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ABSTRACT
In the present paper, we introduce the canonical Sturm-
Liouville operator LM := % + (*X((;”)) —22'%90) % _

( ‘;—sﬂcQ 4 08a ’i,((f)) + i%), where A is a nonnegative function

satisfying certain conditions. We prove the boundedness of
the canonical Sturm-Liouville Hausdorff operators on the
space LP (R4, A(z) dz), p € [1,00). We investigate canonical
Sturm-Liouville wavelet transform, and obtain some useful
results. The relation between the canonical Sturm-Liouville
wavelet transform and canonical Sturm-Liouville Hausdorft
operator is also established. The properties of the adjoint
canonical Sturm-Liouville Hausdorff operators are further
discussed. The harmonic analysis associated with the oper-
ator L™ plays an important role in establishing the results
of this paper.
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RESUMEN
En el presente ariculo, introducimos el operador de Sturm-
Liouville canénico L™ := % + (’:((;)) —2i%$) 4

(‘;—;wQ—l—i%m‘j((;)) —i—i%)7 donde A es una funcién no-

negativa que satisface ciertas condiciones. Demostramos el
acotamiento de los operadores Hausdorff de Sturm-Liouville
canonicos en el espacio LP(Ry, A(z)dz), p € [1,00). In-
vestigamos la transformada de ondeletas de Sturm-Liouville
canoénica y obtenemos algunos resultados utiles. También se
establece la relacién entre la transformada de ondeletas de
Sturm-Liouville canénica y el operador Hausdorff de Sturm-
Liouville canoénico. Se discuten las propiedades de los ad-
juntos a operadores Hausdorff de Sturm-Liouville canénicos.
El analisis arménico asociado al operador L™ juega un rol

importante para establecer los resultados de este articulo.

Keywords and Phrases: Canonical Sturm-Liouville transform, canonical Sturm-Liouville convolution, canonical

Sturm-Liouville Hausdorff operators, canonical Sturm-Liouville wavelet transform.
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1 Introduction

The study of Hausdorff operators, which originated from some classical summation methods, has a
long history in real and complex analysis. In the one-dimensional setting, Hausdorff operators on
the real line were introduced in [10] and studied on the Hardy space in [18]. The natural generaliza-
tion in several dimensions was introduced and studied in [3,5,16]. Particularly, Hausdorff operators
are interesting operators in harmonic analysis [19]. It contains some important operators, such as
Hardy operator, adjoint Hardy operator [6,15], and the Cesaro operator [14] in one dimension. The
Hardy-Littlewood-Poélya operator and the Riemann-Liouville fractional integral operator can also
be derived from the Hausdorff operator [1,25]. The modern study of general Hausdorff operators
on L!'(R) and the real Hardy space H'(IR) over the real line was pioneered by Liflyand and Moéricz
in [18]. Many research papers have addressed the boundedness of the Hausdor{f operator on Hardy
spaces. For instance, Liflyand and his collaborators in [16,17] proved, by more effective ways, that
the Hausdorff operator has the same behavior on the Hardy space H'(R) as that in the Lebesgue
space L'(R). Recently, Daher and Saadi in |7, 8] investigated the Dunkl Hausdorff operator on
the Lebesgue space LL(R) and on the Hardy space HL(R). Subsequently, Mondal and Poria [22]
studied Hausdorff operators associated with the Opdam-Cherednik operator. Furthermore, Tyr
[35] studied the boundedness of ¢g-Hausdorff operators on ¢-Hardy spaces. Another fundamental
tool in harmonic analysis is the canonical Sturm-Liouville Hausdorff operators, which is the main

object of study in this paper.

b
Here, we denote by M = “ p an arbitary matrix in SL(2,R) such that b > 0. We define the
c

canonical Sturm-Liouville operator L™ on R* by

d? A'(x) a d a? a Ax)  a
M= = i) S (L2l 4
dx2+(A(:v) be) dz <b2x T AW +Zb>’

where A is a nonnegative function satisfying certain conditions.

