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ABSTRACT

This paper presents two inertial viscosity Mann-type ex-
trapolated algorithms for finding a common solution to the
variational inequality problem involving a monotone and
Lipschitz continuous operator and the fixed-point problem
for a demicontractive mapping in real Hilbert spaces. The
proposed algorithms feature an adaptive step size strategy,
computed iteratively, which circumvents the need for prior
knowledge of the operator’s Lipschitz constant. Under ap-
propriate assumptions, we establish two strong convergence
theorems guaranteeing the robustness of the methods. Fur-
thermore, we provide a comparative performance analysis of
the proposed algorithms against some existing strongly con-
vergent schemes, supported by numerical experiments with
MATLAB-based graphical illustrations.
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RESUMEN

Este artículo presenta dos algoritmos extrapolados de tipo
Mann con viscosidad inercial para encontrar una solución
común al problema de desigualdad variacional que involucra
un operador continuo, monótono y Lipschitz y al problema
de punto fijo para una aplicación semicontractiva en espacios
de Hilbert reales. Los algoritmos propuestos presentan una
estrategia de tamaño de paso adaptativo, calculado iterati-
vamente, que evita la necesidad del conocimiento previo de
la constante de Lipschitz del operador. Bajo hipótesis apro-
piadas, establecemos dos teoremas de convergencia fuertes
que garantizan la robustez de los métodos. Más aún, entre-
gamos un análisis comparativo del desempeño de los algorit-
mos propuestos contra algunos esquemas existentes fuerte-
mente convergentes, sobre la base de experimentos numéri-
cos con ilustraciones gráficas basadas en MATLAB.

Keywords and Phrases: Subgradient extragradient method, extragradient method, Mann-like method, inertial

method, viscosity method.
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1 Introduction

Consider a real Hilbert space D equipped with the inner product ⟨., .⟩, and the corresponding norm

∥.∥, and ∅ ̸= E be a closed, convex subset of D. This study is devoted to the pursuit of a common

solution to problems involving variational inequalities and fixed point theory within the framework

of real Hilbert spaces. The impetus for this investigation arises from the significant role these

problems play in numerous mathematical models, where constraints are naturally formulated as

variational inequalities and/or fixed point conditions. This situation occurs especially in practical

problems, such as signal processing, composite minimization problems, optimal control problems,

and image restoration. The relevance and applicability of this framework have been well-established

in prior works [3, 17,20,23,32]. Let us recall the involved problems.

The variational inequality problem associated with the operator F : D → D over the set E seeks

to determine a point v ∈ E such that the following condition is satisfied:

⟨Fv, s− v⟩ ≥ 0, ∀s ∈ E. (VIP)

The solution set of the (VIP) is denoted by V I(E,F). Variational inequality problems provide

a useful and indispensable tool for investigating various interesting issues emerging in many ar-

eas, such as social, physics, engineering, economics, network analysis, medical imaging, inverse

problems, transportation and much more; see, e.g., [4, 12, 23]. Variational inequality theory has

been proven to provide a simple, universal, and consistent structure to deal with possible prob-

lems. In the past few decades, researchers have shown tremendous interest in exploring different

extensions of variational inequality problems. Recent advancements, as evidenced in works such

as [1, 10, 24, 28, 29] underscore a growing emphasis on the development of efficient and practically

implementable numerical algorithms for addressing variational inequalities. Under fairly general

conditions, two prominent strategies have emerged for solving monotone variational inequalities:

projection-type methods and regularization-based approaches. In this study, we concentrate on

projection-type methods, with particular attention to the projection gradient method, arguably

the most straightforward among them for solving (VIP) given as:

sn+1 = PE(sn − ηFsn),

where PE , denotes the metric projection onto the set E and η > 0 is an appropriately chosen step

size.

It is worth emphasizing that the projected gradient method necessitates only a single projection

onto the feasible set per iteration, making it computationally appealing. However, its convergence

typically hinges on relatively strong assumptions, most notably, that the underlying operator is

either strongly monotone or inverse strongly monotone. To relax these stringent conditions, Kor-
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pelevich [15] proposed the extragradient method, originally designed to solve saddle point problems

in Euclidean spaces. The method introduces an additional intermediate step to enhance conver-

gence properties under weaker assumptions. The iterative scheme of the extragradient method is

given by: tn = PE(sn − ηFsn),

sn+1 = PE(sn − ηFtn),
(1.1)

where operator F is assumed to be monotone and L-Lipschitz continuous, PE represents the metric

projection from D onto E, and η ∈ (0, 1/L). It is established that the sequence {sn} produced by

the process (1.1) converges to an element in V I(E,F).

It is essential to recognize that solving the shortest distance problem is equivalent to computing

the metric projection onto a closed convex set E. As previously noted, the extragradient method

involves two projections onto E in each iteration. While effective, this requirement can pose sig-

nificant computational challenges, particularly when E is a general closed and convex set with

a complex structure. To mitigate this issue, Censor et al. [9] introduced the subgradient extra-

gradient method as a refinement of the original extragradient algorithm. The key innovation in

this approach lies in replacing the second projection onto E with a projection onto a carefully

constructed half-space. This modification is advantageous because projecting onto a half-space is

computationally explicit and significantly simpler. The modified algorithm is formulated as follows:
tn = PE(sn − ηFsn),

Tn = {s ∈ D|⟨sn − ηFsn − tn, s− tn⟩ ≤ 0},

sn+1 = PTn
(sn − ηFtn),

(1.2)

The sequence {sn} produced by (1.2) converges weakly to a solution of the variational inequality

in this case where V I(E,F) ̸= ∅.

