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ABSTRACT

In the present paper, we introduce the canonical Sturm-
Liouville operator LM := d2

dx2 +
(

A′(x)
A(x)

− 2ia
b
x
)

d
dx

−(
a2

b2
x2 + ia

b
xA′(x)

A(x)
+ ia

b

)
, where A is a nonnegative function

satisfying certain conditions. We prove the boundedness of
the canonical Sturm-Liouville Hausdorff operators on the
space Lp(R+, A(x) dx), p ∈ [1,∞). We investigate canonical
Sturm-Liouville wavelet transform, and obtain some useful
results. The relation between the canonical Sturm-Liouville
wavelet transform and canonical Sturm-Liouville Hausdorff
operator is also established. The properties of the adjoint
canonical Sturm-Liouville Hausdorff operators are further
discussed. The harmonic analysis associated with the oper-
ator LM plays an important role in establishing the results
of this paper.
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RESUMEN

En el presente arículo, introducimos el operador de Sturm-
Liouville canónico LM := d2

dx2 +
(

A′(x)
A(x)

− 2ia
b
x
)

d
dx

−(
a2

b2
x2 + ia

b
xA′(x)

A(x)
+ ia

b

)
, donde A es una función no-

negativa que satisface ciertas condiciones. Demostramos el
acotamiento de los operadores Hausdorff de Sturm-Liouville
canónicos en el espacio Lp(R+, A(x) dx), p ∈ [1,∞). In-
vestigamos la transformada de ondeletas de Sturm-Liouville
canónica y obtenemos algunos resultados útiles. También se
establece la relación entre la transformada de ondeletas de
Sturm-Liouville canónica y el operador Hausdorff de Sturm-
Liouville canónico. Se discuten las propiedades de los ad-
juntos a operadores Hausdorff de Sturm-Liouville canónicos.
El análisis armónico asociado al operador LM juega un rol
importante para establecer los resultados de este artículo.

Keywords and Phrases: Canonical Sturm-Liouville transform, canonical Sturm-Liouville convolution, canonical

Sturm-Liouville Hausdorff operators, canonical Sturm-Liouville wavelet transform.
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1 Introduction

The study of Hausdorff operators, which originated from some classical summation methods, has a

long history in real and complex analysis. In the one-dimensional setting, Hausdorff operators on

the real line were introduced in [10] and studied on the Hardy space in [18]. The natural generaliza-

tion in several dimensions was introduced and studied in [3,5,16]. Particularly, Hausdorff operators

are interesting operators in harmonic analysis [19]. It contains some important operators, such as

Hardy operator, adjoint Hardy operator [6,15], and the Cesàro operator [14] in one dimension. The

Hardy-Littlewood-Pólya operator and the Riemann-Liouville fractional integral operator can also

be derived from the Hausdorff operator [1, 25]. The modern study of general Hausdorff operators

on L1(R) and the real Hardy space H1(R) over the real line was pioneered by Liflyand and Móricz

in [18]. Many research papers have addressed the boundedness of the Hausdorff operator on Hardy

spaces. For instance, Liflyand and his collaborators in [16,17] proved, by more effective ways, that

the Hausdorff operator has the same behavior on the Hardy space H1(R) as that in the Lebesgue

space L1(R). Recently, Daher and Saadi in [7, 8] investigated the Dunkl Hausdorff operator on

the Lebesgue space L1
α(R) and on the Hardy space H1

α(R). Subsequently, Mondal and Poria [22]

studied Hausdorff operators associated with the Opdam-Cherednik operator. Furthermore, Tyr

[35] studied the boundedness of q-Hausdorff operators on q-Hardy spaces. Another fundamental

tool in harmonic analysis is the canonical Sturm-Liouville Hausdorff operators, which is the main

object of study in this paper.

Here, we denote by M =

a b

c d

 an arbitary matrix in SL(2,R) such that b > 0. We define the

canonical Sturm-Liouville operator LM on R∗
+ by

LM :=
d2

dx2
+

(
A′(x)

A(x)
− 2i

a

b
x

)
d

dx
−
(
a2

b2
x2 + i

a

b
x
A′(x)

A(x)
+ i

a

b

)
,

where A is a nonnegative function satisfying certain conditions.

Note that if M =

 0 1

−1 0

, the operator LM is reduced to the Sturm-Liouville operator L:

L :=
d2

dx2
+

A′(x)

A(x)

d

dx
.

The classical Sturm-Liouville operator L plays an important role in analysis [2, 39]. In particular,

the two references [4,33] investigate standard constructions of harmonic analysis, such as translation

operators, convolution product, and Fourier transform, in connection with the operator L.
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Using the Sturm-Liouville harmonic analysis [4, 33], for all λ ∈ C, the system


LMu = −λ2

b2
u,

u(0) = e
id
2bλ

2

, u′(0) = 0,

admits a unique solution, denoted by φM
λ and given by

φM
λ (x) = e

i
2 (

d
b λ

2+ a
b x

2)φλ
b
(x), x ∈ R+,

where φλ(x) is the Sturm-Liouville kernel [29,30].

In this paper, we introduce the canonical Sturm-Liouville transform FM :

FM (f)(λ) :=

∫
R+

φM
λ (x)f(x)A(x) dx, λ ∈ R+.