0 1
Note that if M = , the operator LM is reduced to the Sturm-Liouville operator L:
0

-1

2 Al(x) d
L= " A &

The classical Sturm-Liouville operator L plays an important role in analysis [2,39]. In particular,
the two references [4,33] investigate standard constructions of harmonic analysis, such as translation

operators, convolution product, and Fourier transform, in connection with the operator L.
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Using the Sturm-Liouville harmonic analysis [4,33], for all A € C, the system

/\2
LMy = b—zu,
w(0) = %A, W/ (0) =0,

admits a unique solution, denoted by goﬁ/f and given by
PN (@) = NI (), e Ry,

where ¢, (z) is the Sturm-Liouville kernel [29, 30].

In this paper, we introduce the canonical Sturm-Liouville transform %M :

FM()() = / oA (@) (@) A(x)dz, A€ R,
Ry

The canonical Sturm-Liouville transform %M

Liouville transform & (see [20,27-32|):

can be regarded as a generalization of the Sturm-

FOW = [ @ @A, AeR,.

Ry

Let ¢ € L'(Ry). We define the Hausdorff operator H, associated with the canonical Sturm-
Liouville operator LM for f € L'(R, A(z)dx) by

Hyf(x) = A fi(z)o(t) dt,

where f; is the dilation of f given by

file) = S (D) wemy,

The main purpose of this paper is to extend some results of the classical Hausdorff operator given in
[38] to the framework of canonical Sturm-Liouville theory, and to investigate the canonical Sturm-
Liouville wavelet transform. We prove the boundedness of canonical Sturm-Liouville Hausdorff
operator in space LP (R, A(z) dz), p € [1,00). The relation between the canonical Sturm-Liouville
wavelet transform and the canonical Sturm-Liouville Hausdorff operator is also established. Next,

we introduce the adjoint operator Hj on L*(Ry, A(x)dx) by
Hif(x):= A fx)p(t)dt, =xe€R,.
+

We present the properties of the adjoint operator Hj, including its boundedness on LP (R, A(z) dz),
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p € [1,00). We also establish a relation between the canonical Sturm-Liouville wavelet transform

and the adjoint operator Hj.

Note that if A(z) = 22t o > —1/2, the operator L is reduced to the canonical Bessel operator

M.
d? 200+ 1 a d a? a
M. . 2 .
' +( T _2Zb)dx_(b2 +22(a+1)b>'

In this case ¢ (z) = apﬁ\”a (x) = e%(%/\2+%w2)ja(%ﬂ), where j, is the normalized Bessel function of

M

the first kind and order aw. The canonical transform % is the canonical Fourier-Bessel transform

g M.
Fo

FM(F)N) = / AL (@) f(@)z? de, A e R,

Recently, the canonical Fourier-Bessel transform %M is the goal of many applications in the

(e}
harmonic analysis (see [9,11,12,21, 26]).

This paper is organized as follows. In Section 2, we recall some results about the Sturm-Liouville
transform %, the Sturm-Liouville translation 7, and the Sturm-Liouville convolution *. In Section
3, we introduce the canonical Sturm-Liouville operator L™, and we investigate the properties of

the canonical Sturm-Liouville transform %™, the canonical Sturm-Liouville translation 7 and

Yy
the canonical Sturm-Liouville convolution *™ associated with this operator. In Section 4, we
introduce the canonical Sturm-Liouville Hausdorff operators H4 and we establish their properties.
In the last section, we investigate the canonical Sturm-Liouville wavelet transform and derive its

relation with the operators Hy and HJ.

2 Sturm-Liouville harmonic analysis

In this section we recall some results about the harmonic analysis associated with the Sturm-
Liouville operator (Sturm-Liouville transform, Sturm-Liouville translation and Sturm-Liouville

convolution).

We consider the second-order differential operator L defined on R* by

a2 Al(x) d
L:=— —
a2 " A(z) dax’

where

A(z) = 2" B(z), a>-1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover we

assume that A satisfies the following conditions:
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(i) A is increasing and lim A(x) = co.

T—r 00
o A . . Alr)
(ii) I decreasing and 1ll>nolc @) 0.

