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ABSTRACT

We provide new characterizations of the bicomplex har-
monic and strongly bc-harmonic functions in terms of bc-
holomorphic functions. An extension to the be-polyharmonic
setting is investigated. We also derive similar bicomplex ana-

log for strongly be-polyharmonic functions of finite bi-order.
RESUMEN
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similares para funciones fuertemente be-poliarménicas de bi-

orden finito.
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1 Introduction

Polyharmonic functions with respect to the familiar Laplace operator are a natural extension of
harmonic functions [7]. The latter have been extensively studied in the literature [7,11,28] and
have played a crucial role in different areas of mathematics and physics, including the theory of
holomorphic functions, the study of elliptic partial differential equations, minimal surfaces, digital
processing and electrical engineering. Recall that a 2m times continuously differentiable complex-
valued function f in the n-dimensional Euclidean space R™ is said to be polyharmonic of order m
in a domain Q C R™, if it satisfies A™ f(z) = 0 for x € §, where A™ is the m-th iterate of the

Laplace operator

A—<++"‘+)7 x = (x122,...,Ty).
X Xz

For m = 2, they are the so-called biharmonic functions, intervening in elasticity theory. We should
point out that polyharmonic functions have been studied by the end of the nineteenth century by
the classical paper [4] by Almansi. His main result states that for every polyharmonic function f
of order m on a star domain €, there exist some harmonic functions hy, k = 0,...,m, on € such
that

F(@) = 22" () + 22D by (2) + -+ ho(2).

This extends in fact the Gauss decomposition of a polynomial [3,26]. The development of their
theory is due to Nicolesco [30] and Aronszajn [6] works. Recently, they have been the subject
of many investigations in a variety of mathematical and engineering fields, including numerical
analysis, approximation of functions, wavelet analysis, the construction of multivariate splines and
image processing. For a broader overview of these matters and its various applications see, e.g.

[5,8,22,26,29] and the references therein.

On the other hand, the analysis within the bicomplex numbers generalizing complex numbers is
currently a fully developed field of study. Its introduction goes back to Segre [39]. Next, they have
been elaborated by the Italian school in the early twentieth century [14,40]. Comprehensive studies
were later carried out in [32,34,41]. In the last decades, they have been rediscovered, developed,
and have attracted growing attention with some intriguing new advances with wide applications
[2,9,12,13,18,19,21,31,37,38,42]. In fact, they have been used to discuss different aspects of the
bicomplex neural networks [25,43|, and furthermore serve as an appropriate model for representing
color image encoding in image processing [3,17]. Bicomplex analysis was also investigated in the
finite element method with a significant improvement when compared to the real and complex
cases [33]. Moreover, they are an ideal context to extend the classical results concerning signal

processing and time-frequency analysis using tools from frame theory [15].
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One of the well-developed axes in bicomplex analysis is the theory of holomorphic functions of a

bicomplex variable. In fact, it was widely studied in [32] (see also [14,36,40]) with a close connection
with functional calculus, theory of function spaces and integral transforms [15,19,21]. Contrary
to this theory, harmonic and potential theories are new areas of research that emerge within the
framework of bicomplex numbers. For some of their fundamentals, one refers for instance to [1,16].
Notice that different bicomplex analogs of the classical mean value theorems (MVT) have been
obtained in [1] for be-harmonic and strongly be-harmonic functions, as well as their analytical
and geometrical converses, including the bicomplex analog of Hansen and Nadirashvili’s result
[23]. While a complete characterization of hyperbolic-valued be-harmonic functions, in terms of
the bicomplex holomorphic functions, has been provided in [16]. It is proved in particular that a
real-valued bicomplex harmonic function is not necessarily the hyperbolic real part of a bicomplex
holomorphic function, but of a bicomplex polyholomorphic one. A result that was next extended

to the bicomplex polyharmonic functions.

