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ABSTRACT

We provide new characterizations of the bicomplex har-
monic and strongly bc-harmonic functions in terms of bc-
holomorphic functions. An extension to the bc-polyharmonic
setting is investigated. We also derive similar bicomplex ana-
log for strongly bc-polyharmonic functions of finite bi-order.

RESUMEN

Entregamos nuevas caracterizaciones de las funciones bicom-
plejas armónicas y fuertemente bc-armónicas en términos de
funciones bc-holomorfas. Se investiga una extensión al marco
bc-poliarmónico. También derivamos análogos bicomplejos
similares para funciones fuertemente bc-poliarmónicas de bi-
orden finito.
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1 Introduction

Polyharmonic functions with respect to the familiar Laplace operator are a natural extension of

harmonic functions [7]. The latter have been extensively studied in the literature [7, 11, 28] and

have played a crucial role in different areas of mathematics and physics, including the theory of

holomorphic functions, the study of elliptic partial differential equations, minimal surfaces, digital

processing and electrical engineering. Recall that a 2m times continuously differentiable complex-

valued function f in the n-dimensional Euclidean space Rn is said to be polyharmonic of order m

in a domain Ω ⊂ Rn, if it satisfies ∆mf(x) = 0 for x ∈ Ω, where ∆m is the m-th iterate of the

Laplace operator

∆ =
1

2

(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

)
, x = (x1x2, . . . , xn).

For m = 2, they are the so-called biharmonic functions, intervening in elasticity theory. We should

point out that polyharmonic functions have been studied by the end of the nineteenth century by

the classical paper [4] by Almansi. His main result states that for every polyharmonic function f

of order m on a star domain Ω, there exist some harmonic functions hk, k = 0, . . . ,m, on Ω such

that

f(x) = |x|2mhm(x) + |x|2(m−1)hm−1(x) + · · ·+ h0(x).

This extends in fact the Gauss decomposition of a polynomial [3, 26]. The development of their

theory is due to Nicolesco [30] and Aronszajn [6] works. Recently, they have been the subject

of many investigations in a variety of mathematical and engineering fields, including numerical

analysis, approximation of functions, wavelet analysis, the construction of multivariate splines and

image processing. For a broader overview of these matters and its various applications see, e.g.

[5, 8, 22,26,29] and the references therein.

On the other hand, the analysis within the bicomplex numbers generalizing complex numbers is

currently a fully developed field of study. Its introduction goes back to Segre [39]. Next, they have

been elaborated by the Italian school in the early twentieth century [14,40]. Comprehensive studies

were later carried out in [32, 34, 41]. In the last decades, they have been rediscovered, developed,

and have attracted growing attention with some intriguing new advances with wide applications

[2, 9, 12, 13, 18, 19, 21, 31, 37, 38, 42]. In fact, they have been used to discuss different aspects of the

bicomplex neural networks [25,43], and furthermore serve as an appropriate model for representing

color image encoding in image processing [3, 17]. Bicomplex analysis was also investigated in the

finite element method with a significant improvement when compared to the real and complex

cases [33]. Moreover, they are an ideal context to extend the classical results concerning signal

processing and time-frequency analysis using tools from frame theory [15].
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One of the well-developed axes in bicomplex analysis is the theory of holomorphic functions of a

bicomplex variable. In fact, it was widely studied in [32] (see also [14,36,40]) with a close connection

with functional calculus, theory of function spaces and integral transforms [15, 19, 21]. Contrary

to this theory, harmonic and potential theories are new areas of research that emerge within the

framework of bicomplex numbers. For some of their fundamentals, one refers for instance to [1,16].

Notice that different bicomplex analogs of the classical mean value theorems (MVT) have been

obtained in [1] for bc-harmonic and strongly bc-harmonic functions, as well as their analytical

and geometrical converses, including the bicomplex analog of Hansen and Nadirashvili’s result

[23]. While a complete characterization of hyperbolic-valued bc-harmonic functions, in terms of

the bicomplex holomorphic functions, has been provided in [16]. It is proved in particular that a

real-valued bicomplex harmonic function is not necessarily the hyperbolic real part of a bicomplex

holomorphic function, but of a bicomplex polyholomorphic one. A result that was next extended

to the bicomplex polyharmonic functions.

In the present paper, we intend to pursue such investigation of extending to bicomplex context

the fecund theory of harmonic and polyharmonic functions of complex variable. In fact, we are

concerned with the bicomplex versions of some known results satisfied by the classical harmonic

functions on the complex plane C. Namely, we establish a concrete characterization of the strongly

bc-harmonic functions (Theorem 3.1), as well as different bicomplex analogs of the additive de-

composition theorem for bc-harmonic and strongly bc-harmonic functions. The initial motivation

for the second task is a classical fact in complex analysis asserting that harmonic functions are

exactly those that can be rewritten as H + G for certain holomorphic functions H and G, which

usually is proved using the characterization of holomorphic functions in terms of the Wirtinger

operators. The proof of “only if” can also be handled starting from the fact that a real-valued

harmonic function is the real part of a holomorphic function, which fails when dealing with bc-

harmonic functions as pointed out in [16]. Accordingly, it seems to be natural and interesting

to know whether bc-harmonic (or bc-polyharmonic in general) functions can still have a similar

additive decomposition. This paper contains then an answer to this question. To this end, one

makes use of the expected characterization of an hyperbolic-valued bc-harmonic function F being

the hyperbolic real part of a bc-holomorphic function if and only if F belongs to the kernels of some

bicomplex first order differential operators. We also show that a bicomplex-valued function F on