The canonical Sturm-Liouville transform FM can be regarded as a generalization of the Sturm-

Liouville transform F (see [20,27–32]):

F(f)(λ) :=

∫
R+

φλ(x)f(x)A(x) dx, λ ∈ R+.

Let ϕ ∈ L1(R+). We define the Hausdorff operator Hϕ associated with the canonical Sturm-

Liouville operator LM for f ∈ L1(R+, A(x) dx) by

Hϕf(x) :=

∫
R+

ft(x)ϕ(t) dt,

where ft is the dilation of f given by

ft(x) :=
A
(
x
t

)
tA(x)

f
(x
t

)
, x ∈ R+.

The main purpose of this paper is to extend some results of the classical Hausdorff operator given in

[38] to the framework of canonical Sturm-Liouville theory, and to investigate the canonical Sturm-

Liouville wavelet transform. We prove the boundedness of canonical Sturm-Liouville Hausdorff

operator in space Lp(R+, A(x) dx), p ∈ [1,∞). The relation between the canonical Sturm-Liouville

wavelet transform and the canonical Sturm-Liouville Hausdorff operator is also established. Next,

we introduce the adjoint operator H∗
ϕ on L2(R+, A(x) dx) by

H∗
ϕf(x) :=

∫
R+

f(tx)ϕ(t) dt, x ∈ R+.

We present the properties of the adjoint operator H∗
ϕ, including its boundedness on Lp(R+, A(x) dx),
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p ∈ [1,∞). We also establish a relation between the canonical Sturm-Liouville wavelet transform

and the adjoint operator H∗
ϕ.

Note that if A(x) = x2α+1, α > −1/2, the operator LM is reduced to the canonical Bessel operator

LM
α :

LM
α :=

d2

dx2
+

(
2α+ 1

x
− 2i

a

b
x

)
d

dx
−
(
a2

b2
x2 + 2i(α+ 1)

a

b

)
.

In this case φM
λ (x) = φM

λ,α(x) = e
i
2 (

d
b λ

2+ a
b x

2)jα(
λx
b ), where jα is the normalized Bessel function of

the first kind and order α. The canonical transform FM is the canonical Fourier-Bessel transform

FM
α :

FM
α (f)(λ) :=

∫
R+

φM
λ,α(x)f(x)x

2α+1dx, λ ∈ R+.

Recently, the canonical Fourier-Bessel transform FM
α is the goal of many applications in the

harmonic analysis (see [9, 11,12,21,26]).

This paper is organized as follows. In Section 2, we recall some results about the Sturm-Liouville

transform F, the Sturm-Liouville translation τy and the Sturm-Liouville convolution ∗. In Section

3, we introduce the canonical Sturm-Liouville operator LM , and we investigate the properties of

the canonical Sturm-Liouville transform FM , the canonical Sturm-Liouville translation τMy and

the canonical Sturm-Liouville convolution ∗M associated with this operator. In Section 4, we

introduce the canonical Sturm-Liouville Hausdorff operators Hϕ and we establish their properties.

In the last section, we investigate the canonical Sturm-Liouville wavelet transform and derive its

relation with the operators Hϕ and H∗
ϕ.

2 Sturm-Liouville harmonic analysis

In this section we recall some results about the harmonic analysis associated with the Sturm-

Liouville operator (Sturm-Liouville transform, Sturm-Liouville translation and Sturm-Liouville

convolution).

We consider the second-order differential operator L defined on R∗
+ by

L :=
d2

dx2
+

A′(x)

A(x)

d

dx
,

where

A(x) = x2α+1B(x), α > −1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover we

assume that A satisfies the following conditions:
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(i) A is increasing and lim
x→∞

A(x) = ∞.

(ii)
A′

A
is decreasing and lim

x→∞

A′(x)

A(x)
= 0.

(iii) There exists a constant δ > 0 such that

A′(x)

A(x)
=

2α+ 1

x
+ e−δxD(x), (2.1)

where D is an infinitely differentiable function on R∗
+, bounded and with bounded derivatives

on all intervals [x0,∞), for x0 > 0.

This operator was studied in [4, 33], and the following results have been established:

(I) For all λ ∈ C, the equation Lu = −λ2u,

u(0) = 1, u′(0) = 0,

admits a unique solution, denoted by φλ, with the following properties:

• for x ∈ R+, the function λ 7→ φλ(x) is analytic on C.

• For λ ∈ C, the function x 7→ φλ(x) is even and infinitely differentiable on R.

(II) For nonzero λ ∈ C, the equation

Lu = −λ2u,

has a solution Φλ satisfying

Φλ(x) =
eiλx√
A(x)

V (x, λ),

with

lim
x→∞

V (x, λ) = 1.

Consequently there exists a function (spectral function) λ 7→ c(λ), such that

φλ(x) = c(λ)Φλ(x) + c(−λ)Φ−λ(x), x ∈ R+,

for nonzero λ ∈ C.

Moreover there exist positive constants k1, k2, k, such that

k1|λ|2α+1 ≤ |c(λ)|−2 ≤ k2|λ|2α+1,

for all λ such that Imλ ≤ 0 and |λ| ≥ k.
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(III) The Sturm–Liouville kernel φλ(x) possesses the following integral representation of Mehler-

type

φλ(x) =

∫ x

0

K(x, y) cos(λy) dy, x > 0, (2.2)

where K(x, .) is an even positive continuous function on (−x, x) and supported in [−x, x].