On the other hand, the fixed point problem plays a pivotal role in the theory and solution of

variational inequalities. Let S : E → E be a nonlinear mapping. A point s ∈ D is called a fixed

point of the mapping S if it satisfies the condition Ss = s. The set of all fixed points of S is

denoted as Fix(S). The fixed point problem is formulated as follows:

find v ∈ E such that Sv = v. (FPP)

The principal objective of this paper is to determine a common solution to both the (VIP) and

the (FPP). Specifically, the goal is to find a point v such that

v ∈ V I(E,F) ∩ Fix(S). (VIFPP)
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A wide range of numerical algorithms have been developed to tackle the combined variational

inequality and fixed point problem (VIFPP) in infinite-dimensional spaces as documented in [6,

7, 11, 36], and the references therein. Notably, Takahashi and Toyoda [26] proposed an iterative

scheme for approximating a solution to the (VIFPP) which is described as follows:

sn+1 = (1− ζn)sn + ζnSPE(sn − ηnFsn), (1.3)

where F : E → D is µ-inverse strongly monotone, S : E → E is nonexpansive, ζn ∈ (0, 1) is a

control sequence, ηn > 0 is a stepsize parameter, PE denotes the metric projection onto the convex

set E. They proved {sn} generated by (1.3) converges weakly to a solution of (VIFPP) under

certain conditions. More recently, Censor et al. [8] established the following iterative scheme and

proved its weak convergence to the solution of the (VIFPP),
tn = PE(sn − ηFsn),

Tn = {s ∈ D|⟨sn − ηFsn − tn, s− tn⟩ ≤ 0},

sn+1 = ζnsn + (1− ζn)SPTn
(sn − ηFtn).

(1.4)

In the context of infinite-dimensional Hilbert spaces, strong (norm) convergence is generally more

desirable than weak convergence, particularly for practical applications. To ensure strong conver-

gence when solving the combined (VIFPP), Kraikaew and Saejung [16] introduced the Halpern Sub-

gradient Extragradient Method (HSEGM). This method integrates the Halpern iteration scheme

with the subgradient extragradient framework, providing a robust approach for approximating

common solutions to variational inequality and fixed point problems, which is described as:

tn = PE(sn − ηFsn),

Tn = {s ∈ D|⟨sn − ηFsn − tn, s− tn⟩ ≤ 0},

un = ζns0 + (1− ζn)PTn(sn − ηFtn),

sn+1 = τnsn + (1− τn)Sun,

(HSEGM)

They proved that the sequence {sn} generated by the (HSEGM) converges strongly to

PV I∩Fix(S)(s0), the metric projection of the initial point s0 onto the set of common solutions of

the variational inequality and fixed point problems.

Recently, Thong and Hieu [34] proposed the Modified Subgradient Extragradient Method (MSEGM)

by integrating the subgradient extragradient technique with the Mann-type iteration scheme. The

primary objective of this algorithm is to identify common solution elements belonging to both the

solution set of the variational inequality problem (VIP) and the fixed point set of a demicontractive
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mapping. The algorithm is formally outlined as follows:

tn = PE(sn − ηFsn),

Tn = {s ∈ D|⟨sn − ηFsn − tn, s− tn⟩ ≤ 0},

un = PTn(sn − ηFtn),

sn+1 = (1− ζn − τn)un + τnSun,

(MSEGM)

They proved its strong convergence to an element v ∈ V I(E,F)∩Fix(S), where ∥v∥ = min{∥u∥ :

u ∈ V I(E,F) ∩ Fix(S)}.

A notable limitation of both the (HSEGM) and (MSEGM) algorithms is their reliance on prior

knowledge of the Lipschitz constant of the mapping F . However, in many practical situations, this

information is either unavailable or difficult to estimate accurately. To address this issue, Thong

and Hieu [35] proposed two extragradient-viscosity algorithms, designed to solve the combined

(VIFPP) without requiring the Lipschitz constant. Their approach incorporates an adaptive step-

size rule, allowing automatic updates at each iteration. The algorithms are formulated as follows:

tn = PE(sn − ηnFsn),

Tn = {s ∈ D|⟨sn − ηnFsn − tn, s− tn⟩ ≤ 0},

un = PTn
(sn − ηnFtn),

sn+1 = ζnJ (sn) + (1− ζn)[(1− τn)un + τnSun],

(VSEGM)

and 
tn = PE(sn − ηnFsn),

un = tn − ηn(Ftn −Fsn),

sn+1 = ζnJ (sn) + (1− ζn)[(1− τn)un + τnSun],

(VTEGM)

where algorithms (VSEGM) and (VTEGM) update the step size {ηn} by the following rule:

ηn+1 =


min

{
ν∥sn − tn∥

∥Fsn −Ftn∥
, ηn

}
, if Fsn −Ftn ̸= 0

ηn, otherwise,

The sequences produced by (VTEGM) and (VTEGM) converges strongly under mild assumptions

to q ∈ Fix(S) ∩ V I(E,F), where q = PFix(S)∩V I(E,F)(J (q)).

In recent years, fast iterative algorithms have attracted considerable interest, especially those

employing inertial techniques inspired by discrete analogues of second-order dissipative dynamical

systems [2, 19]. These inertial methods accelerate convergence by incorporating momentum-like

terms into the iterative process. Leveraging this framework, Tan et al. [33] proposed the following
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inertial algorithm for solving the combined variational inequality and fixed point problem (VIFPP)



wn = sn +Kn(sn − sn−1),

tn = PE(wn − ηnFwn),

Tn = {s ∈ D|⟨wn − ηnFwn − tn, s− tn⟩ ≤ 0},

un = PTn
(wn − ηnFtn),

sn+1 = ζnJ (sn) + (1− ζn)[(1− τn)un + τnSun],

(IVSEGM)

where the step size {Kn} and {ηn} are updated by the following rules:

Kn =


min

{
δn

∥sn − sn−1∥
,K

}
, if sn ̸= sn−1,

K, otherwise,

and

ηn+1 =


min

{
ν∥sn − tn∥

∥Fsn −Ftn∥
, ηn

}
, if Fsn −Ftn ̸= 0,

ηn, otherwise.

Recently, Mewomo et al. [18] integrated the inertial, viscosity, and Tseng’s approaches and intro-

duced two Generalized Viscosity Inertial Tseng Methods (GVITMs) for solving pseudomonotone

variational inequalities with fixed point constraints, formulated as follows:



wn = sn + δn(sn − sn−1),

tn = PC(wn − γnFwn),

zn = tn − γn(Ftn −Fwn),

un = βn,0zn +
∑m

i=1 βn,ivn,i, vn,i ∈ Sizn,

sn+1 = αnγJ (wn) + (I − αnG)un,

(GVITMI)

where δn and γn are updated by (1.5) and (1.6), respectively.