In the present paper, we intend to pursue such investigation of extending to bicomplex context
the fecund theory of harmonic and polyharmonic functions of complex variable. In fact, we are
concerned with the bicomplex versions of some known results satisfied by the classical harmonic
functions on the complex plane C. Namely, we establish a concrete characterization of the strongly
be-harmonic functions (Theorem 3.1), as well as different bicomplex analogs of the additive de-
composition theorem for be-harmonic and strongly be-harmonic functions. The initial motivation
for the second task is a classical fact in complex analysis asserting that harmonic functions are
exactly those that can be rewritten as H + G for certain holomorphic functions H and G, which
usually is proved using the characterization of holomorphic functions in terms of the Wirtinger
operators. The proof of “only if” can also be handled starting from the fact that a real-valued
harmonic function is the real part of a holomorphic function, which fails when dealing with bc-
harmonic functions as pointed out in [16]. Accordingly, it seems to be natural and interesting
to know whether be-harmonic (or be-polyharmonic in general) functions can still have a similar
additive decomposition. This paper contains then an answer to this question. To this end, one
makes use of the expected characterization of an hyperbolic-valued be-harmonic function F' being
the hyperbolic real part of a be-holomorphic function if and only if F' belongs to the kernels of some
bicomplex first order differential operators. We also show that a bicomplex-valued function F' on
BC in ker(0z) Nker(9z1) is be-harmonic if and only if there exist certain bicomplex holomorphic
functions H and G such that F' = H + G*, where % denotes the complex conjugation in BC with
respect to the bicomplex ij. More generally, we derive an additional decomposition without as-
suming the condition of belonging to ker(dz)Nker(dy+ ), see Theorem 3.7. Similar characterization
for be-polyharmonic functions of finite order in terms of special subclass of be-polyholomorphic
functions is also obtained in Theorem 3.3. The main tool in its proof relies on [16, Proposition

3.8]. However, for a formal proof, see Remark 3.4, where one makes use of Proposition 4.4 in
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[16], giving a bicomplex analog of Almansi’s theorem for the representation of be-polyharmonic in

terms of be-harmonic functions. An explicit characterization of the so-called strongly bc-harmonic
is also provided (Theorem 3.1). This result is then employed to give a precise description of the
be-harmonic functions arising as Hy + HY + H; + }ng, for some bc-holomorphic functions Hy,
¢ =0,1,2,3. See Theorem 3.5 for an exact statement. The motivation for considering strongly
be-harmonic functions lies in the fact that an explicit and complete description of some spectral
aspects of the bc-harmonic functions needs in general an additional harmonicity condition with
respect to the x-conjugation, see for example [1,2]. This phenomena will be confirmed in the

present investigation.

We anticipate that the findings will be helpful for ulterior uses and applications. In fact, we
claim that they can be employed to give the explicit formula for special bicomplex Bergman and
Bargmann spaces of be-harmonic functions as well as the integral representation for their elements
by Bargmann type transform. We also anticipate extending the obtained results to the bicomplex
analog of the so-called (o, 8)-harmonic functions (see e.g. [10,20,24] and the references therein),
which are defined as those that are twice continuously differentiable functions w solutions of the
homogeneous equation Lg su = 0 on the complex plane (¢ = 0) or the hyperbolic unit disc
(e = 41), where
api=1- elz?) {(1 —¢l2[*)A + azd. + Bz0z — aB} .

Notice that for « = —f, it has been initiated and implicitly investigated in [2], by considering a

pair of bicomplex magnetic Laplacians on BC and the disc.

The paper is outlined as follows. In Section 2, we fix the notations, including those announced
above and related to the bicomplex numbers. We also define the bicomplex Laplace type operator
and different notions of be-harmonicity that we will work with. Section 3 deals with the proof
of Theorem 3.1, giving a complete description of strongly bc-harmonic functions, as well as the
additive decomposition theorems characterizing the be-harmonic (Theorems 3.2 and 3.7) and be-
polyharmonic (Theorem 3.3) functions. The last section deals with some concluding remarks
to answer the question how can the obtained conclusions be properly adapted to product-type

domains.