BC in ker(∂Z̃) ∩ ker(∂Z†) is bc-harmonic if and only if there exist certain bicomplex holomorphic

functions H and G such that F = H +G∗, where ∗ denotes the complex conjugation in BC with

respect to the bicomplex ij. More generally, we derive an additional decomposition without as-

suming the condition of belonging to ker(∂Z̃)∩ker(∂Z†), see Theorem 3.7. Similar characterization

for bc-polyharmonic functions of finite order in terms of special subclass of bc-polyholomorphic

functions is also obtained in Theorem 3.3. The main tool in its proof relies on [16, Proposition

3.8]. However, for a formal proof, see Remark 3.4, where one makes use of Proposition 4.4 in
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[16], giving a bicomplex analog of Almansi’s theorem for the representation of bc-polyharmonic in

terms of bc-harmonic functions. An explicit characterization of the so-called strongly bc-harmonic

is also provided (Theorem 3.1). This result is then employed to give a precise description of the

bc-harmonic functions arising as H0 + H∗
1 + H†

2 + H̃3, for some bc-holomorphic functions Hℓ,

ℓ = 0, 1, 2, 3. See Theorem 3.5 for an exact statement. The motivation for considering strongly

bc-harmonic functions lies in the fact that an explicit and complete description of some spectral

aspects of the bc-harmonic functions needs in general an additional harmonicity condition with

respect to the ∗-conjugation, see for example [1, 2]. This phenomena will be confirmed in the

present investigation.

We anticipate that the findings will be helpful for ulterior uses and applications. In fact, we

claim that they can be employed to give the explicit formula for special bicomplex Bergman and

Bargmann spaces of bc-harmonic functions as well as the integral representation for their elements

by Bargmann type transform. We also anticipate extending the obtained results to the bicomplex

analog of the so-called (α, β)-harmonic functions (see e.g. [10, 20, 24] and the references therein),

which are defined as those that are twice continuously differentiable functions u solutions of the

homogeneous equation Lε
α,βu = 0 on the complex plane (ε = 0) or the hyperbolic unit disc

(ε = +1), where

Lε
α,β := (1− ε|z|2)

{
(1− ε|z|2)∆ + αz∂z + βz∂z − αβ

}
.

Notice that for α = −β, it has been initiated and implicitly investigated in [2], by considering a

pair of bicomplex magnetic Laplacians on BC and the disc.

The paper is outlined as follows. In Section 2, we fix the notations, including those announced

above and related to the bicomplex numbers. We also define the bicomplex Laplace type operator

and different notions of bc-harmonicity that we will work with. Section 3 deals with the proof

of Theorem 3.1, giving a complete description of strongly bc-harmonic functions, as well as the

additive decomposition theorems characterizing the bc-harmonic (Theorems 3.2 and 3.7) and bc-

polyharmonic (Theorem 3.3) functions. The last section deals with some concluding remarks

to answer the question how can the obtained conclusions be properly adapted to product-type

domains.

2 Preliminaries

In this section, we briefly review some basic and needed notions from bicomplex analysis, we fix

notations, and we introduce the different notions of harmonicity in the bicomplex setting that we

will consider in this paper.
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2.1 Bicomplex numbers

Bicomplex numbers are defined by complexifying the complex numbers z = x+ iy ∈ C (x, y ∈ R).

Their 4-dimensional real algebra is then defined as BC = {Z = z1 + jz2; z1, z2 ∈ C}, where j is

an imaginary unit, j2 = −1, independent of i and satisfying ij = ji =: k. This turns k into what

is known as hyperbolic unit, leading to the particular subset D of hyperbolic numbers, which is

constituted of the bi-reals x + ky. The computation rules in BC extend, in a natural way, those

in C, giving rise to similar algebraic properties, except for division. More precisely, the null cone

coincides with NC = {λ(1± ij); λ ∈ C, λ ̸= 0}. The particular elements

e+ =
(1 + ij)

2
and e− =

(1− ij)

2

are idempotent and satisfy e+e− = 0. Moreover, they yield the idempotent decomposition αe+ +

βe− = Z of every Z = z1 + jz2 ∈ BC, with unique complex components

α = z1 − iz2 =: Proj+(z1 + jz2) and β = z1 + iz2 =: Proj−(z1 + jz2).