δn =


min

{
ϵn

∥sn − sn−1∥
, δ

}
, if sn ̸= sn−1,

δ, otherwise,
(1.5)

γn+1 =


min

{
ϕ∥wn − tn∥

∥Fwn −Ftn∥
, γn + ϕn

}
, if Fwn −Ftn ̸= 0,

γn + ϕn, otherwise,
(1.6)
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and 

wn = sn + δn(sn − sn−1),

tn = PC(wn − γn∇ψwn),

zn = tn − γn(∇ψtn −∇ψwn),

un = βn,0zn +
∑m

i=1 βn,ivn,i, vn,i ∈ Sizn,

sn+1 = αnγJ (wn) + (I − αnG)un,

(GVITMII)

where δn and γn are updated by (1.5) and (1.7), respectively.

γn+1 =


min

{
ϕ∥wn − tn∥

∥∇ψwn −∇ψtn∥
, γn + ϕn

}
, if ∇ψwn −∇ψyn ̸= 0,

γn + ϕn, otherwise.
(1.7)

where δ > 0, γ1 > 0, ϕn is a nonnegative sequence such that
∑∞

n=1 ϕn < +∞, and ϕ ∈ (0, 1).

The authors established strong convergence results for the sequences generated by (GVITMI) and

(GVITMII) without imposing the sequential weak continuity of the pseudomonotone operator and

without requiring prior knowledge of the Lipschitz constants.

Recently, Kesornprom et al. [14] proposed a new variant of the proximal gradient algorithm

incorporating double inertial extrapolation for solving constrained convex minimization problems

in Hilbert spaces, formulated as follows:

zn = sn + θn(s
n − sn−1) + ηn(s

n−1 − sn−2), n ≥ 1,

sn+1 = PE(proxαng(z
n − αn∇f(zn))),

where

αn+1 =


min

{
δ∥zn − proxαng(z

n − αn∇f(zn))∥
∥∇f(zn)−∇f(proxαng(z

n − αn∇f(zn)))∥
, αn

}
,

if ∇f(zn)−∇f(proxαng(z
n − αn∇f(zn))) ̸= 0,

αn, otherwise.

where θn ≥ 0, ηn ≥ 0, α1 > 0 and δ ∈ (0, 12 ). They established the weak convergence of the

proposed method to a point in argmin(f + g)∩E. For an extensive discussion on fast iterative al-

gorithms and their recent advancements, the reader may consult [21,25,31,38,39] and the references

therein.

Motivated and inspired by existing studies in this area, the purpose of this paper is to develop two

inertial extragradient algorithms that combine the Mann iteration, viscosity approximation, and

subgradient extragradient methods with a new step size for discovering a common solution of a

monotone and Lipschitz variational inequality problem and of the fixed point problem involving a
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demicontractive mapping in real Hilbert spaces. The suggested algorithms need to calculate the

projection on the feasible set only once per iteration, which makes them faster. Strong convergence

theorems of the algorithms are established without the prior information of the Lipschitz constant

of the operator. Lastly, some computational tests appearing in finite and infinite dimensions are

proposed to support the theoretical results.

The organizational structure of our paper is built up as follows. In Section 2, we recall some

preliminary results and lemmas that need to be used in the next section. In Section 3, we propose

the algorithms and analyse their convergence. Some numerical experiments to verify our theoretical

results are presented in Section 4. At last, the paper ends with a brief summary in Section 5, the

final section.

2 Preliminaries

Consider ∅ ̸= E (closed, convex) subset of a real Hilbert space D. The weak convergence and

strong convergence of the sequence {sn} to s are denoted as sn ⇀ s and sn → s, respectively. For

any s, t ∈ D and ζ ∈ R the following statements hold:

(i) ∥s+ t∥2 = ∥s∥2 + 2⟨s, t⟩+ ∥t∥2.

(ii) ∥s+ t∥2 ≤ ∥s∥2 + 2⟨t, s+ t⟩.

(iii) ∥ζs+ (1− ζ)t∥2 = ζ∥s∥2 + (1− ζ)∥t∥2 − ζ(1− ζ)∥s− t∥2.

For any point s ∈ D, there exists a distinct nearest point in the closed and convex subset E identified

as PE(s) satisfying PE(s) = argmin{∥s − t∥, t ∈ E}. PE is termed as the metric projection of

D onto E. It is established that PE is a nonexpansive mapping and it possesses the following

fundamental properties:

(i) ⟨s− PE(s), t− PE(s)⟩ ≤ 0, ∀t ∈ E.

(ii) ∥PE(s)− PE(t)∥2 ≤ ⟨PE(s)− PE(t), s− t⟩, ∀t ∈ D.

Definition 2.1 ([27]). A mapping A : D → D is said to be:

(i) L-Lipschitz continuous with L > 0 if

∥As−At∥ ≤ L∥s− t∥, ∀s, t ∈ D.

(ii) ζ-strongly monotone if there exists ζ > 0 such that

⟨As−At, s− t⟩ ≥ ζ∥s− t∥2, ∀s, t ∈ D.
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(iii) ζ-inverse strongly monotone if there exists ζ > 0 such that

⟨As−At, s− t⟩ ≥ ζ∥As−At∥2, ∀s, t ∈ D.

Remark 2.2 ([5]). if A : D → D be an injective operator so that A−1 is well defined, then:

(a) If A is ζ-strongly monotone, then its inverse A−1 is ζ-inverse strongly monotone.

(b) If A is ζ-inverse strongly monotone, then its inverse A−1 is ζ-strongly monotone.

(iv) monotone if

⟨As−At, s− t⟩ ≥ 0, ∀s, t ∈ D.

(v) quasi-nonexpansive if

∥As− u∥ ≤ ∥s− t∥, ∀u ∈ Fix(A), s ∈ D.

(vi) µ-strictly pseudocontractive with 0 ≤ µ < 1 if

∥As−At∥2 ≤ ∥s− t∥2 + µ∥(I −A)s− (I −A)t∥2, ∀s, t ∈ D.

(vii) τ -demicontractive with 0 ≤ τ < 1 if

∥As− u∥2 ≤ ∥s− u∥2 + τ∥(I −A)s∥2, ∀u ∈ Fix(A), s ∈ D. (2.1)

or equivalently

⟨As− s, s− u⟩ ≤ τ − 1

2
∥s−As∥2, ∀u ∈ Fix(A), s ∈ D. (2.2)

Definition 2.3 ([37]). If A : D → D is a nonlinear operator with Fix(A) ̸= ∅. Then, I − A is

said to be demiclosed at zero if for any {sn} in D, the following implications holds:

sn ⇀ s and (I −A)sn → 0 =⇒ s ∈ Fix(A).

