Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations
-
Bapurao C. Dhage
bcdhage@gmail.com
-
John R. Graef
John-Graef@utc.edu
-
Shyam B. Dhage
sbdhage4791@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.023Abstract
Existence, attractivity, and stability of solutions of a non-linear fractional differential equation of Riemann-Liouville type are proved using the classical Schauder fixed point theorem and a fixed point result due to Dhage. The results are illustrated with examples.
Keywords
Mathematics Subject Classification:
R. Agarwal, S. Hristova and D. O’Regan, “Basic concepts of Riemann-Liouville fractional differential equations with non-instantaneous impulses”, Symmetry, vol. 11, no. 5, pp. 1–21, 2019.
J. Banas and B. C. Dhage, “Global asymptotic stability of solutions of a functional integral equations”, Nonlinear Anal., vol. 69, no. 7, pp. 1945–1952, 2008.
B. C. Dhage, “Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations”, Differ. Equ. Appl., vol. 2, no. 4, pp. 465–486, 2010.
B. C. Dhage, “Some variants of two basic hybrid fixed point theorems of Krasnoselskii and Dhage with applications”, Nonlinear Stud., vol. 25, no. 3, pp. 559–573, 2018.
B. C. Dhage, “Existence and attractivity theorems for nonlinear first order hybrid differential equations with anticipation and retardation”, Jñānābha, vol. 49, no. 2, pp. 45–63, 2019.
B. C. Dhage, “Existence and attractivity theorems for nonlinear hybrid fractional differential equations with anticipation and retardation”, J. Nonlinear Funct. Anal., Article ID 47, pp. 1–18, 2020.
B. C. Dhage, “Existence and attractivity theorems for nonlinear hybrid fractional integrodifferential equations with anticipation and retardation”, Cubo, vol. 22, no. 3, pp. 325–350, 2020.
B. C. Dhage, “Global asymptotic attractivity and stability theorems for nonlinear Caputo fractional differential equations”, J. Fract. Calc. Appl., vol. 12, no. 1, pp. 223–237, 2021.
B. C. Dhage, S. B. Dhage and J. R. Graef, “Local attractivity and stability analysis of a nonlinear quadratic fractional integral equation”, Appl. Anal., vol. 95, no. 9, pp. 1989–2003, 2016.
B. C. Dhage, S. B. Dhage and S. D. Sarkate, “Attractivity and existence results for hybrid differential equations with anticipation and retardation”, J. Math. Comput. Sci., vol. 4, no. 2, pp. 206–225, 2014.
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, New York: Springer-Verlag, 2003.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B. V., 2006.
I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering 198, San Diego: Academic Press, Inc., 1999.
Most read articles by the same author(s)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Bapurao C. Dhage, Some Generalizations of Mulit-Valued Version of Schauder‘s Fixed Point Theorem with Applications , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
Similar Articles
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Cemil Tunc, On the uniform asymptotic stability to certain first order neutral differential equations , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Tatyana A. Komleva, Andrej V. Plotnikov, Natalia V. Skripnik, Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Bapurao C. Dhage, Some Generalizations of Mulit-Valued Version of Schauder‘s Fixed Point Theorem with Applications , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 B. C. Dhage et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