(iii) There exists a constant 6 > 0 such that

Al(x)  2a+1 N

e 9 D(x .
o= D) (21)

where D is an infinitely differentiable function on R* , bounded and with bounded derivatives

on all intervals [z, 00), for 29 > 0.

This operator was studied in [4,33], and the following results have been established:

(I) For all A € C, the equation

admits a unique solution, denoted by @y, with the following properties:

o for x € R, the function A — @, () is analytic on C.

e For A\ € C, the function x — @ (x) is even and infinitely differentiable on R.

(IT) For nonzero A € C, the equation

Lu = -\,
has a solution ®) satisfying N
@5(r) = ;%vu, A,
with
z11_>Ir010 Viz,\) =1.

Consequently there exists a function (spectral function) A — ¢(A), such that
ox(2) = c)BA(@) + c(-N@_A(1), @Ry,

for nonzero \ € C.

Moreover there exist positive constants ki, ko, k, such that
k1|)\‘2a+1 < ‘C()\)‘_Q < k2|)\|2a+1’

for all A such that Im A < 0 and |\| > k.
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(III) The Sturm-Liouville kernel ¢ (x) possesses the following integral representation of Mehler-
type

x
oa(z) = / K(z,y)cos(Ay)dy, x>0, (2.2)
0
where K(z,.) is an even positive continuous function on (—x,z) and supported in [—z, z].

Using the Mehler integral representation formula (2.2), we obtain
—IS()D)\(.I‘)S:L )‘7'TER+'
We denote by

e 1 the measure defined on R, by

and by LP(p), p € [1,00], the space of measurable functions f on R, such that

1/p
[fllze ) = VR If(:v)lpdu(af)] <00, pEll00),

| fl|Loe(u) = ess sup |f(z)| < oo.
I€R+

e v the measure defined on Ry by

dA
dv()\) = S EOVIER

and by LP(v), p € [1,00], the space of measurable functions f on Ry, such that
Ifll ey < 0.

The Sturm-Liouville transform is the Fourier transform associated with the operator L and is
defined for f € L'(u) by

F(HN) = / ox(@)f(@)dp(z), A€ Ry. (2.4)

Some of the properties of the Sturm-Liouville transform % are collected bellow.
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Theorem 2.1 ([2,4,33,39]). (i) Plancherel theorem. The Sturm—Liouville transform F ex-

tends uniquely to an isometric isomorphism of L?(u) onto L?(v). In particular,

1 £z = 1F (Hll2)-

(ii) Inversion theorem. Let f € L'(u), such that F(f) € L'(v). Then

f@):/}R A@F (NN (N, ae € Ry

The Sturm-Liouville kernel ¢, satisfies the product formula [4, 33]

ox(@)oa(y) = / ox(2w(z,y,2) du(z) for z,y € Ry; (2.5)

where w(x,y,.) is a measurable positive function on R, with support in [|z — y|, z + y], satisfying

/ w(z,y,2) dp(z) = 1,
Ry

w(z,y,z) =w(y,z,z) for zeRy, (2.6)

w(z,y,z) = w(x,z,y) for z>0. (2.7

We now define the generalized translation operator induced by (2.5). For f € L!(u), the linear

operator

Tyf(x) = e f(z)w(x,y, Z) dlu(z)7 T,y € R-‘r? (28)

will be called Sturm-Liouville translation [4, 33].

As a first remark, we note that the relation (2.6) means that
Ty f(2) = 1 f(y), wyeRy.
Theorem 2.2 ([23,29,30]). (i) For ally >0 and f € LP(u), p € [1,0], we have
7y fllze ) < NfllLe (-
(ii) For f € L?(u) and y € R, we have

F(ry /)N =ex()F(f)(A), A eR,.
Let f,g € L?(p). The Sturm-Liouville convolution f % g of f and g is defined by

fgle) = /R o) duy), € Ry (2.9)
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The convolution * is commutative, associative and satisfies the Young inequality (see [23]). Let

p,q,7 € [1,00] such that % + % =1+ 1. Then for f € LP(u) and g € L9(p) we have

1 * gllLrny < NF e llgllzagn-

Theorem 2.3 (|23,34]). (i) For f,g € L*(u), the function f * g belongs to L>(u1), and

fglz) = / ox (@) F(HNF ()N dv(Y), « € R,

(ii) Let f,g € L?(u). Then

/ 1+ g(@)? du) = / FM (N 15 () (N du (A,
Ry

Ry
where both sides are finite or infinite.

