Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations
-
Bapurao C. Dhage
bcdhage@gmail.com
-
John R. Graef
John-Graef@utc.edu
-
Shyam B. Dhage
sbdhage4791@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.023Abstract
Existence, attractivity, and stability of solutions of a non-linear fractional differential equation of Riemann-Liouville type are proved using the classical Schauder fixed point theorem and a fixed point result due to Dhage. The results are illustrated with examples.
Keywords
Mathematics Subject Classification:
R. Agarwal, S. Hristova and D. O’Regan, “Basic concepts of Riemann-Liouville fractional differential equations with non-instantaneous impulses”, Symmetry, vol. 11, no. 5, pp. 1–21, 2019.
J. Banas and B. C. Dhage, “Global asymptotic stability of solutions of a functional integral equations”, Nonlinear Anal., vol. 69, no. 7, pp. 1945–1952, 2008.
B. C. Dhage, “Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations”, Differ. Equ. Appl., vol. 2, no. 4, pp. 465–486, 2010.
B. C. Dhage, “Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications”, Nonlinear Stud., vol. 25, no. 3, pp. 559–573, 2018.
B. C. Dhage, “Existence and attractivity theorems for nonlinear first order hybrid differential equations with anticipation and retardation”, Jñānābha, vol. 49, no. 2, pp. 45–63, 2019.
B. C. Dhage, “Existence and attractivity theorems for nonlinear hybrid fractional differential equations with anticipation and retardation”, J. Nonlinear Funct. Anal., Article ID 47, pp. 1–18, 2020.
B. C. Dhage, “Existence and attractivity theorems for nonlinear hybrid fractional integrodifferential equations with anticipation and retardation”, Cubo, vol. 22, no. 3, pp. 325–350, 2020.
B. C. Dhage, “Global asymptotic attractivity and stability theorems for nonlinear Caputo fractional differential equations”, J. Fract. Calc. Appl., vol. 12, no. 1, pp. 223–237, 2021.
B. C. Dhage, S. B. Dhage and J. R. Graef, “Local attractivity and stability analysis of a nonlinear quadratic fractional integral equation”, Appl. Anal., vol. 95, no. 9, pp. 1989–2003, 2016.
B. C. Dhage, S. B. Dhage and S. D. Sarkate, “Attractivity and existence results for hybrid differential equations with anticipation and retardation”, J. Math. Comput. Sci., vol. 4, no. 2, pp. 206–225, 2014.
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, New York: Springer-Verlag, 2003.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B. V., 2006.
I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering 198, San Diego: Academic Press, Inc., 1999.
Most read articles by the same author(s)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Bapurao C. Dhage, Some Generalizations of Mulit-Valued Version of Schauder‘s Fixed Point Theorem with Applications , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
Similar Articles
- Chengjun Guo, Donal O‘Regan, Ravi P. Agarwal, Existence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Junwei Liu, Chuanyi Zhang, Existence and stability of almost periodic solutions to impulsive stochastic differential equations , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- John A.D. Appleby, James P. Gleeson, Alexandra Rodkina, Asymptotic Constancy and Stability in Nonautonomous Stochastic Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 B. C. Dhage et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