2 Preliminaries

In this section, we briefly review some basic and needed notions from bicomplex analysis, we fix
notations, and we introduce the different notions of harmonicity in the bicomplex setting that we

will consider in this paper.
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2.1 Bicomplex numbers

Bicomplex numbers are defined by complexifying the complex numbers z = z + iy € C (z,y € R).
Their 4-dimensional real algebra is then defined as BC = {Z = 21 + jzo; 21,22 € C}, where j is
an imaginary unit, j2 = —1, independent of ¢ and satisfying ij = ji =: k. This turns k into what
is known as hyperbolic unit, leading to the particular subset D of hyperbolic numbers, which is
constituted of the bi-reals = + ky. The computation rules in BC extend, in a natural way, those
in C, giving rise to similar algebraic properties, except for division. More precisely, the null cone

coincides with N'C = {A(1 £ij); A € C, A # 0}. The particular elements

(1 +1j) (1 —1j)
ey = and e_ =
* 2 2
are idempotent and satisfy e;e_ = 0. Moreover, they yield the idempotent decomposition ae; +
Be_ = Z of every Z = z1 + jzo € BC, with unique complex components

a =z —izg=: Projt(z1 +jz) and B =2z +iz=: Proj (2 + jz).
Thus, the map P = (Proj*, Proj™),
P21+ jz2) i= (21 —iz9, 21 +i22) = (o, B), (2.1)

realizes the algebra isomorphism BC ~ C & C. Given such decomposition, the set D reads equiv-
alently as the set of all ze, + ye_ with x,y € R, leading to the partial order < (zey + ye_ =<
ey +y'e_ifx <z’ andy <y’ in R). A particular exception in the theory of bicomplex numbers is
the attribution of three complex conjugates Zt = 21 —jz = Bey +ae_, Z = i +i7 = Bey +ae_,
7* = 7] — jZ5 = aey + PBe_, to each bicomplex number Z = z; + jz,. By means of the above

projection operators, one defines
QF := Proj*(Q) = {z1 Fizn € C, 21 + jz € Q}, (2.2)

for given Q C BC. We will write Q = Q%e, + Q e_, whenever ) is a generic product-type set
in BC, i.e. those for which there exists a one-to-one correspondence from € onto Qte, + Q7 e_.
By Theorem 8.6 in [32, p. 37], such product-type sets are exactly those subsets in BC such that
P(Q) = QF x Q7, where P is as in (2.1). It should be pointed out that the openness of the
components Q% in C follows from the openness of Q in BC, which is seen as the four-dimensional
Euclidean space (see Riley’s notes [34] or [32, Theorem 8.7]). For further details on the different

topological considerations related to BC, one refers to [32, 34].
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2.2 Bicomplex holomorphy

Recall that a bicomplex-valued function
F(Z) = Fi(z1,22) + jFa(z1, 22),
on a given open set ) C BC, is said in [32] to be bicomplex holomorphic (bc-holomorphic for short)
in Q, if for every Zy € 2, the bicomplex limit
i %o+ H) - F(Z)

H—0 H
H¢NC

is finite. Another interesting characterization of the bc-holomorphicity is the Ringleb decompo-
sition theorem [35] (see also [32, Theorem 15.5]), asserting that a bicomplex-valued function f is

be-holomorphic if and only if it is of the form
f(Z) = flaeq + Be-) = ¢ (a)es + ¢~ (Ble-, (2.3)

where ¢* : C — C are holomorphic C-valued functions on C. For a product-type domain this
remains equivalent to Fj, Fy be holomorphic in the complex variables (z1,22) € QT x Q= and

satisfying in addition the complex Cauchy-Riemann equations [36, Theorem 1]

OF _OF, | OF O
0z, Oz 0z Oz

Analogously to the classical complex derivatives 0, = /9% and its complex conjugate dz = 9/0z,

there are the first order differential operators with respect to the different bicomplex conjugates
o0 (0 0N 0 1[0 .0
20z " 2\0m Jon) T oz 2\om om)

g, 90 _1(0 0N 5 _ 0 _1(0 .0
2=zt T 9\os o) 927 57 T o\on om )

which can be used to provide a special realization of the so-called bicomplex holomorphic functions

as solutions of a system of linear differential equations with constant coefficients. Namely, a real
differentiable bicomplex-valued function F' on an open set in BC is be-holomorphic if and only if

it is solution of (see [13, Theorem 2.7] or also [27, p. 159])

OF oF  OF

o0zZ* 0Zt 9z
The system provided in (2.4) is a central tool in the theory of be-holomorphic functions, and can
be used to extend the be-holomorphy to polyanalytic setting, so that the discussed be-holomorphic

functions appear as the (1,1, 1)-bc holomorphic functions in the definition below.
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Definition 2.1 ([21]). A bicomplez—valued function F' having continuous partial derivatives on an

open set Q C BC, up to order 2max(m,n, k), and satisfying the system

OF.F = 04F = 05 F =0 (2.5)

is said to be (m,n, k)-bc-polyholomorphic on ).

