l ﬁn,ivn,h Un,i S Sizna

Sp+1 = anfyj(wn) + (I - anG)una

where §,, and ~,, are updated by (1.5) and (1.7), respectively.

mm{ Bllwn — tal
s [Vwn — Vit

Tn + Pns otherwise.

» In + ¢n} ) if wan - van 7& 0,
(1.7)

where § > 0, 71 > 0, ¢,, is a nonnegative sequence such that Y -, ¢, < +oo, and ¢ € (0,1).
The authors established strong convergence results for the sequences generated by (GVITM;) and
(GVITMyp) without imposing the sequential weak continuity of the pseudomonotone operator and

without requiring prior knowledge of the Lipschitz constants.

Recently, Kesornprom et al. [14] proposed a new variant of the proximal gradient algorithm
incorporating double inertial extrapolation for solving constrained convex minimization problems

in Hilbert spaces, formulated as follows:

2" =5" 0, (s" — s 4 (s =57, n>1,

s"H = Pp(proza, (2" — a,Vf(z"))),

where
in { o A oI )
IVf(zn) = V(proza, (z" — a V)"
Qnt1 = it Vf(z") = Vf(proza, (z" — a,Vf(2"))) # 0,

Qnp, otherwise.
where 6,, > 0, n, > 0, aqg > 0 and ¢ € (0, %) They established the weak convergence of the
proposed method to a point in argmin(f + ¢g) N E. For an extensive discussion on fast iterative al-
gorithms and their recent advancements, the reader may consult [21,25,31,38,39] and the references

therein.

Motivated and inspired by existing studies in this area, the purpose of this paper is to develop two
inertial extragradient algorithms that combine the Mann iteration, viscosity approximation, and
subgradient extragradient methods with a new step size for discovering a common solution of a

monotone and Lipschitz variational inequality problem and of the fixed point problem involving a
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demicontractive mapping in real Hilbert spaces. The suggested algorithms need to calculate the
projection on the feasible set only once per iteration, which makes them faster. Strong convergence
theorems of the algorithms are established without the prior information of the Lipschitz constant
of the operator. Lastly, some computational tests appearing in finite and infinite dimensions are

proposed to support the theoretical results.

The organizational structure of our paper is built up as follows. In Section 2, we recall some
preliminary results and lemmas that need to be used in the next section. In Section 3, we propose
the algorithms and analyse their convergence. Some numerical experiments to verify our theoretical
results are presented in Section 4. At last, the paper ends with a brief summary in Section 5, the

final section.

2 Preliminaries

Consider @ # E (closed, convex) subset of a real Hilbert space D. The weak convergence and
strong convergence of the sequence {s,} to s are denoted as s,, — s and s,, — s, respectively. For

any s,t € D and ¢ € R the following statements hold:
(@) s+l = lIsl* + 2(s,t) + [I]|*.
(i) fls+¢l* < lIsll* +2(t, s + ).

(i) [I¢s + (1= Otl* = Cllsl* + (1 = Ollt* = ¢ = O)lls — ¢

For any point s € D, there exists a distinct nearest point in the closed and convex subset F identified
as Pp(s) satisfying Pg(s) = argmin{||s — t||,t € E}. Pg is termed as the metric projection of
D onto E. It is established that Pg is a nonexpansive mapping and it possesses the following

fundamental properties:

(i) (s —Pg(s),t —Pg(s)) <0,Vt € E.
(i) |Pe(s) — Pe(t)||?> < (Pr(s) — Pr(t),s —t), ¥t € D.

Definition 2.1 ([27]). A mapping A: D — D is said to be:

(i) L-Lipschitz continuous with £ > 0 if

| As — At|| < L||s —t||, Vs,te€D.

(ii) C-strongly monotone if there exists ¢ > 0 such that

(As — At,s —t) > (s — t||*, Vs, t€D.
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(iii) C-inverse strongly monotone if there exists ¢ > 0 such that

(As — At,s — t) > (|| As — At|?, Vs, t€D.
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Remark 2.2 ([5]). if A:D — D be an injective operator so that A~' is well defined, then:

(a) If A is C-strongly monotone, then its inverse A~1 is (-inverse strongly monotone.

(b) If A is C-inverse strongly monotone, then its inverse A~1 is (-strongly monotone.

(iv) monotone if

(As — At,s —t) >0, Vs, teD.
(v) quasi-nonexpansive if

|As —ul| < ||s—tll, Yue€ Fiz(A), seD.