Example 2.4 ([13,24]). Note that if A(z) = 2***, with a > —1/2, the operator L is reduced to
the Bessel operator L, :
2 2a+1d

Ly :=— .
@ dz? z dx

In this case o) () = jo(Ax), where j, is the normalized Bessel function of the first kind and order

a. We denote by p,, the measure defined by dug(x) == 2?*H1dz.

The Fourier-Bessel transform F,, is defined for f € L' (ua) by
FANO = [ a0 (@) (@), A€ Ry
+
The Fourier-Bessel translation operators are defined for f € L'(ja) by
Ty f(x) = . f(Dwa(z,y,2) dpa(z), w,y € Ry,

being wy(x,y,.) the kernel given by

R e I
’LUoz(xa Y, Z) = Qq [ QQLl(Lyz)m ] X(|z—y|,z+y) (Z), (210)

where a, = % and X(|z—y|,a+y) 95 the characteristic function of the interval (|x —y|,z+y).

Let f,g € L*(j1a). The Fourier-Bessel convolution f o g of f and g is defined by

f o g(a) = /R o f(0)g() dualy), € Ry
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3 Canonical Sturm-Liouville operator

a b
Throughout this paper, we denote by M = an arbitary matrix in SL(2,R) such that
c d

b > 0. We define the canonical Sturm-Liouville operator L on R% by

d? A(x) a d a? a A(z) .a
M. 2 _9; 0 22 - iz
L= dx2+(A(x) 2be) dz <b2m T AW +Zb>’

where A is the nonnegative function given in Section 2.

1
Note that if M = , the operator LM is reduced to the Sturm-Liouville operator L:
&P Al d
Toda? T A(z) da”
For all A € C, the equation
/\2
LMy = —r

w(0) = eHN* W/ (0) =0,

admits a unique solution, denoted by goﬁ/[ and given by

PN (2) = e3EX T80, (2), 2R

For f € L'(u), we define the canonical Sturm-Liouville transform % (f) by

FM(P)(N) = / A (2) f(x) du(z), AeR,.

Ry

This transform can be written as

where F is the Sturm-Liouville transform given by (2.4).

We denote by vy, b > 0, the measure defined on Ry by

A
dn(\) = —2
vo(A) 2rble(2)]2

and by LP(1), p € [1, 00], the space of measurable functions f on R, such that || f||zr@,) < oo.
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Theorem 3.1. (i) Let f € L*(p), such that FM(f) € L' (). Then

f(a) = /}R A @FV(HN) AN, ae xR,

—-a b
c —d

where N is the matriz given by N =

(ii) For f € L*(u) we have
1F M (Ae2) = 1F 122 0)-

Proof. (i) follows from Theorem 2.1 (ii) and relation (3.1). (ii) follows from Theorem 2.1 (i) and
relation (3.1). O

For f € L'(u), we define the canonical Sturm-Liouville translation operators by

TN f(a) = e BEH [ f)eB w(e,y, 2) dp(z), 2y € Ry (3.2)
Ry

It is easy to prove the following results.

Theorem 3.2. The operators T?jv, y € Ry, satisfy:

(i) T f(x) =N f(y), x,y € Ry

ia

(it) T f(x) = e‘%(xQ‘*‘yQ)Ty (f(z)eﬁzz) (x), where 1, is the Sturm-Liouville translation given by

(2.8).
(iii) TM M (z) = e BN M (2) P (y).

