Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations
-
Bapurao C. Dhage
bcdhage@gmail.com
-
John R. Graef
John-Graef@utc.edu
-
Shyam B. Dhage
sbdhage4791@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.023Abstract
Existence, attractivity, and stability of solutions of a non-linear fractional differential equation of Riemann-Liouville type are proved using the classical Schauder fixed point theorem and a fixed point result due to Dhage. The results are illustrated with examples.
Keywords
Mathematics Subject Classification:
R. Agarwal, S. Hristova and D. O’Regan, “Basic concepts of Riemann-Liouville fractional differential equations with non-instantaneous impulses”, Symmetry, vol. 11, no. 5, pp. 1–21, 2019.
J. Banas and B. C. Dhage, “Global asymptotic stability of solutions of a functional integral equations”, Nonlinear Anal., vol. 69, no. 7, pp. 1945–1952, 2008.
B. C. Dhage, “Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations”, Differ. Equ. Appl., vol. 2, no. 4, pp. 465–486, 2010.
B. C. Dhage, “Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications”, Nonlinear Stud., vol. 25, no. 3, pp. 559–573, 2018.
B. C. Dhage, “Existence and attractivity theorems for nonlinear first order hybrid differential equations with anticipation and retardation”, Jñānābha, vol. 49, no. 2, pp. 45–63, 2019.
B. C. Dhage, “Existence and attractivity theorems for nonlinear hybrid fractional differential equations with anticipation and retardation”, J. Nonlinear Funct. Anal., Article ID 47, pp. 1–18, 2020.
B. C. Dhage, “Existence and attractivity theorems for nonlinear hybrid fractional integrodifferential equations with anticipation and retardation”, Cubo, vol. 22, no. 3, pp. 325–350, 2020.
B. C. Dhage, “Global asymptotic attractivity and stability theorems for nonlinear Caputo fractional differential equations”, J. Fract. Calc. Appl., vol. 12, no. 1, pp. 223–237, 2021.
B. C. Dhage, S. B. Dhage and J. R. Graef, “Local attractivity and stability analysis of a nonlinear quadratic fractional integral equation”, Appl. Anal., vol. 95, no. 9, pp. 1989–2003, 2016.
B. C. Dhage, S. B. Dhage and S. D. Sarkate, “Attractivity and existence results for hybrid differential equations with anticipation and retardation”, J. Math. Comput. Sci., vol. 4, no. 2, pp. 206–225, 2014.
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, New York: Springer-Verlag, 2003.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B. V., 2006.
I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering 198, San Diego: Academic Press, Inc., 1999.
Most read articles by the same author(s)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Bapurao C. Dhage, Some Generalizations of Mulit-Valued Version of Schauder‘s Fixed Point Theorem with Applications , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
Similar Articles
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- George A. Anastassiou, Foundations of generalized Prabhakar-Hilfer fractional calculus with applications , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Michael Holm, Sum and Difference Compositions in Discrete Fractional Calculus , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive Solutions for Systems of Three-point Nonlinear Boundary Value Problems with Deviating Arguments , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- G. Suresh, Ch Vasavi, T.S. Rao, M.S.N. Murty, Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+ , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- M. Angélica Astaburuaga, Víctor H. Cortés, Claudio Fernández, Rafael Del Río, Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 B. C. Dhage et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