Thus, the map P = (Proj+, P roj−),

P (z1 + jz2) := (z1 − iz2, z1 + iz2) = (α, β), (2.1)

realizes the algebra isomorphism BC ≃ C ⊕ C. Given such decomposition, the set D reads equiv-

alently as the set of all xe+ + ye− with x, y ∈ R, leading to the partial order ⪯ (xe+ + ye− ⪯
x′e++y′e− if x ≤ x′ and y ≤ y′ in R). A particular exception in the theory of bicomplex numbers is

the attribution of three complex conjugates Z† = z1−jz2 = βe++αe−, Z̃ = z1+jz2 = βe++αe−,

Z∗ = z1 − jz2 = αe+ + βe−, to each bicomplex number Z = z1 + jz2. By means of the above

projection operators, one defines

Ω± := Proj±(Ω) = {z1 ∓ iz2 ∈ C, z1 + jz2 ∈ Ω}, (2.2)

for given Ω ⊂ BC. We will write Ω = Ω+e+ + Ω−e−, whenever Ω is a generic product-type set

in BC, i.e. those for which there exists a one-to-one correspondence from Ω onto Ω+e+ + Ω−e−.

By Theorem 8.6 in [32, p. 37], such product-type sets are exactly those subsets in BC such that

P (Ω) = Ω+ × Ω−, where P is as in (2.1). It should be pointed out that the openness of the

components Ω± in C follows from the openness of Ω in BC, which is seen as the four-dimensional

Euclidean space (see Riley’s notes [34] or [32, Theorem 8.7]). For further details on the different

topological considerations related to BC, one refers to [32,34].
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2.2 Bicomplex holomorphy

Recall that a bicomplex-valued function

F (Z) = F1(z1, z2) + jF2(z1, z2),

on a given open set Ω ⊂ BC, is said in [32] to be bicomplex holomorphic (bc-holomorphic for short)

in Ω, if for every Z0 ∈ Ω, the bicomplex limit

lim
H→0
H/∈NC

F (Z0 +H)− F (Z0)

H

is finite. Another interesting characterization of the bc-holomorphicity is the Ringleb decompo-

sition theorem [35] (see also [32, Theorem 15.5]), asserting that a bicomplex-valued function f is

bc-holomorphic if and only if it is of the form

f(Z) = f(αe+ + βe−) = ϕ+(α)e+ + ϕ−(β)e−, (2.3)

where ϕ± : C −→ C are holomorphic C-valued functions on C. For a product-type domain this

remains equivalent to F1, F2 be holomorphic in the complex variables (z1, z2) ∈ Ω+ × Ω− and

satisfying in addition the complex Cauchy-Riemann equations [36, Theorem 1]

∂F1

∂z1
=
∂F2

∂z2
and

∂F2

∂z1
= −∂F1

∂z2
.

Analogously to the classical complex derivatives ∂z = ∂/∂z and its complex conjugate ∂z = ∂/∂z,

there are the first order differential operators with respect to the different bicomplex conjugates

∂Z =
∂

∂Z
:=

1

2

(
∂

∂z1
− j

∂

∂z2

)
, ∂Z∗ =

∂

∂Z∗ :=
1

2

(
∂

∂z1
+ j

∂

∂z2

)
,

∂Z† =
∂

∂Z† :=
1

2

(
∂

∂z1
+ j

∂

∂z2

)
, ∂Z̃ =

∂

∂Z̃
:=

1

2

(
∂

∂z1
− j

∂

∂z2

)
,

which can be used to provide a special realization of the so-called bicomplex holomorphic functions

as solutions of a system of linear differential equations with constant coefficients. Namely, a real

differentiable bicomplex-valued function F on an open set in BC is bc-holomorphic if and only if

it is solution of (see [13, Theorem 2.7] or also [27, p. 159])

∂F

∂Z∗ =
∂F

∂Z† =
∂F

∂Z̃
= 0. (2.4)

The system provided in (2.4) is a central tool in the theory of bc-holomorphic functions, and can

be used to extend the bc-holomorphy to polyanalytic setting, so that the discussed bc-holomorphic

functions appear as the (1, 1, 1)-bc holomorphic functions in the definition below.
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Definition 2.1 ([21]). A bicomplex–valued function F having continuous partial derivatives on an

open set Ω ⊂ BC, up to order 2max(m,n, k), and satisfying the system

∂mZ∗F = ∂n
Z̃
F = ∂kZ†F = 0 (2.5)

is said to be (m,n, k)-bc-polyholomorphic on Ω.

An explicit characterization of these functions has been obtained in [16, Proposition 3.8].

Proposition 2.2. The bicomplex-valued (m,n, k)-bc-polyholomorphic functions on BC are exactly

those that can be expanded as

F (Z) =

m−1∑
ℓ1=0

n−1∑
ℓ2=0

k−1∑
ℓ3=0

Z∗ℓ1Z̃ℓ2Z†ℓ3Hℓ1,ℓ2,ℓ3(Z) (2.6)

for given bc-holomorphic functions Hℓ1,ℓ2,ℓ3 .