An explicit characterization of these functions has been obtained in [16, Proposition 3.8|.
Proposition 2.2. The bicomplex-valued (m,n, k)-be-polyholomorphic functions on BC are exactly

those that can be expanded as

F(Z) = z_:
£1=0

E

—1
z ,ZVZZZTZSH&,@%% (Z) (26)
0

n

~1
£2=O Kd
for given bc-holomorphic functions Hy, ¢, .0, -

This result leads to an immediate extension of the Ringleb result (2.3) to these class of functions,

which reads simply for the (m,1,1) case as

F(Z =aey + fe_) = <z_: ak¢k(a)> et + (Z_: ﬁkwk(ﬁ)> €—,

k=0 k=0

for certain be-holomorphic functions ¢ and .

2.3 Bicomplex harmonicity

The existence of the different types of conjugates in the set of bicomplex numbers leads to different
natural analogs of the classical Laplace operator

1/ 02 0? 0? .
A:=7 (ax M ay> T oo CTETW @1)

see [16] for details. The so-called be-Laplacian Ap. as well as its {-conjugate AZC given by

2 2
JAVIRS 4 and AZC = g —.
0Zt0Z

T 0207

are examples of such Laplacians. Their action on a given sufficiently real differential bicomplex-
valued function is well-defined and to be understood in the sense of Remark 2.5 in [16]. Thus,
for a twice continuously differentiable function F = FTe, + F~e_, we have the idempotent
decomposition Ay, = Aqey +Age_ and AZC = Age; + Aye_. By considering the complex-valued

component functions h*(«a, 8) := F*(Z) with Z = ae; + Be_, this action reads

[AueF)(Z) = ([Aah™](a, B))es + ((Aph~](e, B))e—. (2.8)
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Being indeed, since both dz and Oz« are seen as BC-linear operators and ey - e_ = 0, we have
oF 0 0 _ ont oh~
570 = (Ges + a5e- ) (@ es +1 (. B)e-) = Gl Bles + Gz (Bl

and moreover

20512) = [ 7 (22 )| @) = (s + e ) (Gtasres + o e )

O%ht O%*h~
= aaaa(aa6)6+ + W(aaﬂ)ef

Accordingly, one suggests the following definition.

Definition 2.3 ([16]). Let F be a bicomplez-valued function on an open set  C BC.

(i) F is said to be bicomplex harmonic (be-harmonic) if it is twice continuously real differentiable

and satisfies the be-Laplace equation Ay, = 0 on Q. We denote their set by BHarm($).

(ii) F is said to be be-polyharmonic of order m if it is continuously real differentiable up to order

2m and satisfies the m-th be-Laplace equation Ay =0 on (.

It should be noticed here that the be-polyharmonic functions are closely connected to a special class
of be-polyholomorphic functions as expected in [16]. Their representations in terms of be-harmonic
functions were obtained in [16, Proposition 4.4], which itself is a bicomplex extension of Almansi’s
result [4] for the classical polyharmonic complex-valued functions. For its exact statement, we let

|Z|2F .= ZFZ*F for every Z € BC and k = 0,1,2,...

Proposition 2.4. For every be-polyharmonic function F on BC of order m, there are certain

bc-harmonic functions H, k =0,1,...,m — 1, such that

,_.

|Z|§"’Hk (2.9)
k=0

Remark 2.5. The component functions Hy, in Proposition 2.4 are be-harmonic and they implicitly

depend on Z1 and Z. More precisely, identity (2.9) reads equivalently
F(Z) = (Z”*’“Z*’“AM(Z, ZY + 282" B, (2, Z*)) , (2.10)

for given bicomplex-valued functions Ay, and By, i belonging to ker(dz) Nker(dz+).
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Definition 2.6. Let F' be a bicomplez-valued function on an open set Q C BC.

(i) It is said to be strongly bicomplex harmonic if F and F' are both bc-harmonic.

(i1) It is said to be strongly be-polyharmonic of bi-order (m,n), if it has continuous partial deriva-

tives up to order 2max(m,n) and verifies AI'F =0 and AL FT =0 on Q.