Theorem 3.3. (i) For ally € Ry and f € LP(p), p € [1, 00|, we have
HTgﬁfoLP(u) < ”fHLP(u)'

(ii) For f € L*(u) and y € Ry, we have
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Proof. (i) follows from Theorem 2.2 (i) and Theorem 3.2 (ii).
(i) Let f € L*(u) N L%(p). Then

FH NN = [ el @) duta)
R+
-/ [e%‘é“”ﬁ (et w(z,y.2) du(Z)] oV (@) du(a)

By using Fubini’s theorem, (2.6) and (2.7) we obtain

FMENHON) = 8 [ fz)est V oA (e w(z, y, 2) du(w)] dp(2).
Ry

And by Theorem 3.2 (iii) we deduce that

FHEHO) =B X )F (N, AeRy. (3:3)
Since L'(p) N L?(p) is dense in L?(u), the formula (3.3) remains valid for f € L?(u). O

Let f,g € L?(p1). The canonical Sturm-Liouville convolution f ¥ g of f and g is defined by

ia 2

£ gta)i= [ o5 [eB7 )] dut). o eRe (3.4)
Then we can write
N g(zx) = e T (eﬁzzf) * (e%z2g) (), zeRy, (3.5)

where * is the Sturm-Liouville convolution given by (2.9).

N

The canonical Sturm-Liouville convolution *" is commutative, associative and satisfies the Young

inequality. Let p,q,r € [1,00] such that %—i—% =1+ % Then for f € LP(u) and g € L(u) we have
I1f =N gllr g < 1 FlzegollgllLage-

Theorem 3.4. (i) For f,g € L?(u), the function f ™ g belongs to L>=(u), and

f N g(a) = / e N N (@) F M (F)NFM (9) () dn(N), = € Ry

(ii) Let f,g € L?>(u). Then

/R 1N g(o) dpu(er) = / FM (O PIFM ()N du(N),

Ry

where both sides are finite or infinite.
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Proof. (i) follows from (3.5), Theorem 2.3 (i) and (3.1). (ii) follows from (3.5), Theorem 2.3 (ii)
and (3.1). O

Example 3.5 ([9,11,12,21,26]). Note that if A(x) = 22**! o > —1/2, the operator LM is reduced

to the canonical Bessel operator LM :
g Lo (2l e )4 “—2x2+2z’(a+1)9
7 da? x b)) da b? b))’

In this case o} () = o} (2) = e%(%/\z-ir%fﬂz)ja()\%)_

The canonical Fourier-Bessel transform FM is defined for f € L'(ja) by
FUON = [ @@ dae). AR
+

Recently, the canonical Fourier-Bessel transform FM is the goal of many applications in the har-

monic analysis.

The canonical Fourier-Bessel translation operators are defined for f € L'(jiq) by

ToN f(z) = e BEH [ p)e B wy(2,y,2) dua(z), @,y € Ry,
Ry

being wq(x,y,.) the kernel given by (2.10).
Let f,g € L*(j1a). The canonical Fourier-Bessel convolution f xY g of f and g is defined by

2

[l g(x) = /]R+ N f(y) [e%y g(y)] dpaly), = €Ry.

4 Canonical Sturm-Liouville Hausdorff operator

In this section we define and study the Hausdorff operator associated with the canonical Sturm-

Liouville operator L.

Let f € LP(u), p € [1,00) and ¢t > 0. We define the dilation function f; by

A(F) (=
fil@) =y (7)) (4.1)
and satisfies s
k P
i < (2] 1l (42)

where

o= s (43)-
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From (2.1), there exist two constants C7,C2 > 0, such that
Ozt < A(z) < Cox?otl, e R%.

Therefore,

where C' = %
1

Let ¢ € L'(Ry). We define the Hausdorff operator H, associated with the canonical Sturm-
Liouville operator LM for f € L'(u) by

Hy f(x) := A fi(z)o(t) dt. (4.3)

If we choose ¢(t) = B(1 —t)"~1x(0,1)(t), B > 0, we obtain the canonical Sturm-Liouville Cesaro
operator of order 3 denoted by Cs and given by

Csf(z) =B / filo)(1 =)t

A Drief history of the study of Cesaro operator can be found in [14].

If we choose ¢(t) = % X(1,00)(t), we obtain the canonical Sturm-Liouville Hardy operator denoted
by H and given by
e dt
Hiw) = [ 5o G
1

It is well known that Hardy operators are important operators in harmonic analysis, for instance,

see [6,15].