(vi) p-strictly pseudocontractive with 0 < p <1 if

[ As — At < [|s — t]]* + ul|(I = A)s — (I — A)t||*, Vs, t€D.

(vii) T-demicontractive with 0 < 7 < 1 4f

| As —ul|® < ||ls —ul]® +7||(I — A)s||?, VYue€ Fiz(A), seD.

or equivalently

T—1
2

(As —s,8 —u) < s — As||?, Vue Fiz(A), secD.

(2.1)

(2.2)

Definition 2.3 ([37]). If A: D — D is a nonlinear operator with Fix(A) # &. Then, I — A is

said to be demiclosed at zero if for any {s,} in D, the following implications holds:

sp = s and (I — A)s, =0 = s e Fiz(A).

Lemma 2.4 ([33]). Consider S : D — D as a T-demicontractive operator with Fiz(S) # @. Let

Sy =1 —p)I+ uS, where p € (0,1 —71). Then:
(i) Fiz(S) = Fiz(S,).
(i) |Sus —ull® < |ls —ul]*> = p(l =7 = p)||(I = S)s||?, Vs € D, u € Fiz(S).

(i) Fix(S) is a closed convex subset of D.
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Lemma 2.5 ([16]). Consider F : D — D as a monotone and L-Lipschitz continuous mapping on
E. Let S = Pg(I—vF), wherev > 0. If s, is a sequence in D such that s, — q and s, —Ss, — 0,
then it follows that ¢ € VI(E,F) = Fiz(S).

Lemma 2.6 ([22]). Consider a positive sequence {r,}, a sequence of real numbers {b,} and a

sequence {ay,} in the interval (0,1) such that > > | a, = oo. Assuming
Tl < apby, + (L —ap)rn, Yn>1

If limsupb,, < 0 for every subsequence {ryn,} of {rn} satisfying Uminf(r,,+1 — rn,) > 0, then
k—o0 ) k—o0 ’

lim r, = 0.

n—oo

3 Main result

This section presents two inertial extragradient algorithms that are specifically designed to solve
(VIFPP), and provides a convergence analysis of them. We first assume that the following condi-

tions are met by the suggested algorithms.

(A1) Fiz(S)NVI(E,F) # @.
(A2) F:D — D is monotone and L-Lipschitz continuous.
(A3) §:D — D is p-demicontractive such that (I — S) is demiclosed at zero.

(A4) J : D — D is Q-contraction with constant Q € [0, 1).

3.1 Algorithm-I

Algorithm 3.1 Algorithm-I

Initialization: Choose K >0, n; > 0, and v € (0,1).
Select arbitrary sg and s; from D.

Iterative step:

Step 1. Given the iterates s,—1 and s, (for n > 1), set

Wy = Sp + ICn(Sn - Sn71)>

where 5

min {|S—7;1’K} y if sp # sp—1;
n n—

K, otherwise.

Kn =

Step 2. Compute
tn = PE'(wn - nnfwn)-
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Algorithm 3.1 Algorithm-I
Step 3. Compute

Up = PTn (wn - nnftn)v
where the half-space T;, is defined by
Tn:={s €D | {(wy — pFwn —tyn,s —t,) <0}

Step 4. Compute

$nt1 = GuJ (8n) + (1 = Cn) [(1 —In — Tn)un —+ Tnsun}

and update
vijw, —ta|

mng ———.n, ¢, if Fw, —Ft 0;
41 = { H]:w’ﬂ - ]:tn” n”} " " 7&
s otherwise.

(3.2)

Set n:=mn+1 and go to Step 1.

The subsequent lemmas prove to be valuable for analyzing the convergence of the algorithm.

Lemma 3.1 ([33]). The sequence {n,} produced by (3.2) is a nonincreasing sequence and

. . v
lim n, =n > mln{nhz}.

n—oo

Lemma 3.2 ([30]). Assume that condition (A2) holds. Let {u,} be a sequence produced by
Algorithm 8.1, then

ltm — ]2 < [l — ol - (1u o )|tnwn||2 <1u i )nuntnn? (3.3)
n Mn+1

n+1 n+
for allve VI(E,F).