Lemma 2.4 ([33]). Consider S : D → D as a τ -demicontractive operator with Fix(S) ̸= ∅. Let

Sµ = (1− µ)I + µS, where µ ∈ (0, 1− τ). Then:

(i) Fix(S) = Fix(Sµ).

(ii) ∥Sµs− u∥2 ≤ ∥s− u∥2 − µ(1− τ − µ)∥(I − S)s∥2, ∀s ∈ D, u ∈ Fix(S).

(iii) Fix(S) is a closed convex subset of D.
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Lemma 2.5 ([16]). Consider F : D → D as a monotone and L-Lipschitz continuous mapping on

E. Let S = PE(I−νF), where ν > 0. If sn is a sequence in D such that sn ⇀ q and sn−Ssn → 0,

then it follows that q ∈ V I(E,F) = Fix(S).

Lemma 2.6 ([22]). Consider a positive sequence {rn}, a sequence of real numbers {bn} and a

sequence {an} in the interval (0, 1) such that
∑∞

n=1 an = ∞. Assuming

rn+1 ≤ anbn + (1− an)rn, ∀n ≥ 1

If lim sup
k→∞

bnk
≤ 0 for every subsequence {rnk

} of {rn} satisfying lim inf
k→∞

(rnk+1 − rnk
) ≥ 0, then

lim
n→∞

rn = 0.

3 Main result

This section presents two inertial extragradient algorithms that are specifically designed to solve

(VIFPP), and provides a convergence analysis of them. We first assume that the following condi-

tions are met by the suggested algorithms.

(A1) Fix(S) ∩ V I(E,F) ̸= ∅.

(A2) F : D → D is monotone and L-Lipschitz continuous.

(A3) S : D → D is µ-demicontractive such that (I − S) is demiclosed at zero.

(A4) J : D → D is Q-contraction with constant Q ∈ [0, 1).

3.1 Algorithm-I

Algorithm 3.1 Algorithm-I

Initialization: Choose K > 0, η1 > 0, and ν ∈ (0, 1).
Select arbitrary s0 and s1 from D.
Iterative step:
Step 1. Given the iterates sn−1 and sn (for n ≥ 1), set

wn = sn +Kn(sn − sn−1),

where

Kn =

min

{
δn

∥sn − sn−1∥
,K

}
, if sn ̸= sn−1;

K, otherwise.
(3.1)

Step 2. Compute
tn = PE(wn − ηnFwn).
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Algorithm 3.1 Algorithm-I
Step 3. Compute

un = PTn(wn − ηnFtn),

where the half-space Tn is defined by

Tn := {s ∈ D | ⟨wn − ηnFwn − tn, s− tn⟩ ≤ 0}.

Step 4. Compute

sn+1 = ζnJ (sn) + (1− ζn)
[
(1− γn − τn)un + τnSun

]
and update

ηn+1 =

min

{
ν∥wn − tn∥

∥Fwn −Ftn∥
, ηn

}
, if Fwn −Ftn ̸= 0;

ηn, otherwise.
(3.2)

Set n := n+ 1 and go to Step 1.

The subsequent lemmas prove to be valuable for analyzing the convergence of the algorithm.

Lemma 3.1 ([33]). The sequence {ηn} produced by (3.2) is a nonincreasing sequence and

lim
n→∞

ηn = η ≥ min
{
η1,

ν

L

}
.

Lemma 3.2 ([30]). Assume that condition (A2) holds. Let {un} be a sequence produced by

Algorithm 3.1, then

∥un − v∥2 ≤ ∥wn − v∥2 −
(
1− ν

ηn
ηn+1

)
∥tn − wn∥2 −

(
1− ν

ηn
ηn+1

)
∥un − tn∥2 (3.3)

for all v ∈ V I(E,F).

Theorem 3.3. Under the fulfillment of Conditions (A1)-(A4), {δn} be a positive sequence such

that limn→∞
δn
ζn

= 0, where ζn ⊂ (0, 1) satisfies
∑∞

n=1 ζn = ∞ and limn→∞ ζn = 0. Furthermore,

for some a > 0, b > 0, γn ∈ (0, 1), limn→∞ γn = 0, and
∑∞

n=0 γn = ∞, let τn ∈ (a, b) ⊂
(0, (1 − µ)(1 − γn)), then the sequence {sn} produced by Algorithm 3.1 converges in norm to v ∈
Fix(S) ∩ V I(E,F), where v = PFix(S)∩V I(E,F)(J (v)).

Proof. Since V I(E,F) is a closed convex subset, and by Lemma 2.4, Fix(S) is also a closed convex

subset. Therefore, the mapping PFix(S)∩V I(E,F)(J ) : D → D forms a contraction. By applying the

Banach contraction principle, there exists a unique point v ∈ D such that v = PFix(S)∩V I(E,F)(J ).

Specifically, v ∈ Fix(S) ∩ V I(E,F), and

⟨J (v)− v, u− v⟩ ≤ 0, ∀u ∈ Fix(S) ∩ V I(E,F).

The proof is split up into four sections.
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Claim 1. {sn} is a bounded sequence. Put, tn = (1− γn − τn)un + τnSun, we have

∥tn − v∥ = ∥(1− γn − τn)un + τnSun − v∥

= ∥(1− γn − τn)(un − v) + τn(Sun − v)− γnv∥

= ∥(1− γn − τn)(un − v) + τn(Sun − v)∥+ ∥γnv∥. (3.4)

Additionally, it can be deduced from (2.1), (2.2), and Lemma 3.2 that

∥(1− γn − τn)(un − v) + τn(Sun − v)∥2 = (1− γn − τn)
2∥(un − v)∥2

+ 2(1− γn − τn)τn⟨Sun − v, un − v⟩+ τ2n∥Sun − v∥2

≤ (1− γn − τn)
2∥(un − v)∥2

+ 2(1− γn − τn)τn

[
∥un − v∥2 − 1− µ

2
∥un − Sun∥2

]
+ τ2n

[
∥un − v∥2 + µ∥un − Sun∥2

]
= (1− γn)

2∥un − v∥2 + τn (τn − (1− γn)(1− µ)) ∥un − Sun∥2

≤ (1− γn)
2∥un − v∥2 ≤ (1− γn)

2∥wn − v∥2

signifying that

∥(1− γn − τn)(un − v) + τn(Sun − v)∥ ≤ (1− γn)∥wn − v∥. (3.5)

By the definition of wn, we obtain

∥wn − v∥ = ∥sn +Kn(sn − sn−1)− v∥ ≤ ∥sn − v∥+ ζn
Kn

ζn
∥sn − sn−1∥.