If we choose ¢(t) = we obtain the canonical Sturm-Liouville Hardy-Littlewood-Polya

1
max(1,t)?
operator denoted by P and given by

Pi(z) = /O1 Fulw)dt + /100 (@) %.

The study of Hardy-Littlewood-Polya operators can be found in [1].

—1
If we choose ¢(t) = ﬁ % X(1,00)(t), 1 > 0 we obtain the canonical Sturm-Liouville Riemann-

Liouville fractional integral operator denoted by Z and given by

2f(0) = 75 [ 6 (1- 1) @

The study of Riemann-Liouville fractional integral operators can be found in [25].
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Theorem 4.1. Let ¢ € L*(Ry). Then for f € L*(u), we have

FUHSN) = [ FA N A, AR

Proof. Let ¢ € L'(R,), and let f € L'(u). Then by (4.3) we have

FM(H, () = / Hy f () () dpu(r) = / [ ﬁ(x)qb(t)dt] oA () dpla).

Since

/Rz [fe@)[e@Olled" (2) dt du(x) < [I6ll syl F |22y < o0,

by Fubini’s theorem we obtain

FM(H, () = /

Ry

[ fe(@)p () du(%)] (t) dt:/ FM(f)(N(t) dt.
Ry Ry

The theorem is proved.

Theorem 4.2. Let ¢ be a measurable function on Ry such that

Con= | (k(f)) 6(0)] dt < oo. (1.4)

Then the Hausdorff operator Hy is bounded on LP(u), p € [1,00) with

IHg fllLe () < Copll fllLru)-

Proof. By using Minkowski’s inequality for integrals, we have
1/p
fr(@)o(t) dt

P 1/p P
|H¢pr<,L>=[/R [ du(w)] <[/ (/ |ft<x>||¢<t>|dt) du(x)]

1/p
S/R+ (/}R+ Ift(x)lw(t)l”du(x)) dt:/R+ I fell Loyl B(2)] dt.

Then by (4.2) we obtain

[ HpfllLeuy < Copll fllLe (-

Going back to the definition of

1/p

[/ (/ ft<x>|¢<t>|dt> dw)] ,
Ry \JR,
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we deduce that the integral
Hyf(x) = A fe(x)o(t) dt,
+

is absolutely convergent for almost all x € Ry, and defines a function H,f € LP(Ry). O

Let f,g € L%(u), and let ¢ be a measurable function on R satisfying the condition

Coar= | + (kff)) 6(1)]dt < oo. (45)

We define the adjoint operator Hj by the relation

[ Hif @) du(@) = | @) Hog(w) dua).

Theorem 4.3. Let f € L?*(u), and let ¢ be a measurable function on Ry satisfying the condition

(4.5). Then
Hyfe) = [ fleon (4.6)

Proof. Let f,g € L?(u), and let ¢ be a measurable function on R satisfying the condition (4.5).

From (4.3) and Fubini’s theorem we have
f@)Hog(@) du(e) = [ f@) l | a0t dt] e
Ry Ry Ry
= / [ f(@)ge(x) du(m)] o(t)dt = / [ ftr)g(x) du(w)l ¢(t) dt.
Ry /R, Ry |JR,
Using (4.2), this calculation is justified by the fact that

/Rz [f(@)]lge (@) dp(@)|¢@)] dt < Co 2|l L2 w9l L2y < 00
2
Then according to Fubini’s theorem we obtain

f(x)ang(x)du(x):/l f(tx)aﬁ(t)dt] g(@)du(z) = [ Hif(z)g(z)du(z),
Ry Ry |JR,

R

where

Hyf(x) = [ [f(tx)o(t)dt.

R

This calculation is justified by the fact that

[, 17(e)lota)] du@)loto) @t < Coalflzzgolallizgn < .

+

This completes the proof of the theorem. O
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Remark 4.4. From Theorem 4.2, the operator H is bounded on LP(u), p € [1,00), with

IHEf ey < Co, oz 1l Le ()
where Cy ,, is the constant given by (4.4).

As in the same of Theorem 4.1, we obtain the following result.