Theorem 3.3. Under the fulfillment of Conditions (A1)-(A4), {0,} be a positive sequence such
that lim,, o % =0, where ¢, C (0,1) satisfies fozl (= 00 and limy, o0 (, = 0. Furthermore,
for some a > 0, b > 0, v, € (0,1), lim, y007n = 0, and Zf;oﬁyn = oo, let 7, € (a,b) C
(0,(1 — w)(1 — vn)), then the sequence {sn} produced by Algorithm 3.1 converges in norm to v €
Fix(S)NVI(E,F), where v = Priys)nvie,r) (T (v)).

Proof. Since VI(E,F) is a closed convex subset, and by Lemma 2.4, Fiz(S) is also a closed convex
subset. Therefore, the mapping Prizs)nvi(e,7)(J) : D — D forms a contraction. By applying the
Banach contraction principle, there exists a unique point v € D such that v = Ppiys)nvie,x) (T)-
Specifically, v € Fiz(S)NVI(E,F), and

(JW) —v,u—v) <0, VYué€ Fiz(S)NVI(E,F).

The proof is split up into four sections.
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Claim 1. {s,} is a bounded sequence. Put, ¢, = (1 — v, — 7,)up, + 7Sy, we have

ltn — vl = [[(1 = Y0 — T)tUn + TnSun — 0|
= |(1 = vn = 7n) (un — v) + 70(Sun — v) — 10|

= [|(1 =0 — ) (Un — ) + T (Stn — V)| + [[7n 0]l (3.4)
Additionally, it can be deduced from (2.1), (2.2), and Lemma 3.2 that

(1= vn — 7o) (un — v) + 70 (Sun — v)H2 == - Tn)QH(Un - U)||2
+2(1 — v — )T (Sup, — v, U, —v) + TﬁHSun - vH2
e e Tn)2||(un - U)”Q

+2(1 =y — ™) Tn ”Un*UHz* ”Un*SUnH2

L—p
2
+ 7o [llun = ol* + pllun — Sun?]

=(1- 'Yn)QHUn - U”2 + 7o (Tn — (1= v0) (1 — ) [Jun — SunHz

<(1- ’Yn)QHUn - 'U||2 <(1- 77L>2||wn - UH2
signifying that

1= = )t = 0) + 7St — ) < (1= ) 10 — o] (3.5)
By the definition of w,,, we obtain

n

Cn

[wn = vl = lIsn + Kn(sn — sn—1) = v[| < [[$n — 0| + a [0 — Sn—1]l-

From (3.1), it can be deduced that

lim —|[s, — $n—1] = 0.
n—o0 (p,

This result holds true, since Iy, ||, — Sp—1]] < d,, for all n > 1. Moreover, considering the

limit lim g—" =0, it follows that
n—00 5n

lim ||s,, — sp_1]| < lim - = 0.
n—00 n—o0 (;,

Therefore, there exists a constant M, > 0 such that

%Ilsn —sn_1l| S M., Vn>1. (3.6)
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Thus utilizing above, we get
[wn =l < llsn — vl + ¢uM.. (3.7)
which in turn implies
[ =9 = 70) (un = v) + 70 (Stn — V)| < [|lsn — vl + M.

Referring to (3.4), we obtain

’YﬂJ

ltw = 0]l < 15 — vl + G [M* i
Cn

o] < o = ol + G0, (3.5)
where | M, + Z—:HUH} < M for some M > 0. Now,

[sn1 = vll < 6T (80) + (1 = Ca)rin — 0|
< GallT (5n) = T @) + Gall T (0) = vl + (1 = Ga) [t — 0|
< G Qllsn — vl + Gl T (v) = vll + (1 = G)llsn — vl + ¢ M
= (1 =Gl = Q)llsn — vl + CulllT (v) = v[| + M)

_ M - M
MO < - o, =AY,

< max{sn — ||
This implies that the sequence {s,} is bounded. Consequently, the sequences {wy,}, J(s),
{tn}, and {u,} are also bounded.

Claim 2.

(1-¢) (1 - ”) = wall? + (1= o) (1 - ”) ot — £
TNn+1 Nn+1

n n

+ (1 - Cn)rn[(l — ) — Tnmun — Suy,||
< Hsn - 'UHQ - ||3n+1 - U”2 + (n”j(sn) - UH2 + Mk + (1 - Cn)'YnM***

Since from (3.7),

”wn*v”2 < (||5n7vH+<n./\/l*)2 = ||5n*v||2+<n (QM*”SH - U” + CnMi) < ||5n*vH2+CnM**v
(3.9)
for some M., > 0.