From (3.1), it can be deduced that

lim
n→∞

Kn

ζn
∥sn − sn−1∥ = 0.

This result holds true, since Kn∥sn − sn−1∥ ≤ δn for all n ≥ 1. Moreover, considering the

limit lim
n→∞

δn
ζn

= 0, it follows that

lim
n→∞

∥sn − sn−1∥ ≤ lim
n→∞

δn
ζn

= 0.

Therefore, there exists a constant M∗ > 0 such that

Kn

ζn
∥sn − sn−1∥ ≤ M∗, ∀n ≥ 1. (3.6)
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Thus utilizing above, we get

∥wn − v∥ ≤ ∥sn − v∥+ ζnM∗. (3.7)

which in turn implies

∥(1− γn − τn)(un − v) + τn(Sun − v)∥ ≤ ∥sn − v∥+ ζnM∗.

Referring to (3.4), we obtain

∥tn − v∥ ≤ ∥sn − v∥+ ζn

[
M∗ +

γn
ζn

∥v∥
]
≤ ∥sn − v∥+ ζnM, (3.8)

where
[
M∗ +

γn

ζn
∥v∥

]
≤ M for some M > 0. Now,

∥sn+1 − v∥ ≤ ∥ζnJ (sn) + (1− ζn)ηn − v∥

≤ ζn∥J (sn)− J (v)∥+ ζn∥J (v)− v∥+ (1− ζn)∥tn − v∥

≤ ζnQ∥sn − v∥+ ζn∥J (v)− v∥+ (1− ζn)[∥sn − v∥+ ζnM]

= (1− ζn(1−Q))∥sn − v∥+ ζn(∥J (v)− v∥+M)

≤ max

{
∥sn − v∥, ∥J (v)− v∥+M

1−Q

}
≤ · · · ≤ max

{
∥s0 − v∥, ∥J (v)− v∥+M

1−Q

}
.

This implies that the sequence {sn} is bounded. Consequently, the sequences {wn}, J (sn),

{tn}, and {un} are also bounded.

Claim 2.

(1− ζn)

(
1− ν

ηn
ηn+1

)
∥tn − wn∥2 + (1− ζn)

(
1− ν

ηn
ηn+1

)
∥un − tn∥2

+ (1− ζn)τn[(1− µ)− τn]∥un − Sun∥

≤ ∥sn − v∥2 − ∥sn+1 − v∥2 + ζn∥J (sn)− v∥2 + ζnM∗∗ + (1− ζn)γnM∗∗∗.

Since from (3.7),

∥wn−v∥2 ≤ (∥sn−v∥+ζnM∗)
2 = ∥sn−v∥2+ζn

(
2M∗∥sn − v∥+ ζnM2

∗
)
≤ ∥sn−v∥2+ζnM∗∗,

(3.9)

for some M∗∗ > 0.

∥sn+1−v∥2 = ∥ζn(J (sn)−v)+(1−ζn)(tn−v)∥2 ≤ ζn∥J (sn)−v∥2+(1−ζn)∥tn−v∥2. (3.10)
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Now,

∥tn − v∥2 = ∥(1− γn − τn)un + τnSun − v∥2 = ∥(un − v) + τn(Sun − un)− γnun∥2

≤ ∥(un − v) + τn(Sun − un)∥2 − 2γn⟨un, ηn − v⟩

= ∥un − v∥2 + τ2n∥Sun − un∥2 + 2τn⟨Sun − un, un − v⟩+ 2γn⟨un, v − ηn⟩.

It follows from Lemma(2.4),

∥tn − v∥2 ≤ ∥un − v∥2 + τ2n∥Sun − un∥2 − τn(1− µ)∥un − Sun∥2 + 2γn⟨un, v − ηn⟩

≤ ∥wn − v∥2 + τn[τn − (1− µ)]∥un − Sun∥2 + γnM∗∗∗. (3.11)

for some M∗∗∗ > 0, from (3.10)

∥sn+1 − v∥2 ≤ ζn∥J (sn)− v∥2

+ (1− ζn)
[
∥wn − v∥2 + τn[τn − (1− µ)]∥un − Sun∥2 + γnM∗∗∗

]
≤ ζn∥J (sn)− v∥2 + ∥sn − v∥2 + ζnM∗∗

− (1− ζn)

(
1− ν

ηn
ηn+1

)
∥tn − wn∥2 − (1− ζn)

(
1− ν

ηn
ηn+1

)
∥un − tn∥2

− (1− ζn)τn[(1− µ)− τn]∥un − Sun∥+ (1− ζn)γnM∗∗∗.

By a straightforward manipulation, we attain the desired result.

Claim 3.

∥sn+1− v∥2 = (1− (1−Q)ζn)∥sn− v∥2+ ζn(1−Q)

[
(1− ζn)ζnN + 2⟨J (v)− v, sn+1 − v⟩

1−Q

]
.

Since by (3.8),

∥tn − v∥2 ≤ [∥sn − v∥+ ζnM]
2
= ∥sn − v∥2 + ζ2nM2 + 2ζn⟨M, sn − v⟩ ≤ ∥sn − v∥2 + ζ2nN ,

where M2 + 2
ζn
⟨M, sn − v⟩ ≤ N for some N > 0.

