On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects
- Ganga Ram Gautam gangacims@bhu.ac.in
- Sandra Pinelas sandra.pinelas@gmail.com
- Manoj Kumar manojccs@gmail.com
- Namrata Arya namr456@bhu.ac.in
- Jaimala Bishnoi jaimalaccsu@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.363Abstract
In this research article, we delimitate the definition of mild solution for abstract fractional differential equations with state-dependent delay (AFDEw/SDD) of order \(\alpha\in(1,2)\) with impulsive effects and compare the solution to the second-order impulsive differential equations. Further, we obtain sufficient conditions of the existence of mild solution for instantaneous and non-instantaneous impulsive fractional functional differential inclusions with state-dependent delay (IFDIw/SDD) using the multi-valued fixed point theory and operator techniques. Furthermore, we study the trajectory controllability (\(\mathcal{T}-\)controllability) of the AFDEw/SDD. At last, we present some examples to illustrate the sufficient conditions involving partial and ordinary derivatives.
Keywords
Mathematics Subject Classification:
S. Abbas and M. Benchohra, “Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay”, Fract. Calc. Appl. Anal., vol. 13, no. 3, pp. 225–244, 2010.
S. Abbas and M. Benchohra, “Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses”, Appl. Math. Comput., vol. 257, pp. 190–198, 2015, doi: 10.1016/j.amc.2014.06.073.
R. Agarwal, S. Hristova, and D. O’Regan, “Mittag-Leffler stability for impulsive Caputo fractional differential equations”, Differ. Equ. Dyn. Syst., vol. 29, no. 3, pp. 689–705, 2021, doi: https://doi.org/10.1007/s12591-017-0384-4.
R. Agarwal, S. Hristova, and D. O’Regan, “Stability of solutions to impulsive Caputo fractional differential equations,” Electron. J. Differential Equations, 2016, Art. no. 58.
R. Agarwal, S. Hristova, and D. O’Regan, “Global mittag—leffler synchronization for neu- ral networks modeled by impulsive Caputo fractional differential equations with distributed delays,” Symmetry, vol. 10, no. 10, 2018, Art. no. 473.
R. P. Agarwal, B. de Andrade, and G. Siracusa, “On fractional integro-differential equations with state-dependent delay,” Comput. Math. Appl., vol. 62, no. 3, pp. 1143–1149, 2011, doi: 10.1016/j.camwa.2011.02.033.
D. Araya and C. Lizama, “Almost automorphic mild solutions to fractional differential equations,” Nonlinear Anal., vol. 69, no. 11, pp. 3692–3705, 2008, doi: 10.1016/j.na.2007.10.004.
M. Benchohra and F. Berhoun, “Impulsive fractional differential equations with state- dependent delay,” Commun. Appl. Anal., vol. 14, no. 2, pp. 213–224, 2010.
M. Benchohra, S. Litimein, and G. N’Guérékata, “On fractional integro-differential inclusions with state-dependent delay in Banach spaces,” Appl. Anal., vol. 92, no. 2, pp. 335–350, 2013, doi: 10.1080/00036811.2011.616496.
C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, ser. Lecture Notes in Mathematics. Berlin-New York: Springer-Verlag, 1977, vol. 580.
R. Chaudhary and S. Reich, “Existence and controllability results for Hilfer fractional evolution equations via integral contractors,” Fract. Calc. Appl. Anal., vol. 25, no. 6, pp. 2400–2419, 2022, doi: 10.1007/s13540-022-00099-z.
A. Chauhan and J. Dabas, “Existence of mild solutions for impulsive fractional-order semilinear evolution equations with nonlocal conditions,” Electron. J. Differential Equations, 2011, Art. no. 107.
A. Chauhan and J. Dabas, “Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition,” Commun. Nonlinear Sci. Numer. Simul., vol. 19, no. 4, pp. 821–829, 2014, doi: 10.1016/j.cnsns.2013.07.025.
A. Chauhan, J. Dabas, and M. Kumar, “Integral boundary-value problem for impulsive fractional functional differential equations with infinite delay,” Electron. J. Differential Equations, 2012, Art. no. 229.
H. Covitz and S. B. Nadler, Jr., “Multi-valued contraction mappings in generalized metric spaces,” Israel J. Math., vol. 8, pp. 5–11, 1970, doi: 10.1007/BF02771543.
J. Dabas and A. Chauhan, “Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay,” Math. Comput. Modelling, vol. 57, no. 3-4, pp. 754–763, 2013, doi: 10.1016/j.mcm.2012.09.001.
J. Dabas and G. R. Gautam, “Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition”, Electron. J. Differential Equations, 2013, Art. no. 273.
J. P. C. dos Santos, M. M. Arjunan, and C. Cuevas, “Existence results for fractional neutral integro-differential equations with state-dependent delay,” Comput. Math. Appl., vol. 62, no. 3, pp. 1275–1283, 2011, doi: 10.1016/j.camwa.2011.03.048.
M. Feckan, Y. Zhou, and J. Wang, “On the concept and existence of solution for impulsive fractional differential equations,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 7, pp. 3050–3060, 2012, doi: 10.1016/j.cnsns.2011.11.017.
M. Feckan, Y. Zhou, and J. Wang, “Response to “Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014; 19:401–3.]”, Commun. Nonlinear Sci. Numer. Simul., vol. 19, no. 12, pp. 4213–4215, 2014, doi: 10.1016/j.cnsns.2014.04.014.
X. Fu and R. Huang, “Existence of solutions for neutral integro-differential equations with state-dependent delay,” Appl. Math. Comput., vol. 224, pp. 743–759, 2013, doi: 10.1016/j.amc.2013.09.010.