Isns1 =0ll* = 16 (T (50) =) +(1=Ca) (ta =0)I* < CullT () =v]|*+ (1= ) [t —v]|*. (3.10)
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Now,

[tn — v”? = |(1 = vn — Tn)un + 7 Sup — U”2 = |[(un — v) + T (Sun — un) — 'Ynun||2
< | (un = v) + 7o (Sun — “n)”2 = 29 (Un, N — V)
= |l — v||? + T2SUn — un||* + 270 (St — Un, Un — V) + 275 (U, 0 — M)

It follows from Lemma(2.4),

[tn =0l < llun =0l + 72 1Sun = un|l* = 70 (1 = ) [t — Stunl|* + 275 (tn, v = 1)

< Jlwn — U||2 + Talmn — (1= w)]llun — SUnH2 + T Mis. (3.11)
for some M. > 0, from (3.10)

8011 = ol|* < Gall T (s0) — ]|
(1—¢n) [”wn - UH2 + Tl — (1 = )]flun — Sun”2 + VHM***]
< GullT (sn _U||2+||5n _UHQ"'CH

)
=) (1—u )nt Cwal? (1= G (1—u o )lun—tnw
Tin+1

By a straightforward manipulation, we attain the desired result.
Claim 3.

(1 - Cn)CnN + 2<~7(U) — U, Sn41 — v>

Isns1—vl* = (1= (1= Q)¢a)lIsn =l +Ca(1- Q) -0

Since by (3.8),
e = lI* < [llsn = ol + GuM]* = [lsn = 0] + GEM? + 26 (M, 50 — ) < [|sn — 0> + G,
where M? + %<M,Sn —v) <N for some N > 0.

Isn+1 = vll* = 16T (50) + (1 = Ca)tn — v||®
= 6T (sn) = T (v)) + (1 = ) (tn — v) + Ca(T (v) = V)2
< 16a(T (30) = T (0)) + (1 = Ca)(tn = 0)[I* + 26 (T (v) = v, $p41 — )
< GnQlisn — vl® + (1= Ga)ltn = v]1* + 26T (v) = v, 5041 — V)
< GnQllsn — ol + (1= Ga) [llsn = vl1* + GNT] + 26 (T (v) = v, 8041 — 0)

(1= Cn)CaN +2(T(v) — v, 8pt1 — V)

=1~ (1~ Q¢)llsn —vl* + (1~ Q) -0
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Claim 4. The sequence ||s,, — v||?> converges to zero. In fact, using Lemma 2.6, it is sufficient to
show that for each subsequence ||s,, — v|| of ||s,, — v|| satisfying lim sup(J (v) —v, $p+1—v) <
k—o0
0 with

lim inf(||sp,+1 — v|| = ||Sn, — v]|) > 0. (3.12)
k— o0

We assume that ||s,, — v|| is a subsequence of ||s, —v||, such that (3.12) holds, for the

purposes of this analysis. Next,

. . 2 2
hkrglorclf (11 = vl1* = [0, — v[1?)

= liminf [([|sn+1 =l = lIsn. = v)(lsn.+1 = vll + [lsn, —vl))] 2 0.

Based on Claim 2, we have,

limsup(l — Cuy) (1 - ”) e — w2+ (1= o) (1 - ”) ety — te 2

k—o0 Nne+1 Mg +1
+ (1 - an)Tnk[(]‘ - H’) - Tnk]Hunk - Sunk ”

< limsup [[[sn, — vl = [snp+1 = v]1* + Gap 1T (50,) — 0l
k—o0

= —liminf [[lsn, 41 —v[* = [[sn, —v]?]
k— o0
signifying that
lim f[wn, —tp,[| = 0, lim [jup, —Sun, || =0, [[un, = tn ]| = 0. (3.13)
k— o0 k— o0
Therefore, we can infer that klim [|ttn,, —wn, || = 0. Referring to the definition of w,,, we have
—00
— — IC”A k
”Snk — Wn,, ” - ]an Hsnk — Snpa ” - an (: Hsnk — Snpa ” —0as k — oo. (314)
ng
This in conjunction with lim ||u,, — ws,, || =0, implies that
k—o0
lim ||tn, — S, || = 0. (3.15)
k—o0