∥sn+1 − v∥2 = ∥ζnJ (sn) + (1− ζn)tn − v∥2

= ∥ζn(J (sn)− J (v)) + (1− ζn)(tn − v) + ζn(J (v)− v)∥2

≤ ∥ζn(J (sn)− J (v)) + (1− ζn)(tn − v)∥2 + 2ζn⟨J (v)− v, sn+1 − v⟩

≤ ζnQ∥sn − v∥2 + (1− ζn)∥tn − v∥2 + 2ζn⟨J (v)− v, sn+1 − v⟩

≤ ζnQ∥sn − v∥2 + (1− ζn)
[
∥sn − v∥2 + ζ2nN

]
+ 2ζn⟨J (v)− v, sn+1 − v⟩

= (1− (1−Q)ζn)∥sn − v∥2 + ζn(1−Q)

[
(1− ζn)ζnN + 2⟨J (v)− v, sn+1 − v⟩

1−Q

]
.
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Claim 4. The sequence ∥sn − v∥2 converges to zero. In fact, using Lemma 2.6, it is sufficient to

show that for each subsequence ∥snk
− v∥ of ∥sn − v∥ satisfying lim sup

k→∞
⟨J (v)−v, sn+1−v⟩ ≤

0 with

lim inf
k→∞

(∥snk+1 − v∥ − ∥snk
− v∥) ≥ 0. (3.12)

We assume that ∥snk
− v∥ is a subsequence of ∥sn − v∥, such that (3.12) holds, for the

purposes of this analysis. Next,

lim inf
k→∞

(
∥snk+1 − v∥2 − ∥snk

− v∥2
)

= lim inf
k→∞

[(∥snk+1 − v∥ − ∥snk
− v∥)(∥snk+1 − v∥+ ∥snk

− v∥)] ≥ 0.

Based on Claim 2, we have,

lim sup
k→∞

(1− ζnk
)

(
1− ν

ηnk

ηnk+1

)
∥tnk

− wnk
∥2 + (1− ζnk

)

(
1− ν

ηnk

ηnk+1

)
∥unk

− tnk
∥2

+ (1− ζnk
)τnk

[(1− µ)− τnk
]∥unk

− Sunk
∥

≤ lim sup
k→∞

[
∥snk

− v∥2 − ∥snk+1 − v∥2 + ζnk
∥J (snk

)− v∥2

+ ζnk
M∗∗ + (1− ζnk

)γnk
M∗∗∗

]
= − lim inf

k→∞

[
∥snk+1 − v∥2 − ∥snk

− v∥2
]

signifying that

lim
k→∞

∥wnk
− tnk

∥ = 0, lim
k→∞

∥unk
− Sunk

∥ = 0, ∥unk
− tnk

∥ = 0. (3.13)

Therefore, we can infer that lim
k→∞

∥unk
−wnk

∥ = 0. Referring to the definition of wn, we have

∥snk
− wnk

∥ = Knk
∥snk

− snk−1
∥ = ζnk

Knk

ζnk

∥snk
− snk−1

∥ → 0 as k → ∞. (3.14)

This in conjunction with lim
k→∞

∥unk
− wnk

∥ = 0, implies that

lim
k→∞

∥unk
− snk

∥ = 0. (3.15)

Considering tnk
= (1− γnk

− τnk
)unk

+ τnk
Sunk

, it is evident that

∥tnk
− unk

∥ ≤ τn∥(Sun − unk
)∥+ γn∥unk

∥.

Hence, we obtain

∥tnk
− unk

∥ = 0. (3.16)
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By using (3.15) and (3.16), we can deduce that

∥snk+1
− snk

∥ ≤ ∥ζnk
J (snk

) + (1− ζnk
)tnk

− snk
∥

≤ ζnk
∥J (snk

)− snk
∥+ (1− ζnk

)∥tnk
− snk

∥

≤ ζnk
∥J (snk

)− snk
∥+ ∥tnk

− unk
∥+ ∥unk

− snk
∥ → 0 as k → ∞. (3.17)

Given that the sequence {snk
} is bounded, it can be inferred that there exists a subsequence

{snkj
} of {snk

} such that snkj
⇀ u. This further implies that

lim sup
k→∞

⟨J (v)− v, snk
− v⟩ = lim

j→∞
⟨J (v)− v, snkj

− v⟩ = ⟨J (v)− v, u− v⟩. (3.18)

From (3.14), it follows that wnk
⇀ u. Combining (3.13), lim

n→∞
ηn = η and Lemma 2.5, one

can conclude that u ∈ V I(E,F). Utilizing (3.15), we have unk
⇀ u. By the demiclosedness

of (I −S), we obtain u ∈ Fix(S). Consequently, u ∈ Fix(S)∩ V I(E,F). Combining (3.18),

the definition of v and u ∈ Fix(S) ∩ V I(E,F), we obtain

lim sup
k→∞

⟨J (v)− v, snk
− v⟩ = ⟨J (v)− v, u− v⟩ ≤ 0, (3.19)

which in conjunction with (3.19) and (3.18), implies that

lim sup
k→∞

⟨J (v)− v, snk+1 − v⟩ ≤ lim sup
k→∞

⟨J (v)− v, snk+1 − snk
⟩+ lim sup

k→∞
⟨J (v)− v, snk

− v⟩

= ⟨J (v)− v, u− v⟩ ≤ 0 (3.20)

Therefore (3.20) and Claim 3 in the light of Lemma 2.6 indicates that sn → v as n → ∞. Thus,

completes the proof.

Specifically, we may design a new algorithm for (VIP) if S = I (identity operator) in Algorithm

3.1. To be more exact, we have the corollary that follows:

Corollary 3.4. If F : D → D is Lipschitz continuous, monotone and J : D → D is a Q-

contraction with Q ∈ [0, 1). If the sequences γn, ζn, and τn be same as in Theorem 3.3 and if

V I(E,F) ̸= ∅, let s0, s1 ∈ D and let the sequence {sn} be generated by



wn = sn +Kn(sn − sn−1),

tn = PE(wn − ηnFwn),

un = PTn(wn − ηnFtn), where the half-space Tn is defined by

Tn := {s ∈ D|⟨wn − ηnFwn − tn, s− tn⟩ ≤ 0},

sn+1 = ζnJ (sn) + (1− ζn)((1− γn)un),

(3.21)
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where Kn and ηn are defined by (3.1) and (3.2), respectively. Then the iterative sequence {sn}
generated by (3.21) converges to v ∈ V I(E,F) in norm, where v = PV I(E,F)(J (v)).

3.2 Algorithm-II

Algorithm 3.2 Algorithm-II

Initialization: Choose K > 0, η1 > 0, ν ∈ (0, 1). Let s0, s1 ∈ D be arbitrary.
Iterative step: Calculate sn+1 as follows:
Step 1. Given the iterates sn−1 and sn(n ≥ 1). Set wn = sn + Kn(sn − sn−1), where Kn is
defined by (3.1).
Step 2. Compute tn = PE(wn − ηnFwn).
Step 3. Compute un = PTn

(wn − ηnFtn), where the half-space Tn is defined by

Tn := {s ∈ D | ⟨wn − ηnFwn − tn, s− tn⟩ ≤ 0}.