Theorem 4.5. Let ¢ be a measurable function on Ry satisfying the condition

k(t
Ciproo = /R (t)|<z>(t)|dt < 0. (4.7)
Then for f € L*(u), we have

FM(H3F)(N) = / FM(FNG(E) A, AR,

where fi(x) = f(tz).

Proof. Let ¢ be a measurable function on R, satisfying the condition (4.7), and let f € L'(u).
Then by (4.6) we have

FM(HE () = / H (@) (2) dpu() = / [ f(tx)qb(t)dt] oA () du(a).
Ry Ry |JRy

Since

/u@ |f(ta)l[o()]1@ ()] dt du(z) < Cp,ocll fllr ) < 00,

+

by Fubini’s theorem we obtain

FM(HE)(N) = /

Ry R,

l A f(tz)pd (x) du(x)] ot)ydt = | FY(f)(No(t)dt.

The theorem is proved. O

Example 4.6. Note that if A(z) = 22*T1, o > —1/2, we have

1 z 1 lo(0)]
fi(z) = t2a+2f (;) k() = {2a+1” Cop :/]R (2042)(1-1) dt.
+
Therefore,

e the canonical Bessel-Hausdorff operator is given by

Hof) = [ 1(5) it
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The canonical Bessel-Cesaro operator of order [ is given by

(1—¢)5-1
Cof(z ﬂ/ tzaJ)rz dt.

The canonical Bessel-Hardy operator is given by
o rxy  dt
wiw = [ 1 (3) e

The canonical Bessel-Hardy-Littlewood-Pdlya operator is given by

P = [ 1(3) st [ 1(5) s

o The canonical Bessel-Riemann-Liouville fractional integral operator is given by

=gy [ 1) (1-7)

5 Canonical Sturm-Liouville wavelet transform

In this section, we first recall some fundamental results on the canonical Sturm-Liouville wavelet
transform. The classical Sturm-Liouville wavelet transform has been studied extensively in [23,34]
where detailed definitions, illustrative examples, and comprehensive discussions of its properties
can be found. In the following we establish a relation between the canonical Sturm-Liouville

wavelet transform and the canonical Sturm-Liouville Hausdorff operator.

As in the same of [23,34] and by using Theorem 3.1 (ii), we prove following lemma.

Theorem 5.1. Let g € L?(u), and t > 0. Then there exists a function g& in L*(u), such that
Mg\ = FM(g)(rX), A e Ry, (5.1)

and satisfies

2
1ol < }) 9l 220 (5.2)

where

()

x>0 le()1

fb(T) =

We say that a function g € L?(u) is a canonical Sturm-Liouville wavelet, if it satisfies the admis-
sibility condition
, dA
0 <wy:= / FM(g)(N)]? == < o0. (5.3)
R, A
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Example 5.2. The function g given by
so)i= [ RN @dn(), we ke,
Ry

is a canonical Sturm-Liowville wavelet and wy = . Note that if A(z) = 22T, o > —1/2, we have
. 22
A e 2(ba+z?)

9) = T ar Dt | Gd s 208t |
t=0

r e Ry,

For a function g € L?(u) and for (r,s) € R} x Ry we denote by g, s the function defined on R} by

gk () =1 gk (y),

where 7V are the generalized translation operators given by (3.2).

S

From Theorem 3.3 (i) and (5.2), the function gf , satisfies

]

éb(r)
9%, slz20 < =2 lglleo- (5.4)

Let g € L?(u1) be a canonical Sturm-Liouville wavelet. We define for regular functions on R, the

canonical Sturm-Liouville wavelet transform by
ia, 2
(1)) i= [ F 1wk 0 dulw). (55)
Ry
which can also be written in the form

' (f)(rs) = f *" gh(s), (5.6)

where !V is the generalized convolution product given by (3.4).

From (5.4) and (5.5) with Holder’s inequality, we have
by(r)
125" (£)(r, M=) < r 1112w 191l 22 gy -
From (5.6), Theorem 3.4 (i) and (5.1), we have

@ (f)(r,5) = /]R BN () FM(HNF M (9)(rA) dm(N). (5.7)
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We denote by + the measure defined on Ri by

dr

d (1) i= dp(s) <,

and by L?() the space of measurable functions f on Ri, such that

IFlz2) = [/

+

d 1/2
|f<r,s>|2du<s>:] < .