Considering t,,, = (1 — Vn,, — Tny, )Un, + Tny, Stn,, it is evident that

”tmc — Upy, | < TnH(SUn - u"k)” + 'Vn”unk [

Hence, we obtain

[ty — tn, |l = 0. (3.16)



CUBO

Inertial viscosity Mann-type subgradient extragradient algorithms... 165

28, 1 (2026)

By using (3.15) and (3.16), we can deduce that

||8nk+1 - snk” < chkj(snk) + (1 - an)tnk - snkH
< an”j(snk) - snk” + (1 - an)thk - Snk”

< C"k”j(snk) - SnkH + ||t"k - unkH + ||u"k - Snk” —0as k — oo. (317>

Given that the sequence {s,, } is bounded, it can be inferred that there exists a subsequence

{snk]‘} of {sp, } such that $n,, — u. This further implies that

lim sup(J (v) — v, 8, — v) = lim (T (v) — v, Sni, — v) = (T (v) —v,u —v). (3.18)

k—o0 J—roo

From (3.14), it follows that w,, — w. Combining (3.13), nan;Onn =7 and Lemma 2.5, one
can conclude that v € VI(E, F). Utilizing (3.15), we have u,, — u. By the demiclosedness
of (I —S8), we obtain u € Fiz(S). Consequently, u € Fiz(S)NVI(E,F). Combining (3.18),
the definition of v and w € Fiz(S)NVI(E,F), we obtain

lim sup(J (v) — v, 8, — v) = (T (v) — v,u —v) <0, (3.19)

k—o0

which in conjunction with (3.19) and (3.18), implies that

lim sup(J (v) — v, Sp,.+1 — v) < limsup(T (v) — v, Sp,4+1 — Sn,) + limsup(J (v) — v, 8, — V)
k—o0 k—o0 k—o0

=(J(w) —v,u—v) <0 (3:20)

Therefore (3.20) and Claim 3 in the light of Lemma 2.6 indicates that s, — v as n — oco. Thus,
completes the proof. O

Specifically, we may design a new algorithm for (VIP) if § = I (identity operator) in Algorithm

3.1. To be more exact, we have the corollary that follows:

Corollary 3.4. If F : D — D is Lipschitz continuous, monotone and J : D — D is a Q-
contraction with Q € [0,1). If the sequences ¥y, Cn, and 7, be same as in Theorem 3.3 and if

VI(E,F) #+ @, let so,s1 € D and let the sequence {s,} be generated by

Wy, = Sn + Kn(Sn — Sn—1),

tn = Pr(wy, — nunFwy),

Uy = Pr, (Wy, — N Ftyn), where the half-space Ty, is defined by (3.21)
T, = {s € D|{wy, — N Fwy, — tn,s — t,) <0},

snt1 = Cnd (sn) + (1= Gu) (1 =y )un),
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where ICp, and n, are defined by (3.1) and (3.2), respectively. Then the iterative sequence {sp}
generated by (3.21) converges to v € VI(E,F) in norm, where v = Py g 7 (T (v)).

3.2 Algorithm-I1

Algorithm 3.2 Algorithm-II

Initialization: Choose K > 0,7 > 0,v € (0,1). Let sg,s1 € D be arbitrary.

Iterative step: Calculate s, 41 as follows:

Step 1. Given the iterates s,_1 and s,(n > 1). Set w, = s, + Kn(sn — Sp—1), where K, is
defined by (3.1).

Step 2. Compute t, = Pg(w, — npFwy).

Step 3. Compute u,, = Pr, (w, — npFty,), where the half-space T;, is defined by

T, :={s €D | (wy — Fwy —tn,s—t,) <0}

Step 4. Compute sp11 = (T () + (1 — G)[(1 — 7)) (Ynun) + ThSuy], and update 7,41 by
(3.2).
Set n:=mn+1 and go to Step 1.

Theorem 3.5. Let conditions (A1)-(A4) holds and {0,,} be a positive sequence with limy, % =
0, where ¢, C (0,1) satisfies > 2 | = 00 and limy, o0 (, = 0. Furthermore, for some a > 0,

€ (0,1), imyoovn =1, and Y07 (1 —v,) = 00, let 7, € (a,%) C (a,1 — ), then

the sequence {s,} produced by Algorithm 3.2 converges in norm to v € Fix(S)NVI(E,F), where

v = Prizs)nvie,r)J (V).

Proof. Claim 1. The sequence s,, is bounded. Define t, = (1 — 7,) (Yntn) + 70 Sty.