This result leads to an immediate extension of the Ringleb result (2.3) to these class of functions,

which reads simply for the (m, 1, 1) case as

F (Z = αe+ + βe−) =

(
m−1∑
k=0

αkϕk(α)

)
e+ +

(
m−1∑
k=0

β
k
ψk(β)

)
e−,

for certain bc-holomorphic functions ϕk and ψk.

2.3 Bicomplex harmonicity

The existence of the different types of conjugates in the set of bicomplex numbers leads to different

natural analogs of the classical Laplace operator

∆z =
1

4

(
∂2

∂x2
+

∂2

∂y2

)
=

∂2

∂z∂z
, z = x+ iy, (2.7)

see [16] for details. The so-called bc-Laplacian ∆bc as well as its †-conjugate ∆†
bc given by

∆bc :=
∂2

∂Z∂Z∗ and ∆†
bc :=

∂2

∂Z†∂Z̃
.

are examples of such Laplacians. Their action on a given sufficiently real differential bicomplex-

valued function is well-defined and to be understood in the sense of Remark 2.5 in [16]. Thus,

for a twice continuously differentiable function F = F+e+ + F−e−, we have the idempotent

decomposition ∆bc = ∆αe++∆βe− and ∆†
bc = ∆βe++∆αe−. By considering the complex-valued

component functions h±(α, β) := F±(Z) with Z = αe+ + βe−, this action reads

[∆bcF ](Z) = ([∆αh
+](α, β))e+ + ([∆βh

−](α, β))e−. (2.8)
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Being indeed, since both ∂Z and ∂Z∗ are seen as BC-linear operators and e+ · e− = 0, we have

∂F

∂Z∗ (Z) =

(
∂

∂α
e+ +

∂

∂β
e−

)(
h+(α, β)e+ + h−(α, β)e−

)
=
∂h+

∂α
(α, β)e+ +

∂h−

∂β
(α, β)e−,

and moreover

[∆bcF ](Z) =

[
∂

∂Z

(
∂F

∂Z∗

)]
(Z) =

(
∂

∂α
e+ +

∂

∂β
e−

)(
∂h+

∂α
(α, β)e+ +

∂h−

∂β
(α, β)e−

)
=
∂2h+

∂α∂α
(α, β)e+ +

∂2h−

∂β∂β
(α, β)e−.

Accordingly, one suggests the following definition.

Definition 2.3 ([16]). Let F be a bicomplex-valued function on an open set Ω ⊂ BC.

(i) F is said to be bicomplex harmonic (bc-harmonic) if it is twice continuously real differentiable

and satisfies the bc-Laplace equation ∆bc = 0 on Ω. We denote their set by BHarm(Ω).

(ii) F is said to be bc-polyharmonic of order m if it is continuously real differentiable up to order

2m and satisfies the m-th bc-Laplace equation ∆m
bc = 0 on Ω.

It should be noticed here that the bc-polyharmonic functions are closely connected to a special class

of bc-polyholomorphic functions as expected in [16]. Their representations in terms of bc-harmonic

functions were obtained in [16, Proposition 4.4], which itself is a bicomplex extension of Almansi’s

result [4] for the classical polyharmonic complex-valued functions. For its exact statement, we let

|Z|2kbc := ZkZ∗k for every Z ∈ BC and k = 0, 1, 2, . . .

Proposition 2.4. For every bc-polyharmonic function F on BC of order m, there are certain

bc-harmonic functions Hk, k = 0, 1, . . . ,m− 1, such that

F (Z) =

m−1∑
k=0

|Z|2kbcHk(Z). (2.9)

Remark 2.5. The component functions Hk in Proposition 2.4 are bc-harmonic and they implicitly

depend on Z† and Z̃. More precisely, identity (2.9) reads equivalently

F (Z) =

+∞∑
k=0

m−1∑
k=0

(
Zn+kZ∗kAn,k(Z̃, Z

†) + ZkZ∗n+kBn,k(Z̃, Z
†)
)
, (2.10)

for given bicomplex-valued functions An,k and Bn,k belonging to ker(∂Z) ∩ ker(∂Z∗).
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Definition 2.6. Let F be a bicomplex-valued function on an open set Ω ⊂ BC.

(i) It is said to be strongly bicomplex harmonic if F and F † are both bc-harmonic.

(ii) It is said to be strongly bc-polyharmonic of bi-order (m,n), if it has continuous partial deriva-

tives up to order 2max(m,n) and verifies ∆m
bcF = 0 and ∆n

bcF
† = 0 on Ω.