We conclude this section by providing explicit examples for the different classes of bicomplex
holomorphic, polyholomorphic, harmonic and polyharmonic functions, in the i, j,ij = k represen-
tation as well as in the idempotent representation, which can easily constructed making use of the

obtained characterizations. Thus, the functions
(Z"+Z")+ k(Z™ - Z") =2a"er +20%e_
are the elementary bc-holomorphic functions on BC, while
(ZmZ* + Z"ZN) + k(Z™Z* — Z"ZT) = 20 Gey + 2a8"e_
is an example of a (2,2, 1)-polyholomorphic function. The following
ho(Z) = 22T+ 22+ Z*Z + Z*Z = 2R (a(B + B))

is a fundamental example of bc-harmonic function which can not be the real part of any bc-

harmonic function. An example of polyharmonic function is given by the the biharmonic function

Z°Ztho(Z) + ho(Z) = 2{ @B+ 1) ey + (aB+ 1) e_} R (a(B+ B)) -

3 Main results

3.1 Characterization of strongly bc-harmonic functions

The following result provides an explicit characterization of the strongly bc-harmonic functions.

Theorem 3.1. Let F' be a bicomplex-valued function on BC. Then, the function F is strongly
be-harmonic if and only if there are some sequences (Gmn)m.n, (bm.n)mns (Cmn)mn ad (dmn)mn
of bicomplex numbers such that F' has a power series expansion of the form

+o0o +oo

F(Z)=> ) (am,anZT” b Z" 2" + om0 22T 4 dm,nz*mZ") . (31

m=0n=0

converging absolutely and uniformly on any compact set of BC.
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Proof. The “if” follows by direct computation. However, the strongly be-harmonicity of F in (3.1)
in the sense of Definition 2.6 can be handled by observing that the uniformly convergent series in

(3.1) can be rewritten as F' = H + G*, with some functions H and G that can expanded as

fZ%meQ@
m=0

for given bc-holomorphic functions ¢ and ¢, and next employing using the useful facts 0z (¢7) =
(92()", 92:(9) = 92:(6), 9z(6) = (92-(9))', and 951(8) = 9z+(G) as well as 9z(G*) =
(02+(G))" and 951 (G*) = (95(G))".

For the proof of the “only if”, let F'(cves + fe—) = F'(a,B)er + F~(a,f)e— be a strongly be-
harmonic function, with F+, F~ : BC — C. Thus, from Ay.F = 0 and Ay FT = 0, and in par-
ticular A, F*(-,8) =0 and A,F~ (-, 8) = 0, for every fixed complex number 3, one observes that
both the partial components o — F*(a, ) and o — F~(a, 3) are complex-valued harmonic
functions in the complex plane, for every fixed § € C. Therefore, there exist some complex-valued
holomorphic functions H+#, H=#, G+# and G=# on C with power series expansions centered at

the origin such that

“+oo

F*(a,8) = H"P(a) + GFF(a) = Y ap(B)a™ + by (B)a™ (3-2)

m=0

and
—+oo

F(a,B)=H P(a)+GF(a) = Y a,(B)a™ + b, (B)a™, (3.3)

m=0

for all & € C. However, since the partial functions 8 — F*(a, 3) being harmonic, the involved

coefficients N
1 OmF
+ = — =
a,(B) = 1 Dam (0,8), m=0,1,2,...,
and N
1 0™F
b (8) = ——=(0,8), m=0,1,2,...,

m! da™
which are independent of o and @ and seen as functions in the -variable, become C*° and moreover

harmonic on the complex plane. Thus, we write

Hli'ln J’_ Hi and b’l:”ll?L(ﬁ) G%:'HL

+ Gy,

2,m>

for certain holomorphic functions Hi, G5, Hi Gi and G;m on C. Returning back to

1,m> 2m7

(3.2)-(3.3) and using the expansion series of the involved holomorphic functions, we get



CUBO

oe. 1 (2020, On bc and strongly be-polyharmonic functions 215
+oo . .
F(a,8) = HE(B) + Ga (B) + Y (HE,(8) + H3,o () o™ + (GE,,(8) + GE,,.(8)) &
m=1
= —-n —-n
= X (@B + k) @ (0" B A
m,n=0
which gives rise to (3.1). O

3.2 Additive decomposition theorems

We begin with the following.