Step 4. Compute sn+1 = ζnJ (sn) + (1 − ζn)[(1 − τn)(γnun) + τnSun], and update ηn+1 by
(3.2).
Set n := n+ 1 and go to Step 1.

Theorem 3.5. Let conditions (A1)-(A4) holds and {δn} be a positive sequence with limn→∞
δn
ζn

=

0, where ζn ⊂ (0, 1) satisfies
∑∞

n=1 ζn = ∞ and limn→∞ ζn = 0. Furthermore, for some a > 0,

γn ∈ (0, 1), limn→∞ γn = 1, and
∑∞

n=0(1 − γn) = ∞, let τn ∈
(
a, (1−µ)γn

2+µ+γn

)
⊂ (a, 1 − µ), then

the sequence {sn} produced by Algorithm 3.2 converges in norm to v ∈ Fix(S) ∩ V I(E,F), where

v = PFix(S)∩V I(E,F)J (v).

Proof. Claim 1. The sequence sn is bounded. Define tn = (1− τn)(γnun) + τnSun.

∥tn − v∥ = ∥(1− τn)(γnun) + τnSun − v∥

≤ ∥(1− τn)γn(un − v) + τn(Sun − v)∥+ (1− τn)(1− γn)∥v∥. (3.22)

On the other hand,

∥(1− τn)γn(un − v) + τn(Sun − v)∥2 = ((1− τn)γn)
2∥un − v∥2 + τ2n∥Sun − v∥2

+ 2(1− τn)γnτn⟨Sun − v, un − v⟩

≤ ((1− τn)γn + τn)
2 ∥un − v∥2

+ τn (µτn − (1− µ)(1− τn)γn) ∥Sun − un∥2

≤ ((1− τn)γn + τn)
2 ∥un − v∥2. (3.23)

we obtained the above inequality because τn <
(1− µ)γn
2 + µ+ γn

.
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Thus it is implied from (3.23) that

∥(1− τn)γn(un − v) + τn(Sun − v)∥ ≤ ((1− τn)γn + τn) ∥un − v∥

≤ (1− (1− τn)(1− γn)) ∥un − v∥

≤ (1− (1− τn)(1− γn)) ∥wn − v∥

≤ (1− (1− τn)(1− γn)) [∥sn − v∥+ ζnM∗] . (3.24)

From (3.22), we have

∥tn − v∥ ≤ (1− (1− τn)(1− γn)) [∥sn − v∥+ ζnM∗] + (1− τn)(1− γn)∥v∥

≤ (1− (1− τn)(1− γn)) ∥sn − v∥+ ζnM∗ + (1− τn)(1− γn)∥v∥

= (1− (1− τn)(1− γn)) ∥sn − v∥

+ (1− τn)(1− γn)

[
ζnM∗

(1− τn)(1− γn)
+ ∥v∥

]
≤ max

{
∥sn − v∥, ζnM∗

(1− τn)(1− γn)
+ ∥v∥

}
:=M∗

for some M∗ > 0, hence

∥sn+1 − v∥ = ∥ζnJ (sn) + (1− ζn)tn − v∥

≤ ζn∥J (sn)− J (v)∥+ ζn∥J (v)− v∥+ (1− ζn)∥tn − v∥

≤ ζnQ∥sn − v∥+ ζn∥J (v)− v∥+ (1− ζn)M
∗

= ζnQ∥sn − v∥+ (1− ζn)

[
M∗ +

ζn
1− ζn

∥J (v)− v∥
]

≤ max

{
M∗ +

ζn
1− ζn

∥J (v)− v∥,Q∥sn − v∥
}

≤ · · · ≤ max {M∗,Q∥s0 − v∥} .

Which ensures the boundedness of {sn}, so the sequences {wn}, {J (sn)}, {tn}, and {un}
are also bounded.

Claim 2.

(1− ζn)

(
1− ν

ηn
ηn+1

)
∥tn − wn∥+ (1− ζn)

(
1− ν

ηn
ηn+1

)
∥un − tn∥

+ (1− ζn)τn(1− µ− τn)∥Sun − un∥2

≤ ∥sn − v∥2 − ∥sn+1 − v∥2 + ζn∥J (sn)− v∥2 + (1− γn)M
∗∗ + ζnM

∗∗∗.

∥tn − v∥2 = ∥(1− τn)(γnun) + τnSun − v∥2

= ∥(un − v) + τn(Sun − un)− (1− τn)(1− γn)un∥2

≤ ∥(un − v) + τn(Sun − un)∥2 − 2(1− τn)(1− γn)⟨un, ηn − v⟩
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= ∥un − v∥2 + τ2n∥Sun − un∥2 + 2τn⟨Sun − un, un − v⟩−

2(1− τn)(1− γn)⟨un, ηn − v⟩

≤ ∥un − v∥2 + τ2n∥Sun − un∥2 − τn(1− µ)∥Sun − un∥2

− 2(1− τn)(1− γn)⟨un, ηn − v⟩

= ∥un − v∥2 − τn(1− µ− τn)∥Sun − un∥2

− 2(1− τn)(1− γn)⟨un, ηn − v⟩

≤ ∥un − v∥2 − τn(1− µ− τn)∥Sun − un∥2 + (1− γn)M
∗∗

for some M∗∗ > 0. Now,

∥sn+1 − v∥2 = ∥ζn(J (sn)− v) + (1− ζn)(tn − v)∥2

≤ ζn∥J (sn)− v∥2 + (1− ζn)∥tn − v∥2

≤ ζn∥J (sn)− v∥2 + ∥sn − v∥2 + ζnM
∗∗∗

− (1− ζn)

(
1− ν

ηn
ηn+1

)
∥tn − wn∥ − (1− ζn)

(
1− ν

ηn
ηn+1

)
∥un − tn∥

− (1− ζn)τn(1− µ− τn)∥Sun − un∥2 + (1− γn)M
∗∗.

Hence, by simple deformation, we obtain the desired result.

Claim 3.

∥sn+1 − v∥2 = (1− (1−Q)ζn)∥sn − v∥2

+ ζn(1−Q)

[
(1− ζn)ζnM∗ + 2⟨J (v)− v, sn+1 − v⟩

1−Q

]
.