[t — vl = (1 = 7o) (ynttn) + TaSun — |
<A =)y (un = v) + 70 (Sup —v)[[ + (1 = 7) (1 = 7)||v]- (3.22)

On the other hand,

(1 = )7 (tn, = 0) + T (Sun = v)||? (1 = 7)) ?[lun — ol + 73 [ Sup — ]|

(
2(1 = 7)Y Tn (Sty, — v, Uy — v)

IN +

(1 = 70)n + 70)” [Jtin, — v]|?
Tn (/”—" - (1 - :u)(l - Tn)'Yn) ||Sun - un||2
(1 = 7)Y + 70) Jun — | (3.23)

IN +

we obtained the above inequality because 7, < ————.
2+ p+Tn
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Thus it is implied from (3.23) that

(1 = 7))y (un — v) + 70 (Sun — V)| < (1 = 70)¥n + 7o) [[un — v
<@ =1=7)d =) lun — vl
<1 =1 =7)1 =) lwn =2

< (]- - (1 - Tn)(]- - P)/n)) [Hsn - UH + CnM*] . (324)
From (3.22), we have
[tn — ol < (1 =1 =70)(X =) [llsn = vl + G Ma] + (1 = 7) (1 = 7)) 0]

S (@ =@=7)d =) Isn = vl + M + (1 = ) (1 = 7)) |||
=1 =1 =7)1 =) llsn — |

=m0 [ + bl
M. il
<o { s, = ol 0 ol | = M

for some M* > 0, hence

5041 — vl = [|Ga T (50) + (1 = Cu)tn — ||
< GllT(5n) = T @) + Gl T (v) = vl + (1 = Ga) [t — 0]
< G Qllsn — vl + Gl T (v) — vl + (1 = Cu)M™

T f"gn MOE v||]

17(0) — o]l Qs —v||}

= CnQHSn _UH + (1 - Cn) M* +

Cn
<. < maX{M*, QHSO _'UH}'

gmaX{M*—i—

Which ensures the boundedness of {s,}, so the sequences {w,}, {J(sn)}, {tn}, and {u,}

are also bounded.

Claim 2.

(1- ) (1—y fin >||tn—wn||+(1—Cn) <1—1/ fin >||un—tn|
Tin+1

Nn+1 n
+ (1= G)mn(l —p— Tn)HS“n - un”2
<lsn = 0ll* = llsns1 — ol* + Gl T (sn) = vl + (1 = ) M** + ¢ M**.

lltn — U”2 = (1 = 7)) (Ynun) + 70 Sun — U”2
= [[(un = v) + T (Sun — un) — (1 —7,)(1 = 'Yn)un”Q

< |[(un —v) + 7o (Sun — un)H2 = 2(1 = 7)) (1 = ) Uy M — )
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= |lwn — v||* + 72||Stpn — un||* + 270 (St — Un, Uy — V) —
2(1 = 7) (1 = ) (tt, . — 0)
< lun = vl + 2 l1Sun = wnll* = (1 = 1) | St — un?
= 2(1 = 7)1 = 7 ) (ton; M = )
= Jlup — 0l = 70 (L = = 7) [ St — |
=201 = 7)1 = 0 ) (U, 0 — v)
< lup = v)|* = 701 = = 7) [ Stun — wn||* + (1 = ) M**
for some M** > (0. Now,
Isn+1 = vlI* = 1Ga(T (s0) = v) + (1 = Ga)(tn — v)|1?
< Gall T (sn) = ol + (1 = Ga)lltn — vl
< Gall T (sn) = vl* + I — ol + GuM***

. . . n _ _ _ B Mn _
a <n>(1 - )m ol - (1 <n>(1 - +1)un bl

n+1 n

— (1= ) (1 — pp— 7)) || S — un||2 + (1 =) M™.

Hence, by simple deformation, we obtain the desired result.

Claim 3.

[$n41 = v[* = (1 = (1 = Q)Ga)llsn — v]?
(1 B <77,)<71,M* + 2<\7(U) —U,Spn+1 — U>
1-9

+ Cn(l - Q)

By using the identical reasons as in Claim 3 of Theorem 3.3, the required result can be

produced.

Claim 4. Sequence {||s, — v||?*} converges to zero. We do not include the proof here because it is

comparable to Claim 4 of Theorem 3.3. O

The following Corollary will be obtained if we put S = I in Algorithm 3.2.