Theorem 5.3. Let g € L*(p) be a canonical Sturm-Liouville wavelet.

(i) Plancherel formula for ®). For f € L*(u) we have
1912 = 125 (DI
L2(p) — w9 L2(v)"

(it) Parseval formula for ®Y. For f,h € L*(u) we have

1
(f, h>L2(u) = ;<‘I>év(f)>‘1>f,v(h)>1;2(y)-

g

Proof. (i) Using Fubini’s theorem, Theorem 3.4 (ii), and the relation (5.6), we obtain

wlgncb?V( IS —f/ gh(o) dnts)
= [ OPFM GNP i)

(Ug ]R2

- [ P (: / |9M<g><m>2?"> an ()
R, g JR,

|2%:1.
,

By relation (5.3) we have

o |7 (g)(rX)

Ry

Then we deduce the desired result from Theorem 3.1 (ii).

(ii) The result is easily deduced from (i). O

We obtain a relation between the canonical Sturm-Liouville wavelet transform and the canonical

Sturm-Liouville Hausdorff operator.
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Theorem 5.4. Let g € L?(u) be a canonical Sturm-Liouville wavelet, and let ¢ € L' (R ) satisfying
the condition (4.5). Then for f € L'(u) N L*(p) we have

SN (Hyf)(r. ) = / BN (£,)(r, 5)6(t) dt,

Ry

where fy is the dilation of [ given by (4.1).

Proof. Let g € L?(u) be a canonical Sturm-Liouville wavelet, and let f € L*(u) N L?(u). From
Theorem 4.2 we have Hyf € L?(u). Then by (5.7) and Theorem 4.1, we get

® (Hyf)(r,5) = / e ENFM (Hy NFM (9)(rA)oh (5) duy(A)

- / Y [ / FM (1) (No() dt] FM () (rA)gl () duy(N)
R, R,

:/R+

- / BN (f)(r, $)(t) dt.

Ry

id

/]R e BNFM(F)NF M (9) (NN (s) dVb(A)l o(t) dt

Using (4.2), this calculation is justified by the fact that

/R / FM () OIFM (98N] di VIS At < Cop ol L2 ] 2y < 00

This ends the proof of the theorem. O

As in the same of Theorem 5.4, we obtain the following result.

Theorem 5.5. Let g € L?(u) be a canonical Sturm-Liouville wavelet, and Let ¢ be a measurable

function on R satisfying the conditions (4.5) and (4.7). Then for f € L*(u) N L?(1) we have

BN (H 1)) = [ @ U)ot

Ry

where fi(x) = f(tz).

Proof. Let g € L*(u) be a canonical Sturm-Liouville wavelet, and let f € L'(u) N L?*(u). From
Remark 4.4 we have Hjf € L?(u). Then by (5.7) and Theorem 4.5, we get

SN (H3f)(r,s) = / e ENGM (1 1) (NFM (9)(r ) () diy (V)

- / e HN V %M(f:xx)w)dt] FM () (rA) oY (5) (M)
R4 R4
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- / BN (£7)(r, 5)6 (1) dt.

This calculation is justified by the fact that
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/R e HEXFM (Y NF Y (g)(rN ) (s) () | o)t

/R / FM (D FM (g8 ()] dep(NIB(0)] dt < Copall Fll 200 198 220 < o0

This ends the proof of the theorem.

Conclusion

In this work we have succeeded in generalizing the results of Moricz for the classical Hausdorff

operator [38], Upadhyay et al. for the Hankel Hausdorff operator [36,37] and Daher et al. for the

Dunkl Hausdorff operator [7,8] to the setting of canonical Sturm-Liouville theory. In this paper,

we have studied the canonical Sturm-Liouville Hausdorff operator on the Lebesgue space LP(u),

0

1
p € [1,00). Note that if M = , we obtain the results of the classical Sturm-Liouville
0

-1
case.
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