G. R. Gautam and J. Dabas, “Existence of mild solutions for impulsive fractional functional integro-differential equations,” Fract. Differ. Calc., vol. 5, no. 1, pp. 65–77, 2015, doi: 10.7153/fdc-05-06.
V. Govindaraj and R. K. George, “Trajectory controllability of fractional integro-differential systems in Hilbert spaces,” Asian J. Control, vol. 20, no. 5, pp. 1994–2004, 2018, doi: 10.1002/asjc.1685.
J. K. Hale and J. Kato, “Phase space for retarded equations with infinite delay,” Funkcial. Ekvac., vol. 21, no. 1, pp. 11–41, 1978.
E. Hernández and D. O’Regan, “On a new class of abstract impulsive differential equations,” Proc. Amer. Math. Soc., vol. 141, no. 5, pp. 1641–1649, 2013, doi: 10.1090/S0002-9939-2012- 11613-2.
E. Hernández Morales, “A second-order impulsive Cauchy problem,” Int. J. Math. and Math. Sci., vol. 31, 2001, Art. no. 649632.
K. Jothimani, C. Ravichandran, V. Kumar, M. Djemai, and K. S. Nisar, “Interpretation of trajectory control and optimization for the nondense fractional system,” Int. J. Appl. Comput. Math., vol. 8, 2022, Art. no. 273.
R. E. Kalman, “A new approach to linear filtering and prediction problems”, Trans. ASME Ser. D. J. Basic Engrg., vol. 82, no. 1, pp. 35–45, 1960.
K. Karthikeyan, G. S. Murugapandian, and Z. Hammouch, “On mild solutions of fractional impulsive differential systems of Sobolev type with fractional nonlocal conditions,” Math. Sci. (Springer), vol. 17, no. 3, pp. 285–295, 2023, doi: 10.1007/s40096-022-00469-x.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, ser. North-Holland Mathematics Studies. Amsterdam, Netherlands: Elsevier Science B.V., 2006, vol. 204.
V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems. Cambridge, United Kindom: Cambridge Scientific Publishers Ltd, 2009.
Y. Liu and B. Ahmad, “A study of impulsive multiterm fractional differential equations with single and multiple base points and applications,” The Scientific World Journal, 2014, Art. no. 194346.
W. X. Ma, T. Huang, and Y. Zhang, “A multiple exp-function method for nonlinear differential equations and its application”, Physica Scripta, no. 82, 2010, Art. no. 065003.
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, ser. A Wiley-Interscience Publication. New York, USA: John Wiley & Sons, Inc., 1993.
M. Muslim and A. Kumar, “Trajectory controllability of fractional differential systems of order α ∈ (1,2] with deviated argument,” J. Anal., vol. 28, no. 1, pp. 295–304, 2020, doi: 10.1007/s41478-018-0081-x.
B. O. Onasanya, S. Wen, Y. Feng, W. Zhang, and J. Xiong, “Fuzzy coefficient of impulsive intensity in a nonlinear impulsive control system”, Neural Processing Letters, vol. 53, pp. 4639–4657, 2021, doi: 10.1007/s11063-021-10614-7.
M. Pierri, D. O’Regan, and V. Rolnik, “Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses,” Appl. Math. Comput., vol. 219, no. 12, pp. 6743–6749, 2013, doi: 10.1016/j.amc.2012.12.084.
I. Podlubny, Fractional differential equations. San Diego, CA, USA: Academic Press, Inc., 1999, vol. 198.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives. Yverdon, Switzerland: Gordon and Breach Science Publishers, 1993.
X.-B. Shu and Q. Wang, “The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2,” Comput. Math. Appl., vol. 64, no. 6, pp. 2100–2110, 2012, doi: 10.1016/j.camwa.2012.04.006.
J. Wang, M. Feckan, and Y. Zhou, “On the new concept of solutions and existence results for impulsive fractional evolution equations,” Dyn. Partial Differ. Equ., vol. 8, no. 4, pp. 345–361, 2011, doi: 10.4310/DPDE.2011.v8.n4.a3.
J. Wang, A. G. Ibrahim, and M. Feckan, “Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces”, Appl. Math. Comput., vol. 257, pp. 103–118, 2015, doi: 10.1016/j.amc.2014.04.093.
J. Wang, X. Li, and W. Wei, “On the natural solution of an impulsive fractional differential equation of order q ∈ (1,2)”, Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 11, pp. 4384–4394, 2012, doi: 10.1016/j.cnsns.2012.03.011.
Y. Z, F. H, and Z. X, “Existence of mild solutions for a class of fractional neutral evolution equations”, Pure Mathematics, vol. 12, no. 8, pp. 1333–1340, 2022, doi: 10.12677/PM.2022.128146.
J. Zeng, X. Yang, L. Wang, and X. Chen, “Robust asymptotical stability and stabilization of fractional-order complex-valued neural networks with delay”, Discrete Dyn. Nat. Soc., vol. 2021, 2021, Art. no. 5653791.
- The Center for Research and Development in Mathematics and Applications
- Portuguese Foundation for Science and Technology
- UIDB/04106/2020
- UIDP/04106/2020
Most read articles by the same author(s)
- Vediyappan Govindan, Choonkil Park, Sandra Pinelas, Themistocles M. Rassias, Hyers-Ulam stability of an additive-quadratic functional equation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
Similar Articles
- Junwei Liu, Chuanyi Zhang, Existence and stability of almost periodic solutions to impulsive stochastic differential equations , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- H. M. Srivastava, Fractional calculus and its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- T. A. Burton, Bo Zhang, Bounded and periodic solutions of integral equations , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Constantin Corduneanu, Some special classes of neutral functional differential equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Marko Kostić, Degenerate k-regularized (C1, C2)-existence and uniqueness families , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. R. Gautam et al.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.