Corollary 3.6. Consider F,J as in Corollary 3.4 and let (p,, Vn, T, be same as in Theorem 3.5.
Then the sequence {sy} with sg,s1 € D generated by (3.25)

Wy, = 5 + Kn(Sp — 8n-1),

tn, = Pe(wy, — nnFwy),

un, = Pr, (W, — nnFty), where the half-space T, is defined by (3.25)
Ty = {s € Dl {wn — npFwy, —tn,s —t,) < 0},

Sn+1 = an(Sn) + (1 - Cn)('—)/nun + Tn(l - 'Yn)un)y
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converges to v € VI(E, F) in norm, where v = Py g ) (T (v)). where IC,, and n, are defined by
(3.1) and (3.2), respectively.

4 Numerical example

In this section, we provide a numerical example to illustrate the behavior of the proposed algorithms

and compare them with some existing strongly convergent algorithms. The parameters are set as

follows: ¢, = %H’ Tn = an51 Tn = song1 = 1, v = 0.5, J(s) =0.5s, K =0.3, 4, = %.
The solution s* is known, so we use D,, = ||s, — s*|| to measure the n-th iteration error and

convergence of D,, to 0 indicates that {s,} converges to the problem’s solution.

Example 4.1. We take the nonlinear operator F : R?> — R? defined by F(s,t) = (s+t+sins, —s+

t +sins), feasible set E = [—1,1] x [-1,1]. Clearly F is monotone and Lipschitz continuous with
1 0

constant L = 3 and let the matrix F = . We consider the mapping S : R> — R2? by
0 2

Su = ||F|| "' Fu, where u = (s,t)T. It is obvious to see that S is 0-demicontractive and thus T = 0.
The solution of the problem is s* = (0,0)T. The initial values s = s1 are randomly generated by
kxrand(2,1) in MATLAB. The numerical results of all the algorithms with different initial values
are described in Figures (Figure 1, Figure 2, Figure 3, Figure /).

Numerical Result of Algorithms Numerical Result of Algorithms

20

i —#—alg1 —#—alg1
18 *—aig2 gt —%—alg2 |
= [VSEGM —#— [VSEGM
—#— VSEGM —#— VSEGM
18 F —#—HSEGM 8 —%— HSEGM | -
14 7
12 6

sl
sl

n
n

D =|s -s
—
C_=|s

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35
Iteration Iteration(n)

Figure 1: The convergence graphs of {D,, = ||s,, — s*||} vs iteration (n = 40).
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Numerical Result of Algorithms

25 " ! \
—*—alg1
—%—alg2
—#%— [VSEGM
—#— VSEGM
20 —¥#—HSEGM | -
— 15 1
)
'y
1]
(= ]
5 -
0 e
0 5 10 15 20 25 30
Iteration(n)

Figure 2: The convergence graphs of {D,, = ||s,, — s*||} vs iteration (n = 30).

Numerical Result of Algorithms

1050
—#—alg1
—%—alg2
100+ —%— |VSEGM
—#— VSEGM
—#— HSEGM
10-50 -
10*100 -
10-15’] -
10—200 L
10-250 -
10—300 -
0 0.4 0.5

Elapsed Time [sec]

D, =lls,-s

n

n

50

Numerical Result of Algorithms

10
——alg1
—#— alg2
100 L —#%—|VSEGM | |
—#— \VSEGM
—#—HSEGM
10-50 - 4
1D~‘EUU - 4
107150 | 4
1D~ZOU - 1
10-250 - 4
10'300 - 4
o] 0.1 0.2 0.3 0.4 0.5

Elapsed Time [sec]

Figure 3: The Elapsed time graph of the sequence {D,, = ||s,, — s*||} with initial values so = 1 =

30rand(2,1) and n = 300
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50 Numerical Result of Algorithms 50 Numerical Result of Algorithms

10 10

—#—alg1 ——alg1
—%—alg2 —¥—alg2

100 —#—|VSEGM| | 10[) E —#%—|VSEGM | _
—#— VSEGM —#— VSEGM
—#— HSEGM —#— HSEGM

10-50 10-50 -

= 107" — 1010 F

S
s

n
n

107150 + -150 |

n
n

D =|s -
D =|s -
=)

10-200 10-200 L

10—250 - 10—250 -

1030 | 107390 |

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5
Elapsed Time [sec] Elapsed Time [sec]

Figure 4: The Elapsed time graph of the sequence {D,, = ||s, — s*||} with initial values so = s1 =
40rand(2,1) and n = 250.