Theorem 3.2. A bicomplex-valued function F is of the form F = H+G*, for some bc-holomorphic
functions H and G, if and only if it is be-harmonic on BC such that 0zF = 07+ F = 0.

Proof. For given F' = H+G™* such that H and G are be-holomorphic, the function F is be-harmonic

for the smooth function F' satisfies

*F 9 8H+8 oG *—o
8787+ 9Z \9Z* 07+ \\ 9Z* e

Moreover, using the facts 9;(G*) = (07:(G))" and 0z (G*) = (82(6'))*, and keeping in mind
(2.8) it becomes clear that

9zF = 07(H) + 07(G*) = 07(H) + (9+(G))" =0

and

071 F = 071 (H) + 021 (G") = 971 (H) + (07(G))" =0
hold.

For the proof of the converse, we proceed into two steps.

Step 1: Assume that F : BC — D is a hyperbolic-valued bc-harmonic function belonging to
ker(0z) N ker(0zt). Next, observe that by means of [16, Theorem 1.1] there exists a bc-
holomorphic function 7" such that F' = Rep,, (T') := (T + T*)/2, which infers F = H + G*
with H=G =T/2.

Step 2: For the general case when F' does not take values in D, we rewrite it as F' = F} + iFy,

with
F+ F* F — F*
= 5 and F5 = 5

Fy
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Both F; and Fy are hyperbolic-valued functions on BC. From this, it becomes clear that F'

is a be-harmonic if and only if F} and F5 are be-harmonic. Moreover, we necessarily have

232F1 — _21'32}7‘1 = aZF* = (3sz)* =0,

and

20;F) = —2i0z1 Fy = 0,1 F* = (0zF)" = 0.

This implies that the functions F; and F; belong to ker(9z) Nker(dz+). However, from the
first step, we easily conclude that Fy = H1 + G5 and Fy = Hy+ G%, for some be-holomorphic

functions H,; and Gy, £ = 1,2. Now, since i* = —1, it follows

F=(H +Gy)+i(H+G3) = H+ G,

with H = Hy +iHy and G = G1 — iGs. O

The following result extends the previous one to the bc-polyharmonic functions of arbitrary finite
order. The argument in the presented proof is completely different from the one provided for
Theorem 3.2.

Theorem 3.3. Let F be a bicomplex-valued be-polyharmonic function of order m on BC. Then,
there exist certain (m,1,1)-be-polyholomorphic functions H and G such that F = H + G* if and
only if Oz F = 04+ F = 0.

Proof. In the sense of Definition 2.1, the function H 4+ G* is clearly be-polyharmonic, whenever
H and G are be-polyholomorphic of order (m,1,1) and (n,1,1), respectively. Indeed, by setting

£ = max(m,n), we have

4 14 14 12 *
Ab(H +G*) = 0 <8H>+ 0 <8G> =0.

CYARCYAL Y ARANCYAL

To prove the converse, let F' be a bc-polyharmonic function of order m. Then, 0. (0% F) =
ApF = 0. But, under the assumption 0z F = 0zt F' = 0, the function 97’ F' becomes (m, 1, 1)-bc-
polyholomorphic. Accordingly, it can be expanded as

m—1
o F = Z 7",
=0

by means of Proposition 2.2 (with n = k = 1). The involved functions ¢y, £ =0,1,...,m — 1, are
be-holomorphic and can always be rewritten as ¢, = 07}y, for certain be-holomorphic functions
wg¢. Thus, by considering the function

m—1

G=> 7",

£=0
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we get 7. (F* — G*) = 0. But, using again the assumption 0z F = Jz+F = 0, it becomes clear

that F'* — G* = H is a (m, 1, 1)-bc-polyholomorphic function. O

Remark 3.4. The proof of Theorem 3.3 can be handled using Almansi’s theorem for be-polyharmonic
functions (see Proposition 2.4 or Remark 2.5) and by viewing Z and Z' as independent variables.
In fact, for F being a be-polyharmonic function of order m, there exist some be-harmonic functions

Fy, k=0,1,...,m —1, such that
2(m—1)
F(Z)=Fo+|Z|pcFL + -+ |Z],. " ' Fn-1.