Using the Mehler integral representation formula (2.2), we obtain

−1 ≤ φλ(x) ≤ 1, λ, x ∈ R+. (2.3)

We denote by

• µ the measure defined on R+ by

dµ(x) := A(x) dx,

and by Lp(µ), p ∈ [1,∞], the space of measurable functions f on R+, such that

∥f∥Lp(µ) :=

[∫
R+

|f(x)|p dµ(x)

]1/p
< ∞, p ∈ [1,∞),

∥f∥L∞(µ) := ess sup
x∈R+

|f(x)| < ∞.

• ν the measure defined on R+ by

dν(λ) :=
dλ

2π|c(λ)|2
,

and by Lp(ν), p ∈ [1,∞], the space of measurable functions f on R+, such that

∥f∥Lp(ν) < ∞.

The Sturm-Liouville transform is the Fourier transform associated with the operator L and is

defined for f ∈ L1(µ) by

F(f)(λ) :=

∫
R+

φλ(x)f(x)dµ(x), λ ∈ R+. (2.4)

Some of the properties of the Sturm-Liouville transform F are collected bellow.
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Theorem 2.1 ([2, 4, 33,39]). (i) Plancherel theorem. The Sturm–Liouville transform F ex-

tends uniquely to an isometric isomorphism of L2(µ) onto L2(ν). In particular,

∥f∥L2(µ) = ∥F(f)∥L2(ν).

(ii) Inversion theorem. Let f ∈ L1(µ), such that F(f) ∈ L1(ν). Then

f(x) =

∫
R+

φλ(x)F(f)(λ) dν(λ), a.e. x ∈ R+.

The Sturm-Liouville kernel φλ satisfies the product formula [4, 33]

φλ(x)φλ(y) =

∫
R+

φλ(z)w(x, y, z) dµ(z) for x, y ∈ R+; (2.5)

where w(x, y, .) is a measurable positive function on R+, with support in [|x− y|, x+ y], satisfying∫
R+

w(x, y, z) dµ(z) = 1,

w(x, y, z) = w(y, x, z) for z ∈ R+, (2.6)

w(x, y, z) = w(x, z, y) for z > 0. (2.7)

We now define the generalized translation operator induced by (2.5). For f ∈ L1(µ), the linear

operator

τyf(x) :=

∫
R+

f(z)w(x, y, z) dµ(z), x, y ∈ R+, (2.8)

will be called Sturm-Liouville translation [4, 33].

As a first remark, we note that the relation (2.6) means that

τyf(x) = τxf(y), x, y ∈ R+.

Theorem 2.2 ([23,29,30]). (i) For all y ≥ 0 and f ∈ Lp(µ), p ∈ [1,∞], we have

∥τyf∥Lp(µ) ≤ ∥f∥Lp(µ).

(ii) For f ∈ L2(µ) and y ∈ R+, we have

F(τyf)(λ) = φλ(y)F(f)(λ), λ ∈ R+.

Let f, g ∈ L2(µ). The Sturm-Liouville convolution f ∗ g of f and g is defined by

f ∗ g(x) :=
∫
R+

τxf(y)g(y) dµ(y), x ∈ R+. (2.9)
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The convolution ∗ is commutative, associative and satisfies the Young inequality (see [23]). Let

p, q, r ∈ [1,∞] such that 1
p + 1

q = 1 + 1
r . Then for f ∈ Lp(µ) and g ∈ Lq(µ) we have

∥f ∗ g∥Lr(µ) ≤ ∥f∥Lp(µ)∥g∥Lq(µ).

Theorem 2.3 ([23,34]). (i) For f, g ∈ L2(µ), the function f ∗ g belongs to L∞(µ), and

f ∗ g(x) =
∫
R+

φλ(x)F(f)(λ)F(g)(λ) dν(λ), x ∈ R+.

(ii) Let f, g ∈ L2(µ). Then∫
R+

|f ∗ g(x)|2 dµ(x) =
∫
R+

|FM (f)(λ)|2 |FM (g)(λ)|2 dν(λ),

where both sides are finite or infinite.

Example 2.4 ([13, 24]). Note that if A(x) = x2α+1, with α > −1/2, the operator L is reduced to

the Bessel operator Lα:

Lα :=
d2

dx2
+

2α+ 1

x

d

dx
.

In this case φλ(x) = jα(λx), where jα is the normalized Bessel function of the first kind and order

α. We denote by µα the measure defined by dµα(x) := x2α+1dx.

The Fourier-Bessel transform Fα is defined for f ∈ L1(µα) by

Fα(f)(λ) :=

∫
R+

jα(λx)f(x) dµα(x), λ ∈ R+.

The Fourier-Bessel translation operators are defined for f ∈ L1(µα) by

ταy f(x) :=

∫
R+

f(z)wα(x, y, z) dµα(z), x, y ∈ R+,

being wα(x, y, .) the kernel given by

wα(x, y, z) = aα
[(x+ y)2 − z2]α−

1
2 [z2 − (x− y)2]α−

1
2

22α−1(xyz)2α
χ(|x−y|,x+y)(z), (2.10)

where aα = Γ(α+1)√
πΓ(α+ 1

2 )
and χ(|x−y|,x+y) is the characteristic function of the interval (|x− y|, x+ y).