We conclude this section by providing explicit examples for the different classes of bicomplex

holomorphic, polyholomorphic, harmonic and polyharmonic functions, in the i, j, ij = k represen-

tation as well as in the idempotent representation, which can easily constructed making use of the

obtained characterizations. Thus, the functions

(Zm + Zn) + k(Zm − Zn) = 2αme+ + 2βne−

are the elementary bc-holomorphic functions on BC, while

(ZmZ∗ + ZnZ†) + k(ZmZ∗ − ZnZ†) = 2αmαe+ + 2αβne−

is an example of a (2, 2, 1)-polyholomorphic function. The following

h0(Z) = ZZ† + ZZ̃ + Z∗Z̃ + Z∗Z̃ = 2ℜ
(
α(β + β)

)
is a fundamental example of bc-harmonic function which can not be the real part of any bc-

harmonic function. An example of polyharmonic function is given by the the biharmonic function

Z∗Z†h0(Z) + h0(Z) = 2
{
(αβ + 1) e+ +

(
αβ + 1

)
e−
}
ℜ
(
α(β + β)

)
.

3 Main results

3.1 Characterization of strongly bc-harmonic functions

The following result provides an explicit characterization of the strongly bc-harmonic functions.

Theorem 3.1. Let F be a bicomplex-valued function on BC. Then, the function F is strongly

bc-harmonic if and only if there are some sequences (am,n)m,n, (bm,n)m,n, (cm,n)m,n and (dm,n)m,n

of bicomplex numbers such that F has a power series expansion of the form

F (Z) =

+∞∑
m=0

+∞∑
n=0

(
am,nZ

mZ†n + bm,nZ
mZ̃n + cm,nZ

∗mZ†n + dm,nZ
∗mZ̃n

)
, (3.1)

converging absolutely and uniformly on any compact set of BC.
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Proof. The “if” follows by direct computation. However, the strongly bc-harmonicity of F in (3.1)

in the sense of Definition 2.6 can be handled by observing that the uniformly convergent series in

(3.1) can be rewritten as F = H +G∗, with some functions H and G that can expanded as

+∞∑
m=0

Zm
(
(ψ(Z))† + φ̃(Z)

)

for given bc-holomorphic functions ψ and φ, and next employing using the useful facts ∂Z∗(ϕ†) =(
∂Z̃(ϕ)

)†, ∂Z∗(ϕ̃) = ∂̃Z†(ϕ), ∂Z̃(ϕ
†) = (∂Z∗(ϕ))

†, and ∂Z†(ϕ̃) = ∂̃Z∗(G) as well as ∂Z(G∗) =

(∂Z∗(G))
∗ and ∂Z†(G∗) =

(
∂Z̃(G)

)∗.
For the proof of the “only if”, let F (αe+ + βe−) = F+(α, β)e+ + F−(α, β)e− be a strongly bc-

harmonic function, with F+, F− : BC −→ C. Thus, from ∆bcF = 0 and ∆bcF
† = 0, and in par-

ticular ∆αF
+(·, β) = 0 and ∆αF

−(·, β) = 0, for every fixed complex number β, one observes that

both the partial components α 7−→ F+(α, β) and α 7−→ F−(α, β) are complex-valued harmonic

functions in the complex plane, for every fixed β ∈ C. Therefore, there exist some complex-valued

holomorphic functions H+,β , H−,β , G+,β and G−,β on C with power series expansions centered at

the origin such that

F+(α, β) = H+,β(α) +G+,β(α) =

+∞∑
m=0

a+m(β)αm + b+m(β)αm (3.2)

and

F−(α, β) = H−,β(α) +G−,β(α) =

+∞∑
m=0

a−m(β)αm + b−m(β)αm, (3.3)

for all α ∈ C. However, since the partial functions β 7−→ F±(α, β) being harmonic, the involved

coefficients

a±m(β) =
1

m!

∂mF±

∂αm
(0, β), m = 0, 1, 2, . . . ,

and

b±m(β) =
1

m!

∂mF±

∂αm (0, β), m = 0, 1, 2, . . . ,

which are independent of α and α and seen as functions in the β-variable, become C∞ and moreover

harmonic on the complex plane. Thus, we write

a±m = H±
1,m +H±

2,m and b±m(β) = G±
1,m +G±

2,m,

for certain holomorphic functions H±
0 , G±

0 , H±
1,m, H±

2,m, G±
1,m and G±

2,m on C. Returning back to

(3.2)-(3.3) and using the expansion series of the involved holomorphic functions, we get
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F±(α, β) = H±
0 (β) +G±

0 (β) +

+∞∑
m=1

(
H±

1,m(β) +H±
2,m(β)

)
αm +

(
G±

1,m(β) +G±
2,m(β)

)
αm

=

+∞∑
m,n=0

(
a±1,m,nβ

n + a±2,m,nβ
n
)
αm +

(
b±1,m,nβ

n + b±2,m,nβ
n
)
αm,

which gives rise to (3.1).

3.2 Additive decomposition theorems

We begin with the following.

Theorem 3.2. A bicomplex-valued function F is of the form F = H+G∗, for some bc-holomorphic

functions H and G, if and only if it is bc-harmonic on BC such that ∂Z̃F = ∂Z†F = 0.

Proof. For given F = H+G∗ such thatH and G are bc-holomorphic, the function F is bc-harmonic

for the smooth function F satisfies

∂2F

∂Z∂Z∗ =
∂

∂Z

(
∂H

∂Z∗

)
+

∂

∂Z∗

((
∂G

∂Z∗

))∗

= 0.