Accordingly, the assumption Oz F = 04+ F = 0 becomes equivalent to 0z Fy, = 0z Fy = 0 for every
k=0,1,...,m — 1. Therefore, making appeal to the discussion provided in the proof of Theorem
3.2 for each Fy,, there exist some be-holomorphic functions Hy and Gy, such that Fy, = Hj, + G5,.

Hence, one derives F = H + G*, where

m—1 m—1
H=)> |Z|}FH, and G =Y |Z|}FGy.
k=0 k=0

Given such result (Theorem 3.3), the next one provides a sufficient condition to decompose a given
strongly be-harmonic function F' as F' = Hy + Hf + H2T + PNI3 for certain bc-holomorphic function
H. Notice, that the converse is clear since the different bicomplex conjugates H*, HT, H of a be-
holomorphic function H are obviously bc-harmonic, and moreover they are strongly be-harmonic,
which shows that the functions Hy+ Hy JrH;f +ﬁ3, arising as the sum of the different conjugates of
bec-holomorphic functions for some bicomplex holomorphic functions Hy, £ = 0, 1,2, 3, are strongly

bc-harmonic.

Theorem 3.5. A bicomplez-valued strongly be-harmonic function F in BC is of the form F =
Ho+ Hf + H;r + F~I3, for some be-holomorphic functions Hy, £ =0,1,2,3, if

gmtntitkp
dZm Zxn 7t Z
holds, for every non-negative integers m,n,j and k such that mn = jk = 0.

Proof. The key observation is contained in the characterization provided by Theorem 3.1. In fact,

the involved bicomplex constants in (3.1) are given by

oL o 0 _ 1 amE
T mInl 9Zmzin 0 T mIn) ggmgn ]
1 8m+nF 1 am—&-nF

A )}

m.n — 0 5 m,n ~
cm, mlnl dZ*mZin ) ’ mln! §zxmgn
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Accordingly, under the assumption (3.4), which reads equivalently as

am+jF 8m+jF 3k+”F ak+nF

YA a7z 0 = s (0= o= (0 =0, (3.5)

we get amp = dmy = 0, for every n > 1, and by, , = Cm,p = 0, for any m > 1. Thus, the
expansion series of F' reduces further to F' = Hy + H; + H2T + f[g, where Hy, Hi, Hy and H3 are

the be-holomorphic functions given by

+oo —+oo +oo —+oo _
Hy:= > anZ™, Hyw=>» dy"Z™, Hy:=Y chZ" and Hs=Y b,2",
m=0 m=0 n=0 n=0
where we have set ay, := ay 0, di := dgock := co,r and by, 1= by . O

Remark 3.6. Theorem 3.5 can be reproved by considering an equivalent sufficient condition, lead-

ing 1o Gp,p = dpm,n =0 for every m > 1 and by, 5, = ¢pyn =0 for any n > 1.

Below, we give an additional additive decomposition theorem, which is specific for the bc-harmonic

functions.

Theorem 3.7. We have BHarm(BC) = (ker (9z+) + ker (03)) N C>(BC). More precisely, H is

a be-harmonic function if and only if it can be expanded as

“+o0
H(Z)=Y_ ZFA(Z',Z)+ ZVBi(Z,Z7), (3.6)
k=0

for some Ay, € ker (9z) Nker (9z+) and By, € ker (071) Nker (93).

Proof. Let H be a bc-harmonic function and write H(Z) = lf\IJr(oz,B)eJr +H- (a, B)e—. Hence,
the functions H+(-,b) : C — C and H~(a,-) : C —» C are harmonic on C. Thus, for every
fixed a,b € C, the involved functions can be decomposed as H* (a,b) = h;’l(a) + h;"Q(&) and
H~(a, ) = hy''(8) + hy2(B) for some holmorphic functions hy', h? : C — C and h; ', h;? :
C — C, thanks to the additive decomposition theorem for classical harmonic functions. Therefore,
by setting
HY(Z|a,b) .= hi (@)es + hy(B)e

and

H®(Z|a,b) := b *@)es + h;*(B)e_,
we have 0z (HM (-|a,b)) = 3§(H(2)<'|a7 b))) and

H(Z)=HY(Z|a,B) + H?(Z|o, B), Z =aey + fe_. (3.7)

The functions H®) and H® belong clearly to ker (9z-) and ker (82)7 respectively. The inverse

inclusion is immediate. O



CUBO

On bc and strongly be-polyharmonic functions 219

28, 1 (2026)

In Proposition 3.10 below, it is proved that the involved H(), H(?) A and By in (3.7) and (3.6)
are connected to each other by some additive separate bc-holomorphic function, which extends
the notion of separate holomorphy to the bicomplex setting. Let F' be a given bicomplex-valued
function on BC, identified to ﬁ(a,ﬂ) = F(aey + Be_) on C2. Define the partial functions
F,:C — BC and F? : C — BC given by

~

Fo(B) = FP(a) = F(a, ).