Let f, g ∈ L2(µα). The Fourier-Bessel convolution f ∗α g of f and g is defined by

f ∗α g(x) :=

∫
R+

ταx f(y)g(y) dµα(y), x ∈ R+.
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3 Canonical Sturm-Liouville operator

Throughout this paper, we denote by M =

a b

c d

 an arbitary matrix in SL(2,R) such that

b > 0. We define the canonical Sturm-Liouville operator LM on R∗
+ by

LM :=
d2

dx2
+

(
A′(x)

A(x)
− 2i

a

b
x

)
d

dx
−
(
a2

b2
x2 + i

a

b
x
A′(x)

A(x)
+ i

a

b

)
,

where A is the nonnegative function given in Section 2.

Note that if M =

 0 1

−1 0

, the operator LM is reduced to the Sturm-Liouville operator L:

L :=
d2

dx2
+

A′(x)

A(x)

d

dx
.

For all λ ∈ C, the equation LMu = −λ2

b2
u,

u(0) = e
id
2bλ

2

, u′(0) = 0,

admits a unique solution, denoted by φM
λ and given by

φM
λ (x) = e

i
2 (

d
b λ

2+ a
b x

2)φλ
b
(x), x ∈ R+.

For f ∈ L1(µ), we define the canonical Sturm-Liouville transform FM (f) by

FM (f)(λ) :=

∫
R+

φM
λ (x)f(x) dµ(x), λ ∈ R+.

This transform can be written as

FM (f)(λ) = e
id
2bλ

2

F
(
e

ia
2bx

2

f
)(λ

b

)
, f ∈ L1(µ), (3.1)

where F is the Sturm-Liouville transform given by (2.4).

We denote by νb, b > 0, the measure defined on R+ by

dνb(λ) :=
dλ

2πb|c(λb )|2
,

and by Lp(νb), p ∈ [1,∞], the space of measurable functions f on R+, such that ∥f∥Lp(νb) < ∞.
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Theorem 3.1. (i) Let f ∈ L1(µ), such that FM (f) ∈ L1(νb). Then

f(x) =

∫
R+

φN
λ (x)FM (f)(λ) dνb(λ), a.e. x ∈ R+,

where N is the matrix given by N =

−a b

c −d

.

(ii) For f ∈ L2(µ) we have

∥FM (f)∥L2(νb) = ∥f∥L2(µ).

Proof. (i) follows from Theorem 2.1 (ii) and relation (3.1). (ii) follows from Theorem 2.1 (i) and

relation (3.1).

For f ∈ L1(µ), we define the canonical Sturm-Liouville translation operators by

τNy f(x) := e−
ia
2b (x

2+y2)

∫
R+

f(z)e
ia
2b z

2

w(x, y, z) dµ(z), x, y ∈ R+. (3.2)

It is easy to prove the following results.

Theorem 3.2. The operators τNy , y ∈ R+, satisfy:

(i) τNy f(x) = τNx f(y), x, y ∈ R+.

(ii) τNy f(x) = e−
ia
2b (x

2+y2)τy

(
f(z)e

ia
2b z

2
)
(x), where τy is the Sturm-Liouville translation given by

(2.8).

(iii) τMy φM
λ (x) = e−

id
2bλ

2

φM
λ (x)φM

λ (y).

Theorem 3.3. (i) For all y ∈ R+ and f ∈ Lp(µ), p ∈ [1,∞], we have

∥τNy f∥Lp(µ) ≤ ∥f∥Lp(µ).

(ii) For f ∈ L2(µ) and y ∈ R+, we have

FM (τNy f)(λ) = e
id
2bλ

2

φN
λ (y)FM (f)(λ), λ ∈ R+,

where N =

−a b

c −d

.
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Proof. (i) follows from Theorem 2.2 (i) and Theorem 3.2 (ii).

(ii) Let f ∈ L1(µ) ∩ L2(µ). Then

FM (τNy f)(λ) =

∫
R+

τNy f(x)φM
λ (x) dµ(x)

=

∫
R+

[
e−

ia
2b (x

2+y2)

∫
R+

f(z)e
ia
2b z

2

w(x, y, z) dµ(z)

]
φM
λ (x) dµ(x).

By using Fubini’s theorem, (2.6) and (2.7) we obtain

FM (τNy f)(λ) = e−
ia
2by

2

∫
R+

f(z)e
ia
2b z

2

[∫
R+

φM
λ (x)e−

ia
2bx

2

w(z, y, x) dµ(x)

]
dµ(z).

And by Theorem 3.2 (iii) we deduce that

FM (τNy f)(λ) = e
id
2bλ

2

φN
λ (y)FM (f)(λ), λ ∈ R+. (3.3)

Since L1(µ) ∩ L2(µ) is dense in L2(µ), the formula (3.3) remains valid for f ∈ L2(µ).

Let f, g ∈ L2(µ). The canonical Sturm-Liouville convolution f ∗N g of f and g is defined by

f ∗N g(x) :=

∫
R+

τNx f(y)
[
e

ia
b y2

g(y)
]
dµ(y), x ∈ R+. (3.4)

Then we can write

f ∗N g(x) = e−
ia
2bx

2
(
e

ia
2b z

2

f
)
∗
(
e

ia
2b z

2

g
)
(x), x ∈ R+, (3.5)

where ∗ is the Sturm-Liouville convolution given by (2.9).