By using the identical reasons as in Claim 3 of Theorem 3.3, the required result can be

produced.

Claim 4. Sequence {∥sn − v∥2} converges to zero. We do not include the proof here because it is

comparable to Claim 4 of Theorem 3.3.

The following Corollary will be obtained if we put S = I in Algorithm 3.2.

Corollary 3.6. Consider F ,J as in Corollary 3.4 and let ζn, γn, τn be same as in Theorem 3.5.

Then the sequence {sn} with s0, s1 ∈ D generated by (3.25)



wn = sn +Kn(sn − sn−1),

tn = PE(wn − ηnFwn),

un = PTn(wn − ηnFtn),where the half-space Tn is defined by

Tn := {s ∈ D|⟨wn − ηnFwn − tn, s− tn⟩ ≤ 0},

sn+1 = ζnJ (sn) + (1− ζn)(γnun + τn(1− γn)un),

(3.25)
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converges to v ∈ V I(E,F) in norm, where v = PV I(E,F)(J (v)). where Kn and ηn are defined by

(3.1) and (3.2), respectively.

4 Numerical example

In this section, we provide a numerical example to illustrate the behavior of the proposed algorithms

and compare them with some existing strongly convergent algorithms. The parameters are set as

follows: ζn = 1
n+1 , τn = n

2n+1 , γn = n
30n+1 , η1 = 1, ν = 0.5, J (s) = 0.5s, K = 0.3, δn = 100

(n+1)2 .

The solution s∗ is known, so we use Dn = ∥sn − s∗∥ to measure the n-th iteration error and

convergence of Dn to 0 indicates that {sn} converges to the problem’s solution.

Example 4.1. We take the nonlinear operator F : R2 → R2 defined by F(s, t) = (s+t+sin s,−s+
t+ sin s), feasible set E = [−1, 1]× [−1, 1]. Clearly F is monotone and Lipschitz continuous with

constant L = 3 and let the matrix F =

1 0

0 2

. We consider the mapping S : R2 → R2 by

Su = ∥F∥−1
Fu, where u = (s, t)T . It is obvious to see that S is 0-demicontractive and thus τ = 0.

The solution of the problem is s∗ = (0, 0)T . The initial values s0 = s1 are randomly generated by

k ∗ rand(2, 1) in MATLAB. The numerical results of all the algorithms with different initial values

are described in Figures (Figure 1, Figure 2, Figure 3, Figure 4).

Figure 1: The convergence graphs of {Dn = ∥sn − s∗∥} vs iteration (n = 40).
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Figure 2: The convergence graphs of {Dn = ∥sn − s∗∥} vs iteration (n = 30).

Figure 3: The Elapsed time graph of the sequence {Dn = ∥sn − s∗∥} with initial values s0 = s1 =
30rand(2, 1) and n = 300
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Figure 4: The Elapsed time graph of the sequence {Dn = ∥sn − s∗∥} with initial values s0 = s1 =
40rand(2, 1) and n = 250.

Example 4.2. Consider the linear operator F : Rm → Rm (m = 50, 100, 150, 200) in the form

F(s) =Ms+q, where q ∈ Rm and M = NNT +Q+D, N is a m×m matrix, Q is a m×m skew-

symmetric matrix, and D is a m×m diagonal matrix with its diagonal entries being nonnegative

(hence M is positive symmetric definite). The feasible set E is given by E = {s ∈ Rm : −2 ≤ si ≤
5, i = 1, . . . ,m}. It is clear that F is monotone and Lipschitz continuous with constant L = ∥M∥.
In this experiment, all entries of N,D are generated randomly in [0, 2], Q is generated randomly

in [−2, 2] and q = 0. Let S : D → D be given by Ss = 0.5s. It is easy to see that the solution of the

problem in this case is s∗ = {0}. The initial values s0 = s1 are randomly generated by k∗rand(2, 1)
in MATLAB. Figure 5 shows the numerical behavior of all the algorithms in different dimensions

(m = 50, m = 100, m = 150, m = 200).

Example 4.3. Finally, we consider our problem in the infinite-dimensional Hilbert space D =

L2([0, 1]) with inner product ⟨s, y⟩ =
∫ 1

0
s(t)y(t)dt and norm ∥s∥ =

(∫ 1

0
|s(t)|2dt

) 1
2

, ∀s, y ∈ D. Let

the feasible set be the unit ball E = {s ∈ D : ∥s∥ ≤ 1}. Define an operator F : E → D by

(Fs)(t) =
∫ 1

0

(s(t)−G(t, u)g(s(u)))du+ h(t)), t ∈ [0, 1], s ∈ E,

where,

G(t, u) =
2tuet+u

e
√
e2 − 1

, g(s) = cos(s), h(t) =
2tet

e
√
e2 − 1

.
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Figure 5: The convergence graphs of {Dn = ∥sn − s∗∥} vs iteration(n = 200).

It is known that F is monotone and L-Lipschitz continuous with L = 2 ([13]). The projection on

E is inherently explicit, that is,

PE(s) =


s

∥s∥
, if ∥s∥ > 1;

s, if ∥s∥ ≤ 1.

The mapping S : L2([0, 1]) → L2([0, 1]) is of the form

(Ss)(t) =
∫ 1

0

ts(u) du, t ∈ [0, 1].

A straightforward computation implies that S is 0-demicontractive. The solution of the problem

is s∗(t) = 0. The maximum number of iterations 50 is used as a common stopping criterion for all

algorithms. Figure 6 shows the behaviors of Dn = ∥sn(t) − s∗(t)∥ generated by all the algorithms

with four starting points.
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Figure 6: The convergence graphs of {Dn = ∥sn − s∗∥} vs iteration (n = 50).

5 Conclusion

In this study, we investigated two self-adaptive iterative schemes for seeking a common solution

to the variational inequality problem involving a monotone and Lipschitz continuous mapping

and the fixed point problem with a demicontractive mapping. We proposed two new inertial

extragradient methods with a new step size to compute the approximate solutions of problems in a

real Hilbert space. The strong convergence of the suggested methods is established under standard

and suitable conditions. Finally, some computational tests are given to explain our convergent

results. The algorithms obtained in this paper improved and summarized some of the recent

results in the literature.
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