Example 4.2. Consider the linear operator F : R™ — R™ (m = 50,100,150,200) in the form
F(s) = Ms+q, whereq € R™ and M = NNT +Q+D, N is a m xm matriz, Q is a m x m skew-
symmetric matriz, and D is a m X m diagonal matrixz with its diagonal entries being nonnegative
(hence M is positive symmetric definite). The feasible set E is given by E = {s € R™ : -2 < s; <
5,6 =1,...,m}. It is clear that F is monotone and Lipschitz continuous with constant L = ||M]||.
In this experiment, all entries of N, D are generated randomly in [0,2], Q is generated randomly
in[—2,2] and q=0. Let S : D — D be given by Ss = 0.5s. It is easy to see that the solution of the
problem in this case is s* = {0}. The initial values sy = s1 are randomly generated by kxrand(2,1)
in MATLAB. Figure 5 shows the numerical behavior of all the algorithms in different dimensions

(m =50, m = 100, m = 150, m = 200).

Example 4.3. Finally, we consider our problem in the infinite-dimensional Hilbert space D =
1

L2([0,1]) with inner product (s,y) = fol s(t)y(t)dt and norm ||s|| = (fol |s(t)|2dt) * Vs,yeD. Let

the feasible set be the unit ball E = {s € D : ||s|| < 1}. Define an operator F : E — D by

(]—'s)(t):/o (s(t) — G(t, w)g(s(u)du + h(t)), te[0,1], scE,

where,

Qtuel T 2tel
Gltyu) = — e, g(s) = cos(s), h(t) = —e.
eve’ —1 eve? —1
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Numerical Result of Algorithms

20 Dimension m = 50 0 Dimension m = 100
—=— |VSEGM —#— |VSEGM
—*— VSEGM —+— YSEGM
—*— HSEGM 10 —*+— HSEGM
20 —+#—alg1 —+#—aig1
.T —*— alg2? ‘f —+—alg2
v ' 20
c c
oLk L
] - .
kﬁ ) ;
1] 0
0 50 100 150 200 0 50 100 150 200
Iteration Iteration
5 Dimension m = 150 & Dimension m = 200
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—*— VSEGM —+—VSEGM
40 —%— HSEGM —+—HSEGM
—+*—alg1 40 —+—alg1
Lo 30 —=8— alg? a —a— alg?
! c ) c
& 20 =
20
y \3* ;
1] 0
0 50 100 150 200 0 50 100 150 200
Iteration lteration

Figure 5: The convergence graphs of {D,, = ||s,, — s*||} vs iteration(n = 200).

It is known that F is monotone and L-Lipschitz continuous with L = 2 ([13]). The projection on
FE is inherently explicit, that is,

S .
[k if Isl > 1;
PE(S) =

s, if ||s|| < 1.

The mapping S : L?([0,1]) — L*([0,1]) is of the form

(Ss)(t) = /0 1 ts(u)du, te0,1].

A straightforward computation implies that S is 0-demicontractive. The solution of the problem
is s*(t) = 0. The mazimum number of iterations 50 is used as a common stopping criterion for all
algorithms. Figure 6 shows the behaviors of Dy, = ||s,(t) — s*(t)|| generated by all the algorithms

with four starting points.
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Comparison of Algorithms for Different Initial Functions

= e | _E b
s (t)=s (t)=e s,(t)=s (t)= sin(t)
—+— VSEGM o —— IVSEGM
—#— VSEGM —+— YSEGM
—+— HSEGM 0.4 —+— HSEGM
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v ® 03
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= =
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0.1
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—#—alg2 —#——aig2
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration

Figure 6: The convergence graphs of {D,, = ||s,, — s*||} vs iteration (n = 50).

5 Conclusion

In this study, we investigated two self-adaptive iterative schemes for seeking a common solution
to the variational inequality problem involving a monotone and Lipschitz continuous mapping
and the fixed point problem with a demicontractive mapping. We proposed two new inertial
extragradient methods with a new step size to compute the approximate solutions of problems in a
real Hilbert space. The strong convergence of the suggested methods is established under standard
and suitable conditions. Finally, some computational tests are given to explain our convergent
results. The algorithms obtained in this paper improved and summarized some of the recent

results in the literature.
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