The canonical Sturm-Liouville convolution ∗N is commutative, associative and satisfies the Young

inequality. Let p, q, r ∈ [1,∞] such that 1
p +

1
q = 1+ 1

r . Then for f ∈ Lp(µ) and g ∈ Lq(µ) we have

∥f ∗N g∥Lr(µ) ≤ ∥f∥Lp(µ)∥g∥Lq(µ).

Theorem 3.4. (i) For f, g ∈ L2(µ), the function f ∗N g belongs to L∞(µ), and

f ∗N g(x) =

∫
R+

e−
id
2bλ

2

φN
λ (x)FM (f)(λ)FM (g)(λ) dνb(λ), x ∈ R+.

(ii) Let f, g ∈ L2(µ). Then∫
R+

|f ∗N g(x)|2 dµ(x) =
∫
R+

|FM (f)(λ)|2|FM (g)(λ)|2 dνb(λ),

where both sides are finite or infinite.
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Proof. (i) follows from (3.5), Theorem 2.3 (i) and (3.1). (ii) follows from (3.5), Theorem 2.3 (ii)

and (3.1).

Example 3.5 ([9,11,12,21,26]). Note that if A(x) = x2α+1, α > −1/2, the operator LM is reduced

to the canonical Bessel operator LM
α :

LM
α :=

d2

dx2
+

(
2α+ 1

x
− 2i

a

b
x

)
d

dx
−
(
a2

b2
x2 + 2i(α+ 1)

a

b

)
.

In this case φM
λ (x) = φM

λ,α(x) = e
i
2 (

d
b λ

2+ a
b x

2)jα(
λx
b ).

The canonical Fourier-Bessel transform FM
α is defined for f ∈ L1(µα) by

FM
α (f)(λ) :=

∫
R+

φM
λ,α(x)f(x) dµα(x), λ ∈ R+.

Recently, the canonical Fourier-Bessel transform FM
α is the goal of many applications in the har-

monic analysis.

The canonical Fourier-Bessel translation operators are defined for f ∈ L1(µα) by

τα,Ny f(x) := e−
ia
2b (x

2+y2)

∫
R+

f(z)e
ia
2b z

2

wα(x, y, z) dµα(z), x, y ∈ R+,

being wα(x, y, .) the kernel given by (2.10).

Let f, g ∈ L2(µα). The canonical Fourier-Bessel convolution f ∗Nα g of f and g is defined by

f ∗Nα g(x) :=

∫
R+

τα,Nx f(y)
[
e

ia
b y2

g(y)
]
dµα(y), x ∈ R+.

4 Canonical Sturm-Liouville Hausdorff operator

In this section we define and study the Hausdorff operator associated with the canonical Sturm-

Liouville operator LM .

Let f ∈ Lp(µ), p ∈ [1,∞) and t > 0. We define the dilation function ft by

ft(x) :=
A
(
x
t

)
tA(x)

f
(x
t

)
, (4.1)

and satisfies

∥ft∥Lp(µ) ≤
(
k(t)

t

)1− 1
p

∥f∥Lp(µ), (4.2)

where

k(t) = sup
x∈R+

(
A(x)

A(tx)

)
.
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From (2.1), there exist two constants C1, C2 > 0, such that

C1x
2α+1 ≤ A(x) ≤ C2x

2α+1, x ∈ R∗
+.

Therefore,
1

Ct2α+1
≤ k(t) ≤ C

t2α+1
, t > 0,

where C = C2

C1
.

Let ϕ ∈ L1(R+). We define the Hausdorff operator Hϕ associated with the canonical Sturm-

Liouville operator LM for f ∈ L1(µ) by

Hϕf(x) :=

∫
R+

ft(x)ϕ(t) dt. (4.3)

If we choose ϕ(t) = β(1 − t)β−1χ(0,1)(t), β > 0, we obtain the canonical Sturm-Liouville Cesàro

operator of order β denoted by Cβ and given by

Cβf(x) := β

∫ 1

0

ft(x)(1− t)β−1 dt.

A brief history of the study of Cesàro operator can be found in [14].

If we choose ϕ(t) = 1
tχ(1,∞)(t), we obtain the canonical Sturm-Liouville Hardy operator denoted

by H and given by

Hf(x) :=

∫ ∞

1

ft(x)
dt

t
.

It is well known that Hardy operators are important operators in harmonic analysis, for instance,

see [6, 15].

If we choose ϕ(t) = 1
max(1,t) , we obtain the canonical Sturm-Liouville Hardy-Littlewood-Pólya

operator denoted by P and given by

Pf(x) :=

∫ 1

0

ft(x)dt+

∫ ∞

1

ft(x)
dt

t
.

The study of Hardy-Littlewood-Pólya operators can be found in [1].

If we choose ϕ(t) = 1
Γ(η)

(1− 1
t )

η−1

t χ(1,∞)(t), η > 0 we obtain the canonical Sturm-Liouville Riemann-

Liouville fractional integral operator denoted by I and given by

If(x) := 1

Γ(η)

∫ ∞

1

ft(x)

(
1− 1

t

)η−1
dt

t
.

The study of Riemann-Liouville fractional integral operators can be found in [25].
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Theorem 4.1. Let ϕ ∈ L1(R+). Then for f ∈ L1(µ), we have

FM (Hϕf)(λ) =

∫
R+

FM (ft)(λ)ϕ(t) dt, λ ∈ R+.