Moreover, using the facts ∂Z̃(G
∗) = (∂Z†(G))

∗ and ∂Z†(G∗) =
(
∂Z̃(G)

)∗, and keeping in mind

(2.8) it becomes clear that

∂Z̃F = ∂Z̃(H) + ∂Z̃(G
∗) = ∂Z̃(H) + (∂Z†(G))

∗
= 0

and

∂Z†F = ∂Z†(H) + ∂Z†(G∗) = ∂Z†(H) +
(
∂Z̃(G)

)∗
= 0

hold.

For the proof of the converse, we proceed into two steps.

Step 1: Assume that F : BC −→ D is a hyperbolic-valued bc-harmonic function belonging to

ker(∂Z̃) ∩ ker(∂Z†). Next, observe that by means of [16, Theorem 1.1] there exists a bc-

holomorphic function T such that F = ℜehyp (T ) := (T + T ∗)/2, which infers F = H + G∗

with H = G = T/2.

Step 2: For the general case when F does not take values in D, we rewrite it as F = F1 + iF2,

with

F1 =
F + F ∗

2
and F2 =

F − F ∗

2i
.
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Both F1 and F2 are hyperbolic-valued functions on BC. From this, it becomes clear that F

is a bc-harmonic if and only if F1 and F2 are bc-harmonic. Moreover, we necessarily have

2∂Z̃F1 = −2i∂Z̃F1 = ∂Z̃F
∗ = (∂Z†F )

∗
= 0,

and

2∂Z̃F1 = −2i∂Z†F1 = ∂Z†F ∗ =
(
∂Z̃F

)∗
= 0.

This implies that the functions F1 and F2 belong to ker(∂Z̃) ∩ ker(∂Z†). However, from the

first step, we easily conclude that F1 = H1+G
∗
1 and F2 = H2+G

∗
2, for some bc-holomorphic

functions Hℓ and Gℓ, ℓ = 1, 2. Now, since i∗ = −i, it follows

F = (H1 +G∗
1) + i (H2 +G∗

2) = H +G∗,

with H = H1 + iH2 and G = G1 − iG2.

The following result extends the previous one to the bc-polyharmonic functions of arbitrary finite

order. The argument in the presented proof is completely different from the one provided for

Theorem 3.2.

Theorem 3.3. Let F be a bicomplex-valued bc-polyharmonic function of order m on BC. Then,

there exist certain (m, 1, 1)-bc-polyholomorphic functions H and G such that F = H + G∗ if and

only if ∂Z̃F = ∂Z†F = 0.

Proof. In the sense of Definition 2.1, the function H + G∗ is clearly bc-polyharmonic, whenever

H and G are bc-polyholomorphic of order (m, 1, 1) and (n, 1, 1), respectively. Indeed, by setting

ℓ = max(m,n), we have

∆ℓ
bc(H +G∗) =

∂ℓ

∂Zℓ

(
∂ℓH

∂Z∗ℓ

)
+

∂ℓ

∂Z∗ℓ

(
∂ℓG

∂Z∗ℓ

)∗

= 0.

To prove the converse, let F be a bc-polyharmonic function of order m. Then, ∂mZ∗(∂mZ F ) =

∆m
bcF = 0. But, under the assumption ∂Z̃F = ∂Z†F = 0, the function ∂mZ F becomes (m, 1, 1)-bc-

polyholomorphic. Accordingly, it can be expanded as

∂mZ F =

m−1∑
ℓ=0

Z∗ℓψℓ,

by means of Proposition 2.2 (with n = k = 1). The involved functions ψℓ, ℓ = 0, 1, . . . ,m− 1, are

bc-holomorphic and can always be rewritten as ψℓ = ∂mZ φℓ for certain bc-holomorphic functions

φℓ. Thus, by considering the function

G =

m−1∑
ℓ=0

Z∗ℓφℓ,
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we get ∂mZ∗(F ∗ − G∗) = 0. But, using again the assumption ∂Z̃F = ∂Z†F = 0, it becomes clear

that F ∗ −G∗ = H is a (m, 1, 1)-bc-polyholomorphic function.

Remark 3.4. The proof of Theorem 3.3 can be handled using Almansi’s theorem for bc-polyharmonic

functions (see Proposition 2.4 or Remark 2.5) and by viewing Z and Z† as independent variables.

In fact, for F being a bc-polyharmonic function of order m, there exist some bc-harmonic functions

Fk, k = 0, 1, . . . ,m− 1, such that

F (Z) = F0 + |Z|bcF1 + · · ·+ |Z|2(m−1)
bc Fm−1.

Accordingly, the assumption ∂Z̃F = ∂Z†F = 0 becomes equivalent to ∂Z̃Fk = ∂Z†Fk = 0 for every

k = 0, 1, . . . ,m − 1. Therefore, making appeal to the discussion provided in the proof of Theorem

3.2 for each Fk, there exist some bc-holomorphic functions Hk and Gk such that Fk = Hk + G∗
k.