Definition 3.8. A bicomplez-valued function F' on BC is said to be separately holomorphic if F,
and FP are both holomorphic in C.

Accordingly, we have the following characterization.

Proposition 3.9. Let F' be a bicomplez-valued function on BC. Then, the following assertions

are equivalent.

(i) F is separate holomorphic on ).

(i1) F satisfies

or  OF
7 95 (3.8)
(ii) F has the expansion
“+o0
F(Z)= Y CpnZ™Z™, Cp,€BC. (3.9)
m,n=0
Proof. The separate holomorphy of F' reads OF /0a = OF /03 =0, and therefore
Ft  9F~ OFt OF-
OFT _oF” _oFT _or _, (3.10)

oa oa 0B as
This is in fact also equivalent to

8(ﬁ+e++ﬁ’e,) a(ﬁ’e++ﬁ+e,) 8(ﬁ+e++ﬁ*e,) '

oz* 0Z* YA

be identically zero on BC, which infers (3.8). Next, by means of (3.10), the functions in (i7) are

those for which we have
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and therefore

+oo
F(Z)= Y CnnZ"Z™, with Cpn=a, eq+a,, e .
m,n=0
The converse (#i7) implies (i¢) is clearly immediate. O

Proposition 3.10. Keep the notations of HY, H®) | A, and By, as above. Then, for any H €
BHarm(BC), there exists a separate be-holomorphic function G such that

+o0o +oo
HY(Z|a,8) =Y Z°A (21, 2)+ G(Z) and HP(Z|o, )= 2" B(2,2") - G(Z).
k=0 k=0

Proof. For every Z = aey + fe_, set

+oo too
GM(2) =HY(Z|a,f) = > 2"An(Z",Z) and GP(Z):= HD(Z|a,B) - 2"Bi(Z, 27).
k=0 k=0

Then, from (3.7) and (3.6), we conclude that G(Y) = —G?). However, since 0z (A,) = 02+ (Ax) = 0,
dz1(By) = 03(By) = 0 and 0z- (HW(|a,b)) = 0z(HP(-|a,b)) = 0, we get 07:G = 9z-G1) =0
and 0;G = 8ZG(1) = 0. This completes the proof by setting G := G = —G?) € ker(dz-) N
ker(05). O

4 Concluding remarks

The conclusions of Theorems 3.2, 3.3, and 3.7 remain valid for arbitrary generic product-type
domains in BC without additional assumptions, while Theorems 3.1 and 3.5 remain correct on
special product-type domains in BC. In fact, the statements of Theorems 3.5 and 3.7 are both

valid on a given D(0,rq,r2), where
D(Zy,r1,r2) :={Z € BC; ZZ* < rie4 +rqe_},

for given nonnegative reals 1 and 5. Assertion of Theorem 3.5 also holds for arbitrary D(Zy,r1,72)

by imposing .
omTnTITER

ogmzzize =0 -y
for every positive integers m,n, j and k, as a sufficient condition for a given strongly bc-harmonic
bicomplex-valued function F' on D(Zy,r1,72) to be of the form F' = Hy+ Hf + H;r + ﬁg, for some
be-holomorphic functions Hy, £ = 0,1,2,3, on D(Zy,r1,72). Analogously to Theorem 3.1, one

asserts that a given bicomplex-valued function F' is strongly bc-harmonic on a product domain {2
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if and only if for any Zy € Q and any 71,72 > 0 such that D(Zy,r1,7m2) C Q, F can be expanded as

+oo — n
F(Z)= " amn(Z— Z0)™(Z = Z0)" + bmn(Z — Z0)™(Z — Zo)
m,n=0

n

+ emn(Z — Zp)"™(Z — Zo)™ + A (Z — Z0)"™(Z — Zy)

on D(Zy,r1,72).
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