Proof. Let ϕ ∈ L1(R+), and let f ∈ L1(µ). Then by (4.3) we have

FM (Hϕf)(λ) =

∫
R+

Hϕf(x)φ
M
λ (x) dµ(x) =

∫
R+

[∫
R+

ft(x)ϕ(t) dt

]
φM
λ (x) dµ(x).

Since ∫
R2

+

|ft(x)||ϕ(t)||φM
λ (x)| dtdµ(x) ≤ ∥ϕ∥L1(R+)∥f∥L1(µ) < ∞,

by Fubini’s theorem we obtain

FM (Hϕf)(λ) =

∫
R+

[∫
R+

ft(x)φ
M
λ (x) dµ(x)

]
ϕ(t) dt =

∫
R+

FM (ft)(λ)ϕ(t) dt.

The theorem is proved.

Theorem 4.2. Let ϕ be a measurable function on R+ such that

Cϕ,p :=

∫
R+

(
k(t)

t

)1− 1
p

|ϕ(t)| dt < ∞. (4.4)

Then the Hausdorff operator Hϕ is bounded on Lp(µ), p ∈ [1,∞) with

∥Hϕf∥Lp(µ) ≤ Cϕ,p∥f∥Lp(µ).

Proof. By using Minkowski’s inequality for integrals, we have

∥Hϕf∥Lp(µ) =

[∫
R+

∣∣∣∣∣
∫
R+

ft(x)ϕ(t) dt

∣∣∣∣∣
p

dµ(x)

]1/p
≤

[∫
R+

(∫
R+

|ft(x)||ϕ(t)| dt

)p

dµ(x)

]1/p

≤
∫
R+

(∫
R+

|ft(x)|p|ϕ(t)|p dµ(x)

)1/p

dt =

∫
R+

∥ft∥Lp(µ)|ϕ(t)| dt.

Then by (4.2) we obtain

∥Hϕf∥Lp(µ) ≤ Cϕ,p∥f∥Lp(µ).

Going back to the definition of

[∫
R+

(∫
R+

|ft(x)||ϕ(t)| dt

)p

dµ(x)

]1/p
,
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we deduce that the integral

Hϕf(x) =

∫
R+

ft(x)ϕ(t) dt,

is absolutely convergent for almost all x ∈ R+, and defines a function Hϕf ∈ Lp(R+).

Let f, g ∈ L2(µ), and let ϕ be a measurable function on R+ satisfying the condition

Cϕ,2 :=

∫
R+

(
k(t)

t

) 1
2

|ϕ(t)| dt < ∞. (4.5)

We define the adjoint operator H∗
ϕ by the relation∫

R+

H∗
ϕf(x)g(x) dµ(x) =

∫
R+

f(x)Hϕg(x) dµ(x).

Theorem 4.3. Let f ∈ L2(µ), and let ϕ be a measurable function on R+ satisfying the condition

(4.5). Then
H∗

ϕf(x) =

∫
R+

f(tx)ϕ(t) dt. (4.6)

Proof. Let f, g ∈ L2(µ), and let ϕ be a measurable function on R+ satisfying the condition (4.5).

From (4.3) and Fubini’s theorem we have∫
R+

f(x)Hϕg(x) dµ(x) =

∫
R+

f(x)

[∫
R+

gt(x)ϕ(t) dt

]
dµ(x)

=

∫
R+

[∫
R+

f(x)gt(x) dµ(x)

]
ϕ(t) dt =

∫
R+

[∫
R+

f(tx)g(x) dµ(x)

]
ϕ(t) dt.

Using (4.2), this calculation is justified by the fact that∫
R2

+

|f(x)||gt(x)|dµ(x)|ϕ(t)| dt ≤ Cϕ,2∥f∥L2(µ)∥g∥L2(µ) < ∞.

Then according to Fubini’s theorem we obtain

∫
R+

f(x)Hϕg(x) dµ(x) =

∫
R+

[∫
R+

f(tx)ϕ(t) dt

]
g(x) dµ(x) =

∫
R+

H∗
ϕf(x)g(x) dµ(x),

where

H∗
ϕf(x) =

∫
R+

f(tx)ϕ(t) dt.

This calculation is justified by the fact that∫
R2

+

|f(tx)||g(x)| dµ(x)|ϕ(t)| dt ≤ Cϕ,2∥f∥L2(µ)∥g∥L2(µ) < ∞.

This completes the proof of the theorem.
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Remark 4.4. From Theorem 4.2, the operator H∗
ϕ is bounded on Lp(µ), p ∈ [1,∞), with

∥H∗
ϕf∥Lp(µ) ≤ Cϕ, p

p−1
∥f∥Lp(µ),

where Cϕ,p is the constant given by (4.4).

As in the same of Theorem 4.1, we obtain the following result.

Theorem 4.5. Let ϕ be a measurable function on R+ satisfying the condition

Cϕ,∞ :=

∫
R+

k(t)

t
|ϕ(t)| dt < ∞. (4.7)

Then for f ∈ L1(µ), we have

FM (H∗
ϕf)(λ) =

∫
R+

FM (f∗
t )(λ)ϕ(t) dt, λ ∈ R+,

where f∗
t (x) = f(tx).

Proof. Let ϕ be a measurable function on R+ satisfying the condition (4.7), and let f ∈ L1(µ).

Then by (4.6) we have

FM (H∗
ϕf)(λ) =

∫
R+

H∗
ϕf(x)φ

M
λ (x) dµ(x) =

∫
R+

[∫
R+

f(tx)ϕ(t) dt

]
φM
λ (x) dµ(x).

Since ∫
R2

+

|f(tx)||ϕ(t)||φM
λ (x)| dtdµ(x) ≤ Cϕ,∞∥f∥L1(µ) < ∞,

by Fubini’s theorem we obtain

FM (H∗
ϕf)(λ) =

∫
R+

[∫
R+

f(tx)φM
λ (x) dµ(x)

]
ϕ(t) dt =

∫
R+

FM (f∗
t )(λ)ϕ(t) dt.

The theorem is proved.

Example 4.6. Note that if A(x) = x2α+1, α > −1/2, we have

ft(x) =
1

t2α+2
f
(x
t

)
, k(t) =

1

t2α+1
, Cϕ,p =

∫
R+

|ϕ(t)|
t(2α+2)(1− 1

p )
dt.

Therefore,

• the canonical Bessel-Hausdorff operator is given by

Hϕf(x) =

∫
R+

f
(x
t

) ϕ(t)

t2α+2
dt.
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• The canonical Bessel-Cesàro operator of order β is given by

Cβf(x) = β

∫ 1

0

f
(x
t

) (1− t)β−1

t2α+2
dt.

• The canonical Bessel-Hardy operator is given by

Hf(x) =

∫ ∞

1

f
(x
t

) dt

t2α+3
.

• The canonical Bessel-Hardy-Littlewood-Pólya operator is given by

Pf(x) =

∫ 1

0

f
(x
t

) dt

t2α+2
+

∫ ∞

1

f
(x
t

) dt

t2α+3
.

• The canonical Bessel-Riemann-Liouville fractional integral operator is given by

If(x) = 1

Γ(η)

∫ ∞

1

f
(x
t

)(
1− 1

t

)η−1
dt

t2α+3
.

5 Canonical Sturm-Liouville wavelet transform

In this section, we first recall some fundamental results on the canonical Sturm-Liouville wavelet

transform. The classical Sturm-Liouville wavelet transform has been studied extensively in [23,34]

where detailed definitions, illustrative examples, and comprehensive discussions of its properties

can be found. In the following we establish a relation between the canonical Sturm-Liouville

wavelet transform and the canonical Sturm-Liouville Hausdorff operator.

As in the same of [23,34] and by using Theorem 3.1 (ii), we prove following lemma.

Theorem 5.1. Let g ∈ L2(µ), and t > 0. Then there exists a function g♯r in L2(µ), such that

FM (g♯r)(λ) = FM (g)(rλ), λ ∈ R+, (5.1)

and satisfies

∥g♯r∥L2(µ) ≤
ℓb(r)√

r
∥g∥L2(µ), (5.2)

where

ℓb(r) = sup
λ>0

|c(λb )|
|c( λ

rb )|
.

We say that a function g ∈ L2(µ) is a canonical Sturm-Liouville wavelet, if it satisfies the admis-

sibility condition

0 < ωg :=

∫
R+

|FM (g)(λ)|2 dλ

λ
< ∞. (5.3)
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Example 5.2. The function g given by

g(x) :=

∫
R+

λ2e−λ2

φN
λ (x) dνb(λ), x ∈ R+,

is a canonical Sturm-Liouville wavelet and ωg = 1
8 . Note that if A(x) = x2α+1, α > −1/2, we have

g(x) := − e−
ia
2bx

2

2αΓ(α+ 1)

d

dt

 e
− x2

2(ibd+2tb2)

(ibd+ 2tb2)α+1


t=0

, x ∈ R+,

For a function g ∈ L2(µ) and for (r, s) ∈ R∗
+×R+ we denote by gr,s the function defined on R+ by

g♯r,s(y) := τNs g♯r(y),

where τNs are the generalized translation operators given by (3.2).

From Theorem 3.3 (i) and (5.2), the function g♯r,s satisfies

∥g♯r,s∥L2(µ) ≤
ℓb(r)√

r
∥g∥L2(µ). (5.4)

Let g ∈ L2(µ) be a canonical Sturm-Liouville wavelet. We define for regular functions on R+, the

canonical Sturm-Liouville wavelet transform by

ΦN
g (f)(r, s) :=

∫
R+

e
ia
b y2

f(y)g♯r,s(y) dµ(y), (5.5)

which can also be written in the form

ΦN
g (f)(r, s) = f ∗N g♯r(s), (5.6)

where ∗N is the generalized convolution product given by (3.4).

From (5.4) and (5.5) with Hölder’s inequality, we have

∥ΦN
g (f)(r, .)∥L∞(µ) ≤

ℓb(r)√
r
∥f∥L2(µ)∥g∥L2(µ).

From (5.6), Theorem 3.4 (i) and (5.1), we have

ΦN
g (f)(r, s) =

∫
R+

e−
id
2bλ

2

φN
λ (s)FM (f)(λ)FM (g)(rλ) dνb(λ). (5.7)
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We denote by γ the measure defined on R2
+ by

dγ(r, s) := dµ(s)
dr

r
,

and by L2(γ) the space of measurable functions f on R2
+, such that

∥f∥L2(γ) :=

[∫
R2

+

|f(r, s)|2 dµ(s) dr
r

]1/2
< ∞.

Theorem 5.3. Let g ∈ L2(µ) be a canonical Sturm-Liouville wavelet.

(i) Plancherel formula for ΦN
g . For f ∈ L2(µ) we have

∥f∥2L2(µ) =
1

ωg
∥ΦN

g (f)∥2L2(γ).

(ii) Parseval formula for ΦN
g . For f, h ∈ L2(µ) we have

⟨f, h⟩L2(µ) =
1

ωg
⟨ΦN

g (f),ΦN
g (h)⟩L2(γ).

Proof. (i) Using Fubini’s theorem, Theorem 3.4 (ii), and the relation (5.6), we obtain

1

ωg
∥ΦN

g (f)∥2L2(γ) =
1

ωg

∫
R2

+

|f ∗N g♯r(s)|2 dµ(s)
dr

r

=
1

ωg

∫
R2

+

|FM (f)(λ)|2|FM (g♯r)(λ)|2 dνb(λ)
dr

r

=

∫
R+

|FM (f)(λ)|2
(

1

ωg

∫
R+

|FM (g)(rλ)|2 dr

r

)
dνb(λ).

By relation (5.3) we have
1

ωg

∫
R+

|FM (g)(rλ)|2 dr

r
= 1.

Then we deduce the desired result from Theorem 3.1 (ii).

(ii) The result is easily deduced from (i).

We obtain a relation between the canonical Sturm-Liouville wavelet transform and the canonical

Sturm-Liouville Hausdorff operator.
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Theorem 5.4. Let g ∈ L2(µ) be a canonical Sturm-Liouville wavelet, and let ϕ ∈ L1(R+) satisfying

the condition (4.5). Then for f ∈ L1(µ) ∩ L2(µ) we have

ΦN
g (Hϕf)(r, s) =

∫
R+

ΦN
g (ft)(r, s)ϕ(t) dt,

where ft is the dilation of f given by (4.1).

Proof. Let g ∈ L2(µ) be a canonical Sturm-Liouville wavelet, and let f ∈ L1(µ) ∩ L2(µ). From

Theorem 4.2 we have Hϕf ∈ L2(µ). Then by (5.7) and Theorem 4.1, we get

ΦN
g (Hϕf)(r, s) =

∫
R+

e−
id
2bλ

2

FM (Hϕf)(λ)F
M (g)(rλ)φN

λ (s) dνb(λ)

=

∫
R+

e−
id
2bλ

2

[∫
R+

FM (ft)(λ)ϕ(t) dt

]
FM (g)(rλ)φN

λ (s) dνb(λ)

=

∫
R+

[∫
R+

e−
id
2bλ

2

FM (ft)(λ)F
M (g)(rλ)φN

λ (s) dνb(λ)

]
ϕ(t) dt

=

∫
R+

ΦN
g (ft)(r, s)ϕ(t) dt.

Using (4.2), this calculation is justified by the fact that∫
R+

∫
R+

|FM (ft)(λ)||FM (g♯r)(λ)| dνb(λ)|ϕ(t)| dt ≤ Cϕ,2∥f∥L2(µ)∥g♯r∥L2(µ) < ∞.

This ends the proof of the theorem.

As in the same of Theorem 5.4, we obtain the following result.

Theorem 5.5. Let g ∈ L2(µ) be a canonical Sturm-Liouville wavelet, and Let ϕ be a measurable

function on R+ satisfying the conditions (4.5) and (4.7). Then for f ∈ L1(µ) ∩ L2(µ) we have

ΦN
g (H∗

ϕf)(r, s) =

∫
R+

ΦN
g (f∗

t )(r, s)ϕ(t) dt,

where f∗
t (x) = f(tx).

Proof. Let g ∈ L2(µ) be a canonical Sturm-Liouville wavelet, and let f ∈ L1(µ) ∩ L2(µ). From

Remark 4.4 we have H∗
ϕf ∈ L2(µ). Then by (5.7) and Theorem 4.5, we get

ΦN
g (H∗

ϕf)(r, s) =

∫
R+

e−
id
2bλ

2

FM (H∗
ϕf)(λ)F

M (g)(rλ)φN
λ (s) dνb(λ)

=

∫
R+

e−
id
2bλ

2

[∫
R+

FM (f∗
t )(λ)ϕ(t) dt

]
FM (g)(rλ)φN

λ (s) dνb(λ)
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=

∫
R+

[∫
R+

e−
id
2bλ

2

FM (f∗
t )(λ)F

M (g)(rλ)φN
λ (s) dνb(λ)

]
ϕ(t) dt

=

∫
R+

ΦN
g (f∗

t )(r, s)ϕ(t) dt.

This calculation is justified by the fact that∫
R+

∫
R+

|FM (f∗
t )(λ)||FM (g♯r)(λ)| dνb(λ)|ϕ(t)| dt ≤ Cϕ,2∥f∥L2(µ)∥g♯r∥L2(µ) < ∞.

This ends the proof of the theorem.

Conclusion

In this work we have succeeded in generalizing the results of Móricz for the classical Hausdorff

operator [38], Upadhyay et al. for the Hankel Hausdorff operator [36, 37] and Daher et al. for the

Dunkl Hausdorff operator [7, 8] to the setting of canonical Sturm-Liouville theory. In this paper,

we have studied the canonical Sturm-Liouville Hausdorff operator on the Lebesgue space Lp(µ),

p ∈ [1,∞). Note that if M =

 0 1

−1 0

, we obtain the results of the classical Sturm-Liouville

case.
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