Hence, one derives F = H +G∗, where

H =

m−1∑
k=0

|Z|2kbcHk and G =

m−1∑
k=0

|Z|2kbcGk.

Given such result (Theorem 3.3), the next one provides a sufficient condition to decompose a given

strongly bc-harmonic function F as F = H0 +H∗
1 +H†

2 + H̃3 for certain bc-holomorphic function

H. Notice, that the converse is clear since the different bicomplex conjugates H∗, H†, H̃ of a bc-

holomorphic function H are obviously bc-harmonic, and moreover they are strongly bc-harmonic,

which shows that the functions H0+H
∗
1 +H

†
2+H̃3, arising as the sum of the different conjugates of

bc-holomorphic functions for some bicomplex holomorphic functions Hℓ, ℓ = 0, 1, 2, 3, are strongly

bc-harmonic.

Theorem 3.5. A bicomplex-valued strongly bc-harmonic function F in BC is of the form F =

H0 +H∗
1 +H†

2 + H̃3, for some bc-holomorphic functions Hℓ, ℓ = 0, 1, 2, 3, if

∂m+n+j+kF

∂ZmZ∗nZ†jZ̃k
(0) = 0, (3.4)

holds, for every non-negative integers m,n, j and k such that mn = jk = 0.

Proof. The key observation is contained in the characterization provided by Theorem 3.1. In fact,

the involved bicomplex constants in (3.1) are given by

am,n =
1

m!n!

∂m+nF

∂ZmZ†n (0), bm,n =
1

m!n!

∂m+nF

∂ZmZ̃n
(0),

cm,n =
1

m!n!

∂m+nF

∂Z∗mZ†n (0), dm,n =
1

m!n!

∂m+nF

∂Z∗mZ̃n
(0).
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Accordingly, under the assumption (3.4), which reads equivalently as

∂m+jF

∂ZmZ†j (0) =
∂m+jF

∂Z∗mZ†j (0) =
∂k+nF

∂ZkZ̃n
(0) =

∂k+nF

∂Z∗kZ̃n
(0) = 0, (3.5)

we get am,n = dm,n = 0, for every n ≥ 1, and bm,n = cm,n = 0, for any m ≥ 1. Thus, the

expansion series of F reduces further to F = H0 +H∗
1 +H†

2 + H̃3, where H0, H1, H2 and H3 are

the bc-holomorphic functions given by

H0 :=

+∞∑
m=0

amZ
m, H1 :=

+∞∑
m=0

d∗mm Zm, H2 :=

+∞∑
n=0

c†nZ
n, and H3 =:

+∞∑
n=0

b̃nZ
n,

where we have set ak := ak,0, dk := dk,0ck := c0,k and bk := b0,k.

Remark 3.6. Theorem 3.5 can be reproved by considering an equivalent sufficient condition, lead-

ing to am,n = dm,n = 0 for every m ≥ 1 and bm,n = cm,n = 0 for any n ≥ 1.

Below, we give an additional additive decomposition theorem, which is specific for the bc-harmonic

functions.

Theorem 3.7. We have BHarm(BC) =
(
ker (∂Z∗) + ker

(
∂Z̃
))

∩ C∞(BC). More precisely, H is

a bc-harmonic function if and only if it can be expanded as

H(Z) =

+∞∑
k=0

ZkAk(Z
†, Z̃) + Z†kBk(Z,Z

∗), (3.6)

for some Ak ∈ ker (∂Z) ∩ ker (∂Z∗) and Bk ∈ ker (∂Z†) ∩ ker
(
∂Z̃
)
.

Proof. Let H be a bc-harmonic function and write H(Z) = Ĥ+(α, β)e+ + Ĥ−(α, β)e−. Hence,

the functions Ĥ+(·, b) : C −→ C and Ĥ−(a, ·) : C −→ C are harmonic on C. Thus, for every

fixed a, b ∈ C, the involved functions can be decomposed as Ĥ+(α, b) = h+,1
b (α) + h+,2

b (α) and

Ĥ−(a, β) = h−,1
a (β) + h−,2

a (β) for some holmorphic functions h+,1
b , h+,2

b : C −→ C and h−,1
a , h−,2

a :

C −→ C, thanks to the additive decomposition theorem for classical harmonic functions. Therefore,

by setting
H(1)(Z|a, b) := h+,1

b (α)e+ + h−,1
a (β)e−

and

H(2)(Z|a, b) := h+,2
b (α)e+ + h−,2

a (β)e−,

we have ∂Z∗(H(1)(·|a, b)) = ∂Z̃(H
(2)(·|a, b))) and

H(Z) = H(1)(Z|α, β) +H(2)(Z|α, β), Z = αe+ + βe−. (3.7)

The functions H(1) and H(2) belong clearly to ker (∂Z∗) and ker
(
∂Z̃
)
, respectively. The inverse

inclusion is immediate.
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In Proposition 3.10 below, it is proved that the involved H(1), H(2), Ak and Bk in (3.7) and (3.6)

are connected to each other by some additive separate bc-holomorphic function, which extends

the notion of separate holomorphy to the bicomplex setting. Let F be a given bicomplex-valued

function on BC, identified to F̂ (α, β) := F (αe+ + βe−) on C2. Define the partial functions

Fα : C −→ BC and F β : C −→ BC given by

Fα(β) = F β(α) =: F̂ (α, β).

Definition 3.8. A bicomplex-valued function F on BC is said to be separately holomorphic if Fα

and F β are both holomorphic in C.

Accordingly, we have the following characterization.

Proposition 3.9. Let F be a bicomplex-valued function on BC. Then, the following assertions

are equivalent.

(i) F is separate holomorphic on Ω.

(ii) F satisfies
∂F

∂Z∗ =
∂F

∂Z̃
= 0. (3.8)

(iii) F has the expansion

F (Z) =

+∞∑
m,n=0

Cm,nZ
mZ†n, Cm,n ∈ BC. (3.9)

Proof. The separate holomorphy of F reads ∂F̂ /∂α = ∂F̂ /∂β = 0, and therefore

∂F̂+

∂α
=
∂F̂−

∂α
=
∂F̂+

∂β
=
∂F̂−

∂β
= 0. (3.10)

This is in fact also equivalent to

∂
(
F̂+e+ + F̂−e−

)
∂Z∗ =

∂
(
F̂−e+ + F̂+e−

)
∂Z∗ =

∂
(
F̂+e+ + F̂−e−

)
∂Z̃

†

be identically zero on BC, which infers (3.8). Next, by means of (3.10), the functions in (ii) are

those for which we have

F̂±(α, β) =

+∞∑
m,n=0

a±m,nα
mβn, a±m,n ∈ C,
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and therefore

F (Z) =

+∞∑
m,n=0

Cm,nZ
mZ†n, with Cm,n = a+m,ne+ + a−n,me−.

The converse (iii) implies (ii) is clearly immediate.

Proposition 3.10. Keep the notations of H(1), H(2), Ak and Bk as above. Then, for any H ∈
BHarm(BC), there exists a separate bc-holomorphic function G such that

H(1)(Z|α, β) =
+∞∑
k=0

ZkAk(Z
†, Z̃) +G(Z) and H(2)(Z|α, β) =

+∞∑
k=0

Z†kBk(Z,Z
∗)−G(Z).

Proof. For every Z = αe+ + βe−, set

G(1)(Z) := H(1)(Z|α, β)−
+∞∑
k=0

ZkAk(Z
†, Z̃) and G(2)(Z) := H(2)(Z|α, β)−

+∞∑
k=0

Z†kBk(Z,Z
∗).

Then, from (3.7) and (3.6), we conclude that G(1) = −G(2). However, since ∂Z(Ak) = ∂Z∗(Ak) = 0,

∂Z†(Bk) = ∂Z̃(Bk) = 0 and ∂Z∗(H(1)(·|a, b)) = ∂Z̃(H
(2)(·|a, b)) = 0, we get ∂Z∗G = ∂Z∗G(1) = 0

and ∂Z̃G = ∂Z̃G
(1) = 0. This completes the proof by setting G := G(1) = −G(2) ∈ ker(∂Z∗) ∩

ker(∂Z̃).

4 Concluding remarks

The conclusions of Theorems 3.2, 3.3, and 3.7 remain valid for arbitrary generic product-type

domains in BC without additional assumptions, while Theorems 3.1 and 3.5 remain correct on

special product-type domains in BC. In fact, the statements of Theorems 3.5 and 3.7 are both

valid on a given D(0, r1, r2), where

D(Z0, r1, r2) := {Z ∈ BC; ZZ∗ ⪯ r1e+ + r2e−},

for given nonnegative reals r1 and r2. Assertion of Theorem 3.5 also holds for arbitraryD(Z0, r1, r2)

by imposing
∂m+n+j+kF

∂ZmZ∗nZ†jZ̃k
(Z0) = 0, (4.1)

for every positive integers m,n, j and k, as a sufficient condition for a given strongly bc-harmonic

bicomplex-valued function F on D(Z0, r1, r2) to be of the form F = H0 +H∗
1 +H†

2 + H̃3, for some

bc-holomorphic functions Hℓ, ℓ = 0, 1, 2, 3, on D(Z0, r1, r2). Analogously to Theorem 3.1, one

asserts that a given bicomplex-valued function F is strongly bc-harmonic on a product domain Ω
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if and only if for any Z0 ∈ Ω and any r1, r2 > 0 such that D(Z0, r1, r2) ⊂ Ω, F can be expanded as

F (Z) =

+∞∑
m,n=0

am,n(Z − Z0)
m(Z − Z0)

†n + bm,n(Z − Z0)
m ˜(Z − Z0)

n

+ cm,n(Z − Z0)
∗m(Z − Z0)

†n + dm,n(Z − Z0)
∗m ˜(Z − Z0)

n

on D(Z0, r1